# XII Simpósio Brasilleiro <br>  <br> de Quimica Teórica 

## Livro de Resumos



> Hotel Glória
> Caxambu, Minas Gerais
> 23 a 26 de novembro de 2003


## XIII SBQT

## Palestra de Abertura

No dia 23 de novembro de 2003 estaremos recebendo em Caxambu, Minas Gerais, um grupo de aproximadamente 365 pessoas interessadas em aspectos relacionados ao desenvolvimento, aplicação, influências e perspectivas da Química Teórica no Brasil. Esta reunião possibilita o contato direto de membros da comunidade científica, estudantes e profissionais interessados em discutir e trocar informações da área, sendo este o cerne do Simpósio Brasileiro de Química Teórica, que neste ano completa sua décima segunda edição.

A expectativa dos participantes deste evento bianual é considerável em função do nível dos trabalhos apresentados, ambiente crítico e amigável e notoriedade que o Simpósio recebeu ao longo do tempo e que extrapolaram as fronteiras do país, sendo considerado como o evento de maior importância na área de Química Teórica da América Latina.

Como consequuência, a responsabilidade pela organização do SBQT exige do Comitê Organizador um esforço significativo para a manutenção dos seus padrões. Neste sentido estão programadas 8 conferências plenárias, 10 apresentações orais, 1 mesa redonda e a apresentação de 373 trabalhos na forma de painéis. As 8 conferências plenárias foram definidas pelo Comitê Organizador, após receber sugestões de nomes de pesquisadores e temas de interesse dos participantes. Adotamos no XII SBQT um processo de avaliação dos trabalhos submetidos através de análise por assessores de reconhecida competência na área. Participaram do processo de avaliação 42 assessores de todo país, realizando um trabalho independente de crítica construtiva e definindo um padrão uniforme de apresentação de trabalhos. Deste processo de avaliação foram feitas indicações pelos assessores de trabalhos a serem apresentados nas 10 sessões orais, selecionadas posteriormente pelo Comitê Organizador.

O XII SBQT está sendo realizado graças aos esforços e desejo da comunidade científica, sobrevivendo às incertezas e sobressaltos econômicos e políticos. Foram obtidos recursos financeiros parciais de agências de fomento, como: CNPq, FAPESP, FAPERJ, FAPEMIG, FAPERGS, FAEP-UNICAMP e RENAMI. Contamos ainda com o apoio direto ou indireto de diversas Universidades através de suas Pró-Reitorias de Pesquisa, da Sociedade Brasileira de Química - SBQ, e o patrocínio de agências privadas como o Banespa - Grupo Santander.

O Comitê Organizador realizou nestes últimos dois anos um trabalho árduo e exaustivo de busca por alternativas e aprimoramento do XII SBQT. Todo esse esforço também tem produzido uma grande satisfação ao verificarmos que o mesmo está praticamente concluído. Desta forma, esperamos que todos os participantes tenham estadias produtivas, agradáveis e dentro da concretização das melhores expectativas. Estes são os nossos mais sinceros votos.

## Comitê Organizador:

Prof. Antonio Carlos Borin (Universidade de São Paulo)
Prof. Hélio Ferreira dos Santos (Universidade Federal de Juiz de Fora)
Prof. Hubert Stassen (Universidade Federal do Rio Grande do Sul)
Prof. Kleber Mundim (Universidade de Brasília)
Prof. Luiz Carlos Gomide Freitas (Universidade Federal de São Carlos)
Prof. Marco Antonio Chaer (Universidade Federal do Rio de Janeiro)
Prof. Oscar Malta ( Universidade Federal de Pernambuco)
Prof. Rogério Custodio (Universidade Estadual de Campinas) - Coordenador

## Comitê Local:

Prof. Nelson Henrique Morgon (Universidade Estadual de Campinas)

## Programação do XII SBQT

| 8:30-9:00 |  | Painéis(Pares) | Painéis (Ímpares) | Miniconferência |
| :---: | :---: | :---: | :---: | :---: |
| 9:00-9:30 |  |  |  | Miniconferência |
| 9:30-10:00 |  |  |  | Café |
| 10:0-10:30 |  | Café | Café |  |
| $\begin{aligned} & 10: 30- \\ & 11: 00 \\ & \hline \end{aligned}$ |  | Miniconferência | Mini-conferência | Palestra |
| $\begin{aligned} & 11: 00- \\ & 11: 30 \end{aligned}$ |  | Palestra | Palestra |  |
| $\begin{aligned} & 11: 30- \\ & 12: 00 \end{aligned}$ |  |  |  |  |
| $\begin{aligned} & \hline 12: 00- \\ & 14: 00 \end{aligned}$ | Recepção e Registro | Almoço | Almoço | Almoço |
| $\begin{aligned} & \hline 14: 00- \\ & 14: 30 \end{aligned}$ |  |  |  |  |
| $\begin{aligned} & 14: 30- \\ & 15: 00 \\ & \hline \end{aligned}$ |  | Miniconferência | Mini-conferência |  |
| $\begin{aligned} & 15: 00- \\ & 15: 30 \\ & \hline \end{aligned}$ | Fixação de Painéis | Miniconferência | Palestra |  |
| $\begin{aligned} & 15: 30- \\ & 16: 00 \end{aligned}$ |  | Miniconferência |  |  |
| $\begin{aligned} & \text { 16:00- } \\ & 16: 30 \end{aligned}$ |  | Café | Café |  |
| $\begin{aligned} & \hline 16: 30- \\ & 17: 00 \end{aligned}$ |  | Miniconferência | Mini-conferência |  |
| $\begin{aligned} & 17: 00- \\ & 17: 30 \end{aligned}$ |  |  | Palestra |  |
| $\begin{aligned} & \hline 17: 30- \\ & 18: 00 \end{aligned}$ |  | Palestra |  |  |
| $\begin{aligned} & \hline 18: 00 \\ & 18: 30 \end{aligned}$ |  |  |  |  |
| $\begin{aligned} & 18: 30- \\ & 20: 30 \end{aligned}$ | Jantar | Jantar | Jantar |  |
| $\begin{aligned} & 20: 30- \\ & 21: 00 \end{aligned}$ | Abertura | Palestra | Assembléia |  |
| $\begin{aligned} & 21: 00- \\ & 21: 30 \end{aligned}$ | Palestra |  |  |  |
| $\begin{aligned} & 21: 30- \\ & 22: 00 \end{aligned}$ |  | Mesa Redonda |  |  |
| $\begin{aligned} & 22: 00- \\ & 22: 30 \\ & \hline \end{aligned}$ | Coquetel |  | Coquetel |  |
| 22:30 |  |  |  |  |

$\checkmark$ Os painéis devem permanecer afixados durante todo o simpósio.
$\checkmark \quad$ Cada painel tem uma numeração que determina a sessão de apresentação. Os números pares e ímpares são apresentados em dias específicos de acordo com a tabela acima.

# SIMULAÇÃO MOLECULAR: EVOLUÇÃO E APLICAÇÕES 

Léo Degrève<br>leo@obelix.ffclrp.usp.br<br>Grupo de Simulação Molecular, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900 14040-901 Ribeirão Preto, S.P.

As técnicas de Simulação Molecular clássica tiveram suas origens, principalmente, nos trabalhos de Newton e nos de Gibbs e Boltzmann que identificaram as leis que regem a movimentação dos corpos e os meios de se correlacionar os estados microscópicos com as propriedades macroscópicas. Entretanto foi necessário esperar o advento de calculadoras com alta potência de cálculo para que a análise das trajetórias atômicas e de todas as informações nelas embutidas se tornassem uma técnica de pesquisa potente e com amplo espectro de aplicações. Na exposição, vários aspectos da simulação molecular serão abordados tanto do ponto de vista histórico como da evolução das aplicações. Algumas aplicações desenvolvidas recentemente pelo Grupo de Simulação Molecular serão brevemente abordadas com o intuito de mostrar a potência e a versatilidade das técnicas de Simulação Molecular principalmente no que diz respeito à diversidade de informações microscópicas que podem ser alcançadas, como ao fato de que muitas informações não alcançáveis experimentalmente podem ser obtidas via simulação.


Palestras Plenárias

# CONDENSED PHASE EFFECTS ON THE ENERGETICS, ELECTRONIC STRUCTURE, AND VIBRATIONAL SPECTRA OF MOLECULAR SYSTEMS 

Benedito J. Costa Cabral<br>ben@adonis.cii.fc.ul.pt<br>Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa

The study of condensed phase effects on the the energetics and electronic properties of liquids and solutions is of great interest to understanding chemical reactivity in solution. We review recent applications [1-4] based on microsolvation modeling and statistical mechanics simulations to the energetics of phenol O-H bond homolytic dissociation in solution and to the prediction of electronic polarization effects in hydrogen bonding [5] and strong dipolar liquids. Some results for the vibrational structure of diatomic molecules in rare gas matrices based on transfer-matrix path-integral methods will be also presented.
[1] R. C. Guedes, B. J. Costa Cabral, J. A. Martinho Simões, H. P. Diogo, J. Phys. Chem. A, 104, 6062 (2000).
[2] P. C. do Couto, R. C. Guedes, B. J. Costa Cabral, J. A. Martinho Simões, Int. J. of Quantum Chemistry, 86, 297 (2002).
[3] R. C. Guedes, Kaline Coutinho, B. J. Costa Cabral, Sylvio Canuto, Journal of Physical Chemistry B, 107, 4304 (2003).
[4] R. C. Guedes, Kaline Coutinho, B. J. Costa Cabral, Sylvio Canuto, C. F. Correia, R. M. Borges dos Santos, J. A. Martinho Simões, J. Phys. Chem. B, submitted.
[5] P. C. do Couto, R. C. Guedes, B. J. Costa Cabral, J. Chem. Phys., in press.

## PL03

## QUANTUM CHEMISTRY AND THE EXCITED STATE METHODS AND APPLICATIONS

Björn O. Roos<br>bjorn.roos@teokem.lu.se<br>Department of Theoretical Chemistry, Chemical Center, P.O.Box 124, S-221 00 Lund, Sweden

A review will be given of quantum chemical methods used to study molecular systems in excited states, in particular those based on the use of multicon _gurational wave functions and second order perturbation theory (the CASSCF/CASPT2 method). The method has today been used to study a large number of excited states in a variety of molecular systems. A large body of data therefore exists from which conclusions concerning the accuracy of the method and its applicability may be drawn. A critical comparison will be made between this approach, other wave function based methods and methods based on density functional theory.

The applications will be mainly concerned with calculations of excited state energy surfaces and their use in spectroscopy and photochemistry. We shall give examples from organic chemistry, transition metal complexes, heavy main group molecules, and electronic spectroscopy for actinide compounds.

# NEW PERSPECTIVES IN THEORETICAL CHEMIICAL PHYSICS 

Erkki J. Brandas<br>erkki.brandas@kvac.uu.se<br>Department of Quantum Chemistry, Uppsala University<br>Box 518, S-751 20 Uppsala, Sweden

We discuss some new aspects and related open problems in theoretical chemical physics. These include the fundamental issue of the system-environment partition, the problem of entanglement versus dissipation and the approach to the classical limit via coherencedecoherence mechanisms. In these applications resonances act as an intermediary and it can be proven that microscopic selforganisation emerges as a consequence of the approach towards a higher order complexity level. Present methods and applications act as an edgeboundary for the quantum-classical and/or micro-macro (meso-)situation.

## PL05

## METODOLOGIAS EM MODELAGEM MOLECULAR DE BIOMOLÉCULAS

## Ricardo Bicca de Alencastro

bicca@iq.ufrj.br
Grupo de Físico-química Orgânica e Modelagem Molecular, Departamento de Química Orgânica, Instituto de Química da Universidade Federal do Rio de Janeiro, Ilha do Fundão, Bloco A, CT, sala 609, Rio de Janeiro 21949-900 - RJ

A simulação computacional de sistemas biomoleculares tornou-se importante nos últimos anos porque permite a obtenção de informações relevantes sobre a estrutura e a dinâmica das interações entre íons e moléculas pequenas e biomoléculas inacessíveis ao experimento. Nesta apresentação, pretendo mostrar os resultados de algumas simulações de dinâmica molecular feitas em nosso grupo envolvendo três biomoléculas (trombina, um canal de cálcio do tipo $L$ e a protease do Citomegalovirus humano).

# CHARGE-TRANSFER STATES IN EU(IIII) COMPLEXES 

Ricardo L. Longo* (PQ) and Hélcio J. Batista (PG)<br>* longo @ufpe.br<br>Universidade Federal de Pernambuco - Departamento de Química Fundamental<br>Av. Prof. Luiz Freire, s/n-Cidade Universitária, 50740-540 Recife, PE

Keywords: luminescence, spin-orbit, relaœation
Ligand-to-metal charge-transfer (LMCT) states are important for luminescent materials, mainly lanthanides, due to their technological applications. These LMCT states involve $4 f$ and ligand orbitals, which make them quite difficult to calculate, because several effects such as, relaxation, spin-orbit couplings, multiplet structures, near degeneracies have to be considered. The INDO/S-Cl approach with the inclusion of the spin-orbital couplings (SO) and configuration interactions (CI) has been used to calculate the LMCT transitions on cryptates $[\mathrm{Eu} \subset 2.2 .1]^{3+}$ and the aqua-complex $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{3+}$ and its hydrolyzed species $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9-m}(\mathrm{OH})_{m}\right]^{3-\mathrm{m}}$. For the $[\mathrm{Eu} \subset 2.2 .1]^{3+}$ complexes the calculated $\triangle \mathrm{E}(\mathrm{SOCl})$ LMCT transitions agree quite well with the experimental data, including the effects of the fluoride ions. For the aqua-complexes it was found that only the hydrolyzed species present LMCT transitions close to the observed transitions.(CAPES, CNPq, FINED. IMMC, PADCT, RENAMI)

# RECENT THEORETICAL STUDIES ON NANODEVICES WITH LARGE NUMBER OF ATOMS 

Sócrates de Oliveira Dantas<br>dantas @fisica.ufjf.br<br>Departamento de Física - ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-330, Brasil.

The technological advances have led to the need for creating functional devices at nanometer scale. There have been continuing efforts in fabricating nanomechanical
systems operating in high frequencies but gigahertz range is beyond our present micromachining technology, as well as the possible biological use of nanomachines has been undertaken.

We are interested in the use of single or multi-walled carbon nanotubes as a nanomechanical device or for biological use as water and molten ions pumb. Since
the size of the systems are large (hundreds and even thousands of heavy atoms) precludes the use of quantum mechanical methods. In the case of nanomechanical device, we will analise molecular dynamics simulations in the framework of classical mechanics with the standard molecular force fields which includes van der Walls, bond stretch, bond angle bend, and torsional rotation terms are used. Here the possibility to use multi-walled carbon
nanotubes as mechanical oscilators is investigated, the main issue is depending on the distance separation between two adjacent nanotubes, it is possible to have an almost perfect sliding surface. The van der Waals interactions between the nanotubes create a restoring force that cause the inner tube to retract and can be the physical basis to
build nanodevices such as nanobearings, nanospring and nanoswitches. The dinamical aspects such as temperature, force and temporal fluctuations have to be considered.

In the biological arena we show recent studies on transport of molecules through single-walled carbon nanotubes as a mimic of macromolecular pores. This is an issue of considerable importance in many biological and nanoelectromechanical systems. Ion channels in cell membranes are crucial for shaping electrical signals and controlling
flow of ions and fluids across cells. The possibility of a nanoscale device that is far less complex than biological system and which incorporate the functionality of ion channels into artificial nanotubes is investigated. <br> \title{
ELECTRONIC STRUCTURE OF MOLECULAR <br> \title{
ELECTRONIC STRUCTURE OF MOLECULAR SYSTEMS BY QUANTUM MONTE CARLO
} SYSTEMS BY QUANTUM MONTE CARLO
}

PL08

William A. Lester, Jr.<br>walester@lbl.gov<br>Department of Chemistry, University of California, Berkeley, Berkeley, CA 947201460, USA

The quantum Monte Carlo method is increasingly being recognized for the capability to describe the electronic structure of molecular systems to high accuracy. This talk will briefly outline the method and present results for a representative collection of recently investigated systems. These include the transition energy between the ground state and lowest triplet state of ethylene; hydrogen abstraction by Cl from methanol; and transition energies in porphyrin.


## XIII SBQT

Resumos dos Painéis

# UNDERSTANDING PRECURSOR AND INTERMEDIATE SPECIES IN ZEOLITE SYNTHESIS: HOW CAN THEORY COMPLETE EXPERIMENT 

Thomas Heine ${ }^{\text {a }}$, Sailaja Krishnamuty ${ }^{\text {b }}$, Annick Gorsot ${ }^{\text {c }}$<br>thomas.heine@chemie.tu-dresden.de<br>a- Institut für Physicalische Chemie, TU Dresden, D-101062 Dresden<br>b- Theoretical Chemistry Group, National Chemistry Laboratory, Prune, India<br>c- UMR 5618 CNRS, 34296 Montpellier Cedex 5, France

Zeolites are crystalline microporous aluminosilicates used in a very wide variety of industrial applications, such as molecular sieves, catalysts, ion-exchange-agents. Zeolites are built from silicate and aluminate tetraedra bonded by corners and edges. These units, assembled in different ways, lead to different structures of pores and channels and build three dimensional frameworks.

Zeolites are synthesized under hydrothermal conditions, in the presence of various organic and inorganic additives. The role of each component of the zeolitic synthetic gel in growing one structure or another one is still a black box for experimentalists, in spite of an increasing number of experimental studies during the early stages of the synthesis. Experimental investigations of zeolites synthesis have been traditionally based on observing the final and initial components in the synthesis mixture. However, more recent in-situ/ex-situ experiments have been performed, using various techniques such as NMR, X-ray scattering, TEM, Raman and IR scattering, etc. Among all these methods, NMR remains the most significant one, bringing information at the molecular level. However, even with the increasing use of the sophisticated in-situ NMR techniques, the fundamental of the zeolite growing process remains unknown. Theoretical studies, which can thus play a very vital role in the understanding of the growing process, have been limited so far to studies of stabilities of various molecular species in the gas phase and their correlation with NMR experimental values. The neglect of the real physical state of the zeolite precursor, i.e. the solution in water, the presence of cations and the dynamical behaviour of the solution may be critical for the precise interpretation of the experimental NMR spectra, specially when the number and the size of these species are increasing. We are thus exploring the incidence of water molecules around the simplest possible precursor species, i.e. the monomeric $\mathrm{Si}(\mathrm{OH})_{4}$ silicate, dimmers, and so on, using DFT based Born-Oppenheimer Molecular Dynamics. Our simulations illustrate the growing process and reproduce very well the experimental ${ }^{29} \mathrm{Si}$ chemical shifts in the solvent if the solvent is treated sufficiently.

## P002

# DFT RESPONSE THEORY CALCULATIONS OF GROUND AND EXCITED STATE PROPERTIES 

## Dan Jonsson

dan.jonsson@physto.se
Department of Physics, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm, Sweden

Density-functional theory for linear and nonlinear response functions using an explicit exponential parametrization of the density operator is presented. This is the first implementation of dynamical hyperpolarizabilities for hybrid functionals including exchange-correlation functionals at the general gradient-approximation level and fractional exact Hartree--Fock exchange. Sample calculations are presented of the first hyperpolarizability of the para-nitroaniline molecule. The calculation of excited state properties will also be discussed.

# THEORETICAL INVESTIGATIONS ON THE ELECTRONIC STRUCTURE OF $\mathrm{Ga}_{84}$-CLUSTERS 

Johannes Frenzel', Sibylle Gemming, Gotthard Seifert<br>johannes.frenzel@chmie.tu-dresden.de<br>Institut für Pysikalische Chemie und Elektrochemie - Technische Universität Dresden 01069 Dresden - Germany<br>Palavras-chave: gallium, cluster compounds, metalloid clusters, DFT

Semi-conducting and metal cluster as building blocks for organised structures are potential candidates for devices in nano electronics. In this field various aluminum and gallium clusters where synthesized with $\left[\mathrm{Al}_{77}\left(\mathrm{~N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)_{20}\right]^{2-}$ and $\left[\mathrm{Ga}_{84}\left(\mathrm{~N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)_{20}\right]^{4-}$ as the largest of this kind ${ }^{1}$. These clusters are refered as metalloid, this means the number of direct metal-metal contacts exceeds that of the metal-ligand bonds.


Figure 1: Part of the cystal stucture: Chain of Ga84-clusters with 2 toluene molecules.
In the crystal structure the $\left.\left[\mathrm{Ga}_{84}\left(\mathrm{~N}_{( } \mathrm{SiMe}_{3}\right)_{2}\right)_{20}\right]^{4-}$-clusters are well separated from each other by the ligand shell and two toluene solvent molecules.

Recent experimental studies of the $\mathrm{Ga}_{84}$-structure have shown metalloid properties within a ${ }^{69,71} \mathrm{Ga}$-NMR experiment ${ }^{2}$. Furthermore a four point measurement of the electrical conductivity shows a semi-conducting behavior and superconductivity $\left(T_{C}=7 \mathrm{~K}\right)^{3}$. Thereby, the understanding of the electronic structure and the transport mechanism is not complete.

In this study the approximate Density Functional Tight Binding Method (DFTB) with a LCAO ansatz (and a valence basis set) is employed to describe the electronic structure of a single cluster $\left[\mathrm{Ga}_{84}\left(\mathrm{~N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)_{20}\right]^{4 .}$. The crystal structure has been described with band structure calculations with DFTB and SCF-DFT-LDA with plane wave basis set.


Figure 2: Calculated DOS of the single cluster $\left[\mathrm{Ga}_{84}\left(\mathrm{~N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)_{20}\right]^{4-}$ (the Fermi level is shifted to zero)
In agreement with the experimental data the single cluster offers metalloid properties. The electronic states are delocalise over the hole cluster and the gallium atoms exhibits no significant charge. The formal charge can be assigned to the nitrogen atoms resulting in an overall charge of 1.6 electrons at the gallium atoms.

With regard to the band structure calculations the crystal structure was modeled by reducing the atom number in the unit cell. Thereby $\left[\mathrm{Ga}_{84}\left(\mathrm{NH}_{2}\right)_{20}\right]^{4-}$ was found as an appropriate model for the cluster structure. The band structure calculations with the model crystal structure gives no dispersion of the electronic bands in contrast to the experimental determined electronic transport via semi-conductivity. The alternatively assumed hopping mechanism can also be excluded, because of the large distances between the single clusters. Also, a charge transfer over the two clusters separating toluene could not be proved.

In conclusion the mechanism of the electronic transport through the $\mathrm{Ga}_{84}$-structure is still an open question. DFG - Deutsche Forschungsgemeinschaft.

[^0]
# ANTIMALARIAL ACTIVITY OF SULFONAMIDES 

Renato C. T. Ghiotto (PQ) and Francisco C. Lavarda (PQ)<br>ghiotto@fc.unesp.br<br>Departamento de Física, Faculdade de Ciências, UNESP, C.P. 473, CEP 17015-970, Bauru, SP, Brazil

Palavras-chave: antimalarials, electronic structure, molecular modeling
Sulfonamides have been used for more than fifty years in medicinal chemistry against malaria. This class of compounds inhibit Plasmodium growth by interfering with the folate metabolism of the parasite. However, a resistance to these drugs has been noticed. In order to search for new potent drugs, some 2,4-diamino-6-quinazoline sulfonamides have been tested for their antimalarial activity(1).

In this work we investigated the theoretical electronic structure of 16 sulfonamides derivatives through semi-empirical molecular orbital calculations, looking for electronics indexes that could help quantitative structure-activity relationship studies.

All the calculations (geometry optimization and electronic structure) were carried out employing the semiempirical method Austin Model 1 (AM1) and the package MOPAC version 6. AM1 has proven to be highly efficient to optimize the geometry of organics molecules. The calculations for all molecules were done in vacuo using the Restricted Hartree-Fock method.

The experimental antimalarial activity is defined as the mean survival time, in days, of treated mice minus the mean survival time, in days, of controlled mice.

The preliminary calculations show that we can correlate the antimalarial activity of the above compounds with the electronic index defined by the energy difference between the highest occupied molecular orbital (HOMO) and the level immediatelly bellow (HOMO-1). The physicochemical meaning of the used electronic index is under investigation and it will be presented on a future work.
(1) Elslager, E. P. et. al.- J. Med Chem-1984,27,1740.

# A STUDY ON CHITOSAN CHARGE TRANSFER COMPLEXES USING SEMI-EMPIRICAL METHODS 

Kleber de Arruda Almeida ${ }^{1}$ (PG), Écio J. França ${ }^{1}(\mathrm{PQ})$, Alvaro A.A. de Queiroz ${ }^{1}$ (PQ) alencar@efei.br. Departamento de Física e Química, Instituto de Ciências, Universidade Federal de Itajubá (UNIFEI) Key-words: chitosan, bioflavonoids, polysaccharide complexes.


#### Abstract

The phenomena of bioactive substances complexed with macromolecules have been the focus of intensive fundamental and applied research. There is a great potential in utilizing the macromolecular complexes in many pharmaceutical preparations especially in controlled release drug delivery systems. Recently, some clinical studies have demonstrated the antiinflammatory and antithrombotic action of quercetin, a flavonoid widely distributed in the medicinal plant Calendula officinalis. The use of natural polymers as a binding matrix for quercetin to preserve the activity of the bioflavonoid for long periods of time may be interesting for the development of new controlled release systems with anti-inflammatory activity. Chitosan, [ $\beta$-( $1 \rightarrow 4$ )-2-amino-2-deoxy-D-glucose], a protonated polysaccharide has been used in very wide range of pharmaceutical applications because of its physicochemical properties. Many of these properties depend on the ability of cationic chitosan to interact with anionic amphiphilic lipids, such as biles acids, phospholipids, fatty acids and surfactants. The molecular origin of these interactions is currently poorly understood, which is limiting the rational utilization of the polysaccharide in the pharmaceutical industry. The aim of the present study was to investigate the interaction between chitosan (Ch) and quercetin (Flv) to characterize the molecular basis of the tendency of the biopolymer to form charge-transfer complexes (CTC) with the bioflavonoid. Theoretical calculations were carried out at the restricted Hartree-Fock level (RHF) using AM1 and PM3 semi-empirical SCF-MO quantum-chemical methods in the Spartan program. Preliminary both structures, quercetin (FIV) and oligomeric models of chitosan (Ch) were optimized to a gradient norm of < 0.1 in the aqueous phase. The initial estimates of the geometry of all the structures were obtained by a molecular mechanics program of CS Chem Office Pro for Windows, followed by full optimization of all geometrical variables (bond lengths, bond angles and dihedral angles), without any symmetry constraint, using the semi-empirical AM1 and PM3 quantum-chemical methods in the Spartan program. The output includes the optimized geometry, molecular orbital energies (eigenvalues) and total electronic energy as well as orbital population. Assuming that a charge-transfer interaction is responsible for the formation of chitosan/quercetin complexes, the possible bonding sites are the hydroxyl groups of the bioactive molecule and the protonated amino groups of chitosan. The interaction through the oxygen should be similar to the Ch protonation due to the strong electron donator property of the hydroxyl quercetin groups. The electrostatic potential, $\mathrm{V}(\mathrm{r})$, as well as the Mülliken population analysis were used as tools for identifying and ranking the molecular chitosan sites most susceptible to the electrophilic quercetin attack. The obtained Ch isosurfaces values indicate that the hydroxyl groups of the bioflavonoid structure present strongly tendencies to form charge-transfer complexes with the Ch macromolecule. The Mülliken distribution charges data indicate the possibility of intermolecular hydrogen bonding between chitosan and the bioflavonoid (FIV) and give rise to a large transition dipole moment in the Ch-Flv charge-transfer complex. The calculated heat of charge-transfer complex formation increased monotonously with an increasing number of glucopyranose residues on the macromolecule, indicating that chitosan easily react with valence electron of the oxygen quercetin atom, to be formed stable Ch-Flv charge transfer complex. The Ch-quercetin has a similar energy gap ( $\Delta \varepsilon_{\text {номо-Luмо }} \approx 6,129 \mathrm{eV}$ ) to the chitosan ( $\Delta \varepsilon_{\text {номо-Luмо }} \approx 6,569 \mathrm{eV}$ ). The above results may be an indicative of the stable character of the chitosan-quercetin CT complex. The calculated electronic spectra of Ch-Flv CTC are in good agreement with the experiment in the ultraviolet region.


# CÁLCULO DAS INTERAÇÕES EFETIVA E ATRAVÉS DAS LIGAÇõES EM DERIVADOS DA N-ARIL PIPERIDINA, PROPAGAÇÃO ELETRÔNICA ATRAVÉS DE PONTES SATURADAS. 

Mozart Pimentel M. de Barros (PG) ${ }^{1 *}$, Alfredo Arnóbio S. da Gama ${ }^{1}$ (PQ).<br>mozart.pimentel@dqf.ufpe.br<br>${ }^{1}$ Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco<br>Palavras-chave: Funções de Green, Doador-aceitador.


2.(1-feril-piperidin-4.ilderio)-molonoritala


2-(8-fenil-8-aza-bicido [3.2.1]oct.3-itideno)-matancrittile
Foram calculadas as interações através do espaço, através das ligações e efetiva para duas substâncias derivadas da N-Aril-piperidina, cada uma em duas configurações, e foram comparados os resultados obtidos com os coeficientes de absorção molar de espectroscopia de absorção eletrônica (UV-Vis) destes compostos encontrados na literatura (Verhoeven et al, Recl. Trav. Chim. Pays-Bas 106, 135-136 (1987)).

As geometrias utilizadas nos cálculos de estrutura eletrônica foram obtidas a partir do cálculo semi-empírico AM1, implementado no Gaussian 98, utilizando os critérios padrão do software para as configurações axiais dos dois sistemas. Para o cálculo de otimização de geometria das configurações equatoriais dos dois sistemas foram impostas algumas restrições além dos critérios padrão, de modo a obter-se uma geometria diferente da configuração anterior (axial).

Foi utilizada uma versão do programa MOPAC 93, modificada neste departamento, que inclui o cálculo de orbitais naturais (NBO), para cálculo de estrutura eletrônica e obtenção da matriz de Fock em termos de orbitais naturais dos dois compostos no nível semi-empírico, utilizando o modelo AM1.

Para os cálculos de estrutura eletrônica e da matriz de Fock em termos de orbitais naturais em nível ab initio foi utilizado o programa Gaussian 98 e as bases STO-3G e 6-31G.Calculou-se, em seguida, a interação eletrônica efetiva a partir da matriz de Fock, utilizando a abordagem de renormalizações sucessivas dos orbitais naturais, que consiste da redução dos sistemas a dois níveis (doador e aceitador), implementada através de um algoritmo no software MAPLE.

Calculou-se a interação através das ligações para os dois sistemas estudados, subtraindose, da interação efetiva, a interação direta entre os sítios doador e aceitador. Observou-se, então, que para um dos sistemas a interação efetiva é maior na configuração equatorial, que é a configuração mais estável termodinamicamente, do que na configuração axial, bem como a interação através das ligações.

De acordo com o resultado da literatura, o coeficiente de absorção molar deste composto aumenta quando a temperatura diminui, o que demonstra que aumentando-se a população da configuração mais estável (equatorial) aumenta-se o coeficiente de absorção molar, o que sugere que este processo deve-se à maior interação eletrônica efetiva da configuração equatorial deste composto.Também foram realizados cálculos CI , no nível $\mathrm{ZINDO} / \mathrm{S}$, e os espectros de linha obtidos foram convoluídos para espectros de banda, aproximando as bandas por uma função lorentziana.

Os resultados obtidos pelo método Cl tiveram uma boa concordância com os resultados obtidos para a interação efetiva, desta maneira, foi observada uma concordância ao menos qualitativa entre a interação efetiva, o coeficiente de absorção molar determinado experimentalmente e as intensidades das bandas calculadas a partir do método CI. (CNPq, CENAPAD-SP).

# CÁLCULO DAS INTERAÇÕES EFETIVA E ATRAVÉS DAS LIGAÇÕES EM PARACICLOFANOS SUBSTITUÍDOS. 

Mozart Pimentel M. de Barros (PG) ${ }^{1}$, Alfredo Arnóbio S. da Gama ${ }^{1}$ (PQ).<br>mozart.pimentel@dqf.ufpe.br<br>${ }^{1}$ Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco

Palavras-chave: Funções de Green, Doador-aceitador.


Derivados de paraciclofano têm sido indicados com materiais para aplicação em ótica não linear. Neste trabalho, calculamos as interações eletrônicas efetiva, direta e através das ligações, utilizando a abordagem de renormalizações sucessivas da matriz de Fock na base de orbitais naturais utilizando funções de Green, que reduz o sistema a dois niveis (DoadorAceitador).

Foram estudados sete compostos de paraciclofano substituídos. Estes compostos possuem uma alta deslocalização eletrônica e a ponte entre os sítios doador e aceitador é praticamente formada por ligações conjugadas, porém existem, no meio da ponte, dois caminhos com três ligações simples cada um, o que pode levar a crer que as transferências de carga nestes compostos ocorrem via interação direta (através do espaço).

Resultados preliminares estimam que a interação direta entre os sítios doador e aceitador é igual a zero, além disso a distância média entre estes sítios, nos sete compostos, determinada por otimização de geometria no nível AM1, é de $20 \AA$, estes resultados indicam que a probabilidade de que a transferência de carga, observada experimentalmente ${ }^{1,2}$, ocorra através do espaço é muito pequena.

Foram realizados cálculos Cl , no nível ZINDO/S, e os resultados obtidos dos comprimentos de onda de maior força do oscilador apresentaram ótima concordância com os comprimentos de onda de absorção máxima apresentados na literatura para os sete compostos estudados ${ }^{1,2}$.

Foram realizados cálculos ab initio, utilizando o programa NWCHEM 4.1, de onde foi obtida a matriz de Fock na base de orbitais naturais híbridos, utilizando o NBO 5.0, presente no NWCHEM.

Neste trabalho pretende-se relacionar a interação efetiva obtida nos cálculos realizados para os sete compostos citados, com a hiperpolarizabilidade determinada experimentalmente ${ }^{1,2}$ para cada um dos compostos.

Agradecemos de maneira especial ao Dr. Edoardo Apra e à Pacific Northwest National Laboratory, pela assistência prestada e modificações implementadas no NWCHEM 4.1, sem às quais não seria possível realizar os cálculos NBO para estes compostos. (CNPq).

[^1]
# FREQUÊNCIA DE ESTIRAMENTO $v(N C)$ EM COMPLEXOS $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NC}-\mathrm{R})\right]^{\mathrm{n+}}\left(\mathrm{R}=\mathrm{H},-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH} 2 \mathrm{C}(\mathrm{O}) \mathrm{OH} ; \mathrm{n}=2\right.$ e 3) UMA COMPARAÇÃO ENTRE OS VALORES TEÓRICOS E EXPERIMENTAIS. 

Francicarlos Veras Cardoso(PG) ${ }^{1}$, Hildo Antonio dos Santos Silva(PQ) ${ }^{1}$, Cícero Wellington Brito Bezerra(PQ) ${ }^{1}$, David Lima Azevedo(PQ $)^{2}$, Joacy Batista de Lima(PQ) ${ }^{1}$<br>david@ufma.br<br>${ }^{1}$ Departamento de Química - Universidade Federal do Maranhāo<br>${ }^{2}$ Departamento de Física - Universidade Federal do Maranhā<br>Palavras-chave: nitriloaminas de rutênio, cálculos semi-empíricos, espectroscopia vibracional.

Os espectros vibracionais de nitrilas e dinitrilas são caracterizados por um processo de absorção na faixa de $2000-2400 \mathrm{~cm}^{-1}$, relativo ao estiramento da tripla ligação $N \equiv C$. Ao se coordenar a um centro metálico, em virtude da redistribuição da densidade eletrônica, deve haver um deslocamento dessa freqüência em relação a dos ligantes livres. Para complexos envolvendo pentaaminas de Ru(II) e Ru(III), a literatura admite retrodoação no primeiro caso ( $\mathrm{Ru}(\mathrm{II}) \rightarrow \mathrm{NCR}$ ) e doação $\sigma$ e $\pi$ no segundo caso ( $\mathrm{Ru}(\mathrm{III}) \leftarrow N C R$ ), diminuindo e aumentando, respectivamente, as freqüências de estiramento em relação aos ligantes livres, já que os orbitais LUMO do fragmento NC são de natureza anti-ligante. ${ }^{1}$ Entretanto, existem algumas exceções. ${ }^{2}$ Com o objetivo de entender melhor as alterações nos valores de $\nu(N C)$ para esses sistemas, cálculos computacionais em nível semi-empírico, devidamente parametrizado para o Ru, foram realizados com os ions complexos $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NC}-\mathrm{R})\right]^{\mathrm{n+}}\left(\mathrm{R}=\mathrm{H},-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OH} ; \mathrm{n}=2\right.$ e 3). As estruturas foram otimizadas na aproximação PM3 ${ }^{(3,4)}$ e os espectros eletrônicos e vibracionais foram calculados e simulados nesta mesma aproximação. Os resultados, a julgar pela análise da composição das funções que constituem os orbitais envolvidos nos fragmentos Ru-NC, não evidenciam nenhuma retrodoação ou doação $\pi$. As $v(N C)$ calculadas e a alteração em relação aos ligantes livres podem ser racionalizadas apenas em função da acidez (ou poder polarizante) do centro metálico. Por este modelo, deslocamento para regiões de menor energia são previstos tanto para os centros de Ru(II) quanto para os de Ru(III), sendo que para este último o efeito deve ser mais pronunciado, conforme ilustrado na tabela abaixo. Uma exceção encontrada foi o $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NCCH}_{2} \mathrm{CH}_{3}\right)\right]^{2+}$, o qual apresenta um deslocamento para maior energia. Estamos realizando cálculos com diversas aproximações tais como $\mathrm{DFT}^{(5,6)}$ e ab-initio ${ }^{(7,8,9)}$ para verificação mais precisa destes resultados. (CAPES, CNPq, CT-PETRO).

| Ion complexo |  | $v(\mathrm{NC})_{\text {teo }}\left(\mathrm{cm}^{-1}\right)$ |  | $v(\mathrm{NC})_{\text {Exp }}\left(\mathrm{cm}^{-1}\right)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Coord. | Livre | Coord. | Livre |  |
| $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCH})\right]^{2+}$ | 2274 | 2283 | 1 | 1 |  |
| $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCH})\right]^{3+}$ | 2015 | 2283 | 1 | 1 |  |
| $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NCCH}_{3}\right)\right]^{2+}$ | 2427 | 2461 | 2239 | 2254 |  |
| $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NCCH}_{3}\right)\right]^{3+}$ | 2065 | 2461 | 1 | 1 |  |
| $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NCCH}_{2} \mathrm{CH}_{3}\right)\right]^{2+}$ | 2414 | 2460 | 2260 | 2246 |  |
| $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NCCH}_{2} \mathrm{CH}_{3}\right)\right]^{3+}$ | 2173 | 2460 | 2294 | 1 |  |
| $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NCCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OH}\right)\right]^{2+}$ | 2412 | 2472 | 2234 | 2270 |  |
| $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NCCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OH}\right)\right]^{3+}$ | 2201 | 2472 | 2280 | 1 |  |

$I=$ não disponivel na literatura. * Todos os dados experimentais apresentados foram extraídos da referência [1].
Alves, Jjf; Franco, Dw. Polyhedron, 1996, 15, 19, 3299-3307 E Artigos Citados.
Storhoff, Bn; Lewis Júnior, Hc. Corrd. Chem. Rew. 1977, 23, 2.; Clarke, Re; Ford, Pc. Inorg. Chem. 1970, 9, 227; Alves, Jjf; Peplis, Amg; Franco, Dw. Polyhedron, 1993, 12, 2216-32219; Cardoso, Fv. Dinitrilas Como Ligantes: Um Estudo Com Pentacianoferratos(li) E Pentaaminrutênio(li). Dissertação(Mestrado). Universidade Federal Do Maranhão, 2003.
Stewart, Jjp; J. Comp. Chem, 1989,10, 209.
3- Stewart, Jjp; J. Comp. Chem,1989, 10, 221.
4- Hohenberg, P. And Kohn, W. Inhomogeneous Electron Gas, Physical Review, 1964, 136, B864.
5- Kohn, W. And Sham, Lij. Self-Consistent Equations Including Exchange And Correlation Effects, Physical Review, 1965, 140, A1133.
6- Roothan, Ccj. New Developments In Molecular Orbital Theory, Rev. Mod. Phys, 1951, 23, 69.
7- Pople Ja. And Nesbet Rk. Self-Consistent Orbitals For Radicals, J. Chem. Phys, 1954,22, 571.
8- Mcweeny, R. And Dierksen G. J. Chem. Phys,1968, 49, 4852.

# PROPRIEDADES ELETRÔNICAS E ESTRUTURAIS DE NANOFIOS DE COBRE 

Anderson da Silva Moreira, Fernando Sato, Pablo Zimmerman Coura, Douglas Soares Galvão e Sócrates de Oliveira Dantas

Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, Rio de Janeiro - RJ CEP 22290-180 Instituto de Física Gleb Wataghin, UNICAMP, Campinas - CP 6165-SP - CEP 13083-970

Departamento de Física - ICE, UFJF - Juiz de Fora - MG - CEP 36036-330
Palavras-chave: nanowires; electronic and structural properties
Nanofios metálicos têm sido objetos de intensos estudos teóricos e experimentais nos últimos anos devido a novos fenômenos e aplicações tecnológicas. Detalhes sobre o mecanismo da formação destes nanofios sua estabilidade estrutural não são ainda completamente entendidos. Desenvolvemos uma nova metodologia teórica que leva em consideração aspectos estatísticos de condições experimentais, e a importância de diferentes orientações cristalográficas. A energia de coesão do sistema, nanofios de cobre, pode ser obtida através de uma aproximação semi-clássica que proporciona um potencial de interação de muitos corpos do tipo Gupta. Consideramos diferentes orientações cristalográficas, diferentes velocidades de elongação e diferentes temperaturas. Nossos resultados demonstram a preferência de crescimento ou surgimento de nanofios longos ao longo da direção [110], nas outras direções [111] e [100] não ocorre a formação de fios longos. Analisamos propriedades eletrônicas como a condutância nas diversas fases do crescimento bem como orientações.

# IDENTIFICAÇÃO DA ATIVIDADE ANTITUMORAL DE ELIPTICINAS USANDO ÍNDICES ELETRÔNICOS 

Louraine C. de Melo ${ }^{1,2}$ (PG) ${ }^{*}$, Scheila F. Braga ${ }^{3}$ (PQ) e Paulo M. V. B. Barone ${ }^{1}$ (PQ)<br>louraine@cbpf.br<br>${ }^{1}$ Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG<br>${ }^{2}$ Centro Brasileiro de Pesquisas Físicas, R. Xavier Sigaud, 150, 22290-180, Rio de Janeiro, RJ<br>${ }^{3}$ Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, 13083-970, Campinas, $S P$<br>Palavras-chave: elipticina, teoria de índices eletrônicos, métodos semi-empíricos.

A elipticina é um alcalóide obtido a partir do extrato do vegetal ochrosia elliptica. A elipticina e alguns de seus derivados apresentam atividade antitumoral e citotóxica in vitro e in vivo, relacionada a uma variedade de mecanismos de ação, como a intercalação ou ligação covalente com o DNA e a interferência na atividade de enzimas. A contribuição relativa de cada um destes processos para a atividade antitumoral ainda não é bem compreendida.

A estrutura química simples da elipticina permitiu a sintese de muitos derivados e análogos, dos quais muitos têm sido testados para atividade antitumoral. Dependendo dos grupos laterais e das posições de ligação, a atividade antitumoral pode ser intensificada ou atenuada.

Neste trabalho, investigamos as propriedades estruturais e eletrônicas de uma série de 25 moléculas derivadas da elipticina e de compostos análogos, a olivacina e as isoelipticinas, utilizando o método semi-empírico PM3. Para as moléculas de camada aberta, comparamos os resultados obtidos com os métodos RHF e UHF. Calculamos a densidade local de estados eletrônicos em regiốes específicas das moléculas: anéis que contêm a maior ordem de ligação ( RHBO ), sítios apontados na literatura como ativos, anéis aromáticos que contêm esses sítios e combinações dessas regiões. Analisamos os resultados utilizando a Teoria de Índices Eletrônicos (TIE) e a Análise de Componentes Principais (PCA), com os objetivos de identificar as moléculas ativas e inativas e de determinar os parâmetros relevantes para otimizar a atividade antitumoral.

Usando estas metodologias, identificamos as moléculas ativas e inativas com índice de acerto superior a $80 \%$. As variáveis que apresentam maior peso na primeira e na segunda componentes principais são variáveis utilizadas na análise da TIE, e a região molecular mais importante para a identificação da atividade antitumoral é um sítio atômico apontado nos estudos bioquímicos como fundamental para a atividade. (AGRADECIMENTOS: CNPq, FAPEMIG).

# PARTIAL ATOMIC CHARGES AS THEORETICAL DESCRIPTORS IN LSER PARTITIONING STUDIES 

Augusto G. Dourado(PG), Vanessa M. Carpentiere(PG) and João P. S. Farah(PQ) jpsfarah@usp.br<br>Departamento de Química Fundamental - Instituto de Química - USP


#### Abstract

Linear correlation between free energy changes and empirical or theoretical solute descriptors is widely applied approach to water-organic solvent neutral solute partitioning studies. Solute-solvent interactions uses solvatochromic descriptor sets, taking into account properties like cavity (solute molecular volume V ), molar refraction ( $\mathbf{R}$ ), dipolarity/polarizability $\left(\square^{*}\right)$ and hydrogen bonding ( $\left.\square \square \square\right]$ and $\left.\square \square\right]$. These terms can be related to molecular theoretical descriptors like atomic charges, dipole moment, HOMO and LUMO energies, etc. that also produce good quality theoretical LSER equations when utilized. Theoretical molecular structure correlations with physical and chemical (QSPR) and biological (QSAR) properties have been found and can be used for predictions. In that correlations, for neutral solute partitionig, the partial atomic charges and molecular volume are the most important theoretical descriptors.

In this work we use partial atomic charges (Charge Model 1 from PM3 calculations) as a main component for a theoretical parameter. In that approach, a controversial point arises: how to measure the adequacies of partial charges of atoms in structurally complex molecules.

We present here the application of cluster analysis techniques (aglomerative hierarchical, self-organizing maps - SOM and principal component analysys - PCA) to the residuals (calculated and experimental differences) and the parameter set of LSER studies, as a tool for grouping molecules according to their adequacies within the model. The ability of each clustering method was discussed in terms of number of molecules with the same functional group in each cluster. For the sake of comparison, we have tested a non-linear approach (neural network) to fit hexadecane/water and n-octanol/water partition coefficients to experimental and theoretical descriptors. The residuals of the multilinear and neural net treatments and the set of parameters were classified and the resulting groups of molecules were analyzed.

Based on the application of these techniques to two biphasic systems and two micellar solutions (SDS and CTAB) two points can be discussed: 1 - the possibility of an interfacing adsorption rather than solubilization of solutes in one of the two phases. The conclusion is based on the analysis of molecular structures of components of some detected groups and applies mainly for micellar solutions and for $n$-octanol/water mixtures (where interface or phase is poorly defined or is a dubious concept); 2 - the reliability of computationally based parameters for predictions, which is difficult to achieve in the linear treatment.

Therefore, we have pointed out the meaningful information contained in outliers of the linear fit, which can be accessed by using cluster analysis techniques on the residuals, bringing out a new approach beyond traditional analysis of variance (ANOVA).


# VARIAÇÕES CONFORMACIONAIS DE ELAGITANINOS 

Fernando C. Rangel ${ }^{1 *}$ (iC), Raquel F. Santos ${ }^{1}(\mathrm{PQ})$, Pedro Ferri ${ }^{1}(\mathrm{PQ})$ e Elaine Miaia ${ }^{2}$ (PQ)

fernando.cesario@zipmail.com.br
${ }^{1}$ Instituto de Química, Universidade Federal de Goiás, Campus II, Goiânia, GO, 74001-970
${ }^{2}$ Instituto de Química, Universidade de Brasília, Campus Darci Ribeiro, Brasília, DF, 70910-970 Palavras-chave: elagitaninos, análise conformacional, CVFF.

Elagitaninos macrocíclicos diméricos possuem uma distribuição restrita na natureza. Comparados a outros elagitaninos, eles possuem uma estrutura mais rígida e usualmente apresentam uma potente e seletiva atividade antitumoral in vivo, cujos efeitos são dependentes do número de grupos galoilas presentes nas unidades de glucose. Recentemente, verificou-se uma dependência estrutural de representantes dessa classe com a inibição de proteínas de stress HSP do fungo patogênico humano, Paracoccidioides brasiliensis, o agente causador de uma micose sistêmica de interesse regional. Neste trabalho, análises conformacionais sistemáticas comparativas de elagitaninos (1-7) foram efetuadas. Os cálculos foram realizados por Dinâmica Molecular (Discover), utilizando-se o campo de força CVFF. As distribuições de cargas parciais foram calculadas pelo método quântico semi-empírico AM1. Para cada sistema molecular, conservou-se as 100 conformações mais estáveis, entre as conformações válidas. Os mínimos e máximos da hipersuperfície de energia potencial tiveram suas energias rigorosamente minimizadas. Os confórmeros preferenciais, do ponto de vista estrutural e eletrônico, foram isolados e os seus potenciais eletrostáticos calculados a 0,$5 ; 5$ e 10 $\mathrm{kcal} / \mathrm{mol} / \mathrm{e}$. Os resultados indicaram uma acentuada rigidez do núcleo 4,6-O-(S)hexahidroxidifenoila (HHDF). Os cálculos de energia sugerem que o alinhamento antiparalelo dos dipolos carbonílicos do grupo valoneoila, a conjugação das carbonilas com o sistema $\pi$, bem como a inclinação entre os dois anéis do núcleo HHDF sejam importantes para a ativigłade biológica. (CNPq/PCOP, PABCT III, FUNAPE/UFG, ACCELRAYS Inc)

(1)
(2)
(2) Eugeniflorina $D_{2}$


(3) (4) (5) (6) (7)
(3) Oenoteina $B R_{1}=R_{2}=H$
(4) Eugeniflorina $D_{1} R_{1}=H, R_{2}=\beta$-galoil
(5) Woodfordina $\mathrm{CR}_{1}=\mathrm{H}, \mathrm{R}_{2}=\alpha$-gaioil
(6) Cutiína $D_{1} R_{1}=\beta$-galoil, $R_{2}=\alpha$-galoil
(7) Cufiina $D_{2} R_{1}=\beta$-galoil, $R_{2}=H$

# CONFORMATIONAL ANALYSIS OF OMEPRAZOLE FAMILY COMPOUNDS 

Aline T. Bruni ${ }^{1}$ (PQ), Albérico B. F. da Silva ${ }^{2}(P Q)$, Márcia M.C.Ferreira ${ }^{3}(P Q)$, Vitor B.P.Leite ${ }^{1}(P Q)$.<br>alinetb@df.ibilce.unesp.br<br>${ }^{\text {t}}$ Departamento de Física- IBILCE - Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto - SP 15054-000, Brasil -<br>${ }^{2}$ Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, Av. do Trabalhador São-Carlense, 400 - Centro, São Carlos - SP 13560-970, Brasil<br>${ }^{3}$ Instituto de Química - Universidade Estadual de Campinas, Cidade Universitária "Zeferino Vaz", Barão Geraldo - Caixa Postal 6154 - Campinas - SP 13084-971, Brasil<br>Keywords: omeprazole, chemometrics, conformational analysis

Many problems in theoretical medicinal chemistry studies require previous conformational analysis before evaluate the properties of a given set of molecules regarding to their biological activity. In this work, two sets of compounds with anti-Helicobacter pylori (bacterium responsible for peptic ulcers) activity were studied. The former set is omeprazole and its derivatives, and the last one is the sulfide precursor of omeprazole and analogues (2-[[(2-Pyridyl)methyl]thio]-1H-benzilidazoles), their basic structures are shown in Figure 1:

(a)

(b)

Figure 1. (a) Basic structure for omeprazole and its derivatives;
(b) Basic structure for 2-[[(2-Pyridyl)methyl]thio]-1H-benzilidazoles;
Rn = substituents.

Conformational analysis was performed using a method which finds minimum energy structures. This method associates principal component analysis with quantum mechanic calculations. It controls the combinatorial explosion inherent to the conventional systematic search by a dimensional reduction of the system through the use of principal component analysis [Bruni AT, Leite VBP, Ferreira, MMC. J. Comp. Chem. 2002; 23: 222]. As result, it was observed that small differences among the compounds inside each group provide important changes in the minimum energy structures. Comparisons between the two sets of compounds showed that the presence of a $\mathrm{S}=\mathrm{O}$ group for omeprazole and its derivatives was responsible for significant differences from the respective precursor sulfide and analogues minimum energy structures. The most important conclusion is observed when the number of minimum energy structures for basic structure and for the other molecules are compared. If the calculation was performed only on the basic structure, followed by the substuituents addition, all the molecules would have only two minimum energy structures (number found for both basic structures, Fig.1). Nevertheless, the addition of each substituent prior the complete conformational analysis calculations is crucial in these studies, because, despite of all minimum conformations have similar energetic values, some calculated properties used for further SAR/QSAR studies can be very sensitive to small structural variations [Bruni AT, Ferreira, MMC. J. Chemom. 2002; 16: 510]. (FAPESP/CAPES/CNPq).

## P014

# INVESTIGAÇÃO DO MECANISMO DE ENCAIXE INDUZIDO E DA ATIVIDADE CATALÍTICA DA PROTEASE DO CITOMEGALOVIRUS HUMANO. 

César Auqusto F. de Oliveira (PG) ${ }^{1}$, Cristiano R. W. Guimarães (PQ) ${ }^{2}$, Gabriela Barreiro (PQ) ${ }^{3}$ e Ricardo Bicca de Alencastro (PQ).<br>oliveira@iq.ufrj.br<br>${ }^{1}$ Laboratório de Modelagem Molecuar, Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. ${ }^{2}$ Sterling Chemistry Laboratory, Department of Chemistry, Yale University. ${ }^{3}$ Hall-Atwater Laboratory, Chemistry Department, Wesleyan University.<br>Palavras-chave: Protease, Dinâmica Molecular, Atividade Cataítica.

Introdução: Os herpesvírus humanos pertencem à família Herpesviridae e são vírus altamente espécie-especificos. Um membro de extrema importância nesta família é o citomegalovírus humano (HCMV), que infecta mais de $80 \%$ da população e é responsável por várias patologias, de infecções subclínicas a doenças fatais em indivíduos imunocomprometidos como transplantados e pacientes com AIDS. Os vírus herpes codificam uma serina protease que é de fundamental importância para sua replicação. Nesta protease foi identificada uma nova tríade catalítica, formada pelos resíduos His57, His63 e Ser132. Estudos bioquímicos indicam que, apesar da estrutura cristalográfica da protease revelar um sítio ativo para cada unidade monomérica, o dímero é a forma requerida para a atividade catalítica. Até o presente momento, nenhum trabalho teórico foi reportado na literatura sobre este sistema. Desta forma, neste trabalho foram realizadas simulações em Dinâmica Molecular (MD) do modelo da protease HCMV para estudar o mecanismo de encaixe induzido da enzima que ocorre na complexação dos substratos e inibidores peptídicos, e os fatores estruturais e energéticos responsáveis pela atividade catalítica do dímero da enzima.

Resultados: Utilizamos inicialmente a estrutura cristalográfica da protease do HCMV complexada com o inibidor BILC 821 (código PDB: 2WPO). Quatro sistemas foram definidos: o monômero (M), o complexo monômero-inibidor (MI), o dímero (D) e o complexo dímero-inibidor (DI). Cada sistema foi então solvatado em uma caixa retangular de moléculas de água TIP3P pré-equilibradas. Trajetórias longas e estáveis ( 6 ns ) foram obtidas para todos os modelos. Os valores de RMSD (root mean square deviation) convergiram após 1 ns para as simulações de D e DI, e após 600 ps para as simulações de $\mathbf{M}$ e MI. O fator de Debye-Waller (B-factor), calculado para os átomos C प̣apresentaram ótima concordancia com os valores experimentais. As diferenças conformacionais entre o complexo covalente BILC 821-dímero e o dímero livre em solução, observadas no estudo de cristalografia de raio-X, foram reproduzidas nas simulações do dímero livre em solução e do complexo não-covalente formado pelo dímero e o inibidor peptidil com carbonila ativada utilizado neste trabalho. Nossos resultados mostraram que as alterações estruturais não estão associadas com a formação do intermediário tetraédrico e sim com formação do complexo não-covalente. As simulações dos modelos MI e M revelaram que a ausência das interaçães monômero-monômero induzem mudanças conformacionais em resíduos do sítio ativo da protease importantes para a estabilização do intermediário formado. Todos os cálculos foram realizados utilizando programa AMBER7.

Conclusões: Nossos resultados indicam que a protease HCMV é realmente um novo exemplo de serina protease que opera por um mecanismo de encaixe induzido. Além disso, em concordância com estudos de mutagênesis, nossas simulações em MD sugerem que a forma dimérica é necessária para ativar a enzima devido a uma estabilização induzida na cavidade do oxiânion (ARG166).

# DENDRÍMEROS NA LIBERAÇÃO CONTROLADA DE DROGAS: ESTUDO DE DINÂMICA MOLECULAR. 

Edson R. A. Oliveira (IC) ${ }^{1}$, César Augusto F. de Oliveira (PG) ${ }^{1}$, Vanessa L. R. Furtado $(P Q)^{2}$, Ricardo Bicca de Alencastro (PQ) ${ }^{1}$. oliveira@iq.ufrj.br<br>${ }^{1}$ Laboratório de Fisico-Química Orgânica, Departamento de Química Orgânica, Instituto de Química da UFRJ, Cidade Universitária, CT, Bloco A, lab. 609, Rio de Janeiro, RJ 21949-900, Brasil. ${ }^{2}$ Laboratório Dendriquim, Departamento de Química Orgânica, Instituto de Quimica da UFRJ, Cidade Universitária, CT, Bloco A, lab. 615, Rio de Janeiro, RJ 21949-900, Brasil.<br>Palavras-chave: Dendrimero, Dinâmica Molecular, Liberação controlada de Drogas.

Introdução: Dendrímeros são macromoléculas sintéticas com estrutura altamente ramificada. São construídos a partir de um núcleo polifuncionalizado, com a repetição, em etapas, de uma seqüência de reações que garante a total funcionalização dos grupos da superfície que dobram ou triplicam a funcionalidade anterior. Polímeros com inúmeras funcionalidades já foram preparados, entretanto, apenas duas famílias de dendrímeros monodispersos e com estrutura molecular bem definida são comercializadas, os dendrímeros PEI (polietilenoimina) e PAMAM (poliamidoamina). Os primeiros estudos teóricos indicaram que, acima da quarta geração (G4), dendrímeros PAMAM adotariam uma estrutura globular com grandes cavidades no interior. Embora houvesse ainda muitas dúvidas sobre a estrutura detalhada dos dendrímeros, estes estudos sugeriram a possibilidade de ligações ou mesmo aprisionamento de pequenas moléculas nas cavidades dendrídicas, o que provocou um grande movimento da pesquisa nesse sentido ${ }^{1}$. A liberação controlada das moléculas encapsuladas em dendrímeros tem sido talvez o maior desafio encontrado. Os métodos de modelagem molecular podem ser de grande valia como suporte para o estudo dos complexos formados por dendrímeros PAMAM, e drogas com comprovada atividade. Previsões no tocante à capacidade de encapsulamento e extensão das interações na caixa dendrídica, são informações importantes para formulação de novas drogas e para compreensão de seu mecanismo de ação.

Nosso objetivo é a modelagem do dendrímero PAMAM isolado (no vácuo e em solução) para que se tenha uma base sistemática a ser utilizada em etapas posteriores, visando a modelagem de um sistema de transporte de drogas.

Resultados: O módulo Edit do programa Leap contido no pacote AMBER7 ${ }^{2}$, foi empregado na construção dos modelos de dendrímero PAMAM de geração G2,5, G3,5 e G4,5. O método RESP, foi utilizado na geração das cargas atômicas. Visto que, o campo de forças parm94 ${ }^{3}$, contido no programa AMBER7, foi parametrizado originalmente para o estudo de proteínas e ácidos nucléicos, e que até o presente momento nenhum trabalho teórico sobre dendrímeros utilizando este campo de forças foi reportado na literatura, torna-se imprescindível verificar se os parâmetros do parm94 serão válidos para o sistema em questão. Na validação dos modelos, o módulo Sander foi utilizado nas etapas de minimização de energia potencial, e nas simulações de dinâmica molecular, aplicadas nas análises estruturais e energéticas. Os procedimentos de otimização e relaxação dos sistemas foram realizados no vácuo e em solução (em condições periódicas de contorno e com representação explícita do solvente). Os resultados obtidos apresentaram boa concordância com os disponíveis na literatura. Isto valida o uso do campo de forças parm94 no presente trabalho. Além disto, através da modelagem do PAMAM, foi possível obter informações estruturais e energéticas a nível atômico que regem o comportamento dinâmico do sistema.

Conclusões: As simulações de dinâmica molecular mostraram mudanças conformacionais relevantes do sistema induzidas pela presença do solvente. Desta forma, foi possível caracterizar alterações estruturais responsáveis pela formação das caixas dendríticas, o que nos possibilitou uma melhor compreensão do processo de encapsulamento e liberação de drogas.

# SOLVATAÇÃO DE ÉTER COROA EM ÁGUA E SOLUÇÃO AQUOSA DE AZIDA DE SÓDIO. 

Willian R. Rocha (PQ)*, Fernando Hallwass (PG), Alfredo M. Simas (PQ)<br>wrocha@ufpe.br<br>Departamento de Química Fundamental, CCEN<br>Universidade Federal e Pernambuco(UFPE) Cidade Universitária, Recife, PE, 50670-901, Brasil.<br>Palavras-chave: Simulação Computacional, Monte Carlo, Éter coroa.

Poliéteres macrocíclicos tem sido estudados exaustivamente, devido à sua habilidade de transportar íons, tais como potássio e sódio, em solução aquosa através de membranas lipofilicas. Outra característica marcante destes macrocíclos, é a capacidade de interagir de maneira seletiva com diferentes cátions metálicos, o que o torna um sistema modelo para o estudo de processos de reconhecimento molecular em solução (D. Mootz, A. Schaefgen, D. Staben, J. Am. Chem. Soc., 116, 12045 (1994)). Apesar de Ter sido estudado exaustivamente, quer seja teórica ou experimentalmente, existem alguns fenômenos relacionados à química destes compostos que permanecem em aberto. Como por exemplo, recentemente foi mostrado, através medidas de RMN, que pequenas concentrações do éter coroa 18C6 (ver fig. 1), em solução aquosa de íons sódio, possui a capacidade de diminuir drasticamente a difusão de íons sódio ( F. Hallwass, M. Engelsberg, A. M. Simas, J. Phys. Chem. A, 106, 589 (2002)). Um fato que é bastante curioso é que esta supressão da difusão dos íons $\mathrm{Na}^{+}$ocorre somente para determinadas combinações de contra-íons. Este trabalho constitui uma etapa inicial de um estudo mais amplo visando o entendimento de processos de reconhecimento molecular em solução utilizando técnicas modernas de RMN e simulação computacional.

No presente trabalho simulação computacional de Monte Carlo foi utilizada para se investigar a estrutura de solvatação do 18C6 em água e solução aquosa de azida de sódio. A solvatação do 18C6 em água foi feita no ensemble NVT, utilizando 1 molécula de 18C6 e 1000 moléculas de H 2 O , empregando o campo de força OPLS, com as cargas atômicas modificadas. As simulação foram conduzidas para as diferentes conformações do 18 C 6 ( $\mathrm{D}_{3 \mathrm{~d}} \mathrm{e}$ $\mathrm{C}_{\mathrm{i}}$ ), otimizadas no nível MP2/631G(d), cujas funções de distribuição radial são mostradas nas figuras 2 e 3 .


Figura 1


Figura 2

Os nossos resultados indicam que para o éter coroa em solução aquosa, existem em média 1,6 moléculas de água dentro da cavidade para a conformação $D_{3 d}$ e a primeira esfera de solvatação é constituída de 6 moléculas de água. Para a conformação $\mathrm{C}_{;}$estes números são 2,0 e 9,0, respectivamente. A conformação $C_{i}$ é mais solvatada em água, apresentando uma energia de interação soluto-solvente de $-64,9 \mathrm{kcal} / \mathrm{mol}$. Para o sistema éter coroa em solução aquosa de $\mathrm{NaN}_{3}, 8$ ions $\mathrm{Na}^{+}$e 8 íons $\mathrm{N}_{3}$ foram adicionados ao sistema acima e as simulaçõ̃es foram conduzidas com de acordo com o mesmo protocolo. Os resultados estruturais e termodinâmicos, bem como a comparação com dados experimentais de RMN serão discutidos. Instituto do Milênio de Materiais Complexos, CNPq, PROPESQ-UFPE

# ELECTRONIC SPECTRA AND STRUCTURE OF THE ION $\left[\mathrm{RmCl}_{5} \mathrm{NO}^{2-}\right.$ 

Sebastião C. da Silva ${ }^{(1) \mathrm{PQ}}$ e Francisco B. C. Machado ${ }^{(2) \mathrm{PQ}}$<br>sc_silva@terra.com.br<br>${ }^{(1)}$ Departamento de Química - Universidade Federal de Mato Grosso, e-mail:<br>${ }^{(2)}$ Departamento de Química - Instituto Tecnológico da Aeronáutica

Palavras-chave:TD-DFT, Espectroscopia Eletrônica, LLCT
In this work we describe a new assignment for the electronic spectrum of the and [ $\mathrm{RuCl}_{5} \mathrm{NO}^{2-}$ ion. The electronic spectrum was analyzed on the basis of the TD-DFT calculations performed at the ab initio DFT optimized geometry. There are used the double zeta valence polarized density functional theory (DZVP-DFT). All calculations were performed with the GAUSSIAN 98 package.

In the electronic structure the $\mathrm{Cl}-\mathrm{Ru}-\mathrm{NO}$ ion, defines the z -axis, while the x and y axis bisect the two $\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cl}$ vectors. The structure of the M-NO bond is composed by a $\sigma$-bond, involving the nitrogen lone pair, two $\pi$-bonds, involving the filled d-orbitals, and the two antibond $\pi^{*}$-orbitals of the NO. The $d_{z}^{2}$ orbital form a $\sigma$ - bonding/antibonding interaction pair with the NO and the axial ligand, while the $\mathrm{d}_{\mathrm{x}}{ }^{2}-y^{2}$ gives the same interaction pair with ligand in the equatorial plane. The LUMO and LUMO +1 are a degenerated pair formed by the antibonding interaction between the $d_{x z}$ and $d_{y z}$ orbitals, and the $\pi_{x}^{*}$ and $\pi_{y}^{*}$ NO-orbitals, resulting in a shift to higher energy for the former $\pi^{*} \mathrm{NO}$ orbitals. The resulting orbitals, delocalized over the $\mathrm{d}_{\mathrm{yz}}$ and $\mathrm{d}_{\mathrm{xz}}$ atomic orbitals and over the $\pi^{*} \mathrm{NO}$ orbitals, are antibonding with respect to both Ru-N and N-O bonding. The MO formed by the bonding interaction between the $\pi^{*} N O$ and the $d_{y z}$ and $d_{x z}$ ruthenium orbitals, resulting in the formally $d_{y z}$ and $d_{x z}$ orbitals, are stabilized relatively to the non bonding $\mathrm{d}_{\mathrm{xy}}$ orbital and lowered in energy. If we do not consider any other $\pi$-interaction than the Ru- $\pi^{*} \mathrm{NO}$, the HOMO is the non bonding $\mathrm{d}_{\mathrm{xy}}$ orbital localized on the equatorial plane.

The HOMO is resulting of an antibonding interaction between the $\mathrm{d}_{x y}$ orbital and the $p_{x}$ and $p_{y}$ orbitals of the chlorines localized in the equatorial plane. We assign this orbital as $\mathrm{d}_{\mathrm{xy}}(\mathrm{Ru})-\mathrm{p}_{\mathrm{x}}\left(\mathrm{Cl}_{2-4}\right), \mathrm{p}_{\mathrm{y}}\left(\mathrm{Cl}_{3-5}\right)$. The corresponding bonding orbital $\mathrm{d}_{\mathrm{xy}}(\mathrm{Ru})+\mathrm{p}_{\mathrm{x}}\left(\mathrm{Cl}_{2-4}\right), \mathrm{p}_{\mathrm{y}}\left(\mathrm{Cl}_{3-5}\right)$ is the orbital number 60, which is much lower in energy. The HOMO-1 is essentially a $\mathrm{p}_{\mathrm{x}}\left(\mathrm{Cl}_{2-4}\right), \mathrm{p}_{y}\left(\mathrm{Cl}_{3}\right.$. 5) orbital of the chlorine atoms of the equatorial plane, having therefore a similar spatial distribution to the HOMO.
The experimental electronic spectrum of the $\mathrm{K}_{2}\left[\mathrm{Ru}(\mathrm{Cl})_{5} \mathrm{NO}\right]$ complex shows an asymmetric broad band in the visible region fits to two peaks at 502 and 556 nm . The shoulder at 480 nm $>\lambda>300 \mathrm{~nm}$ is fitted to three bands at $328 \mathrm{~nm}, 380 \mathrm{~nm}$ and 426 nm respectively. The complex structure of the spectrum at $\lambda<300 \mathrm{~nm}$ have a strong component at 212 nm , a second peak at 254 nm , and a shoulder at 278 nm .

According to the DT-DFT calculated spectrum, the visible band at 556 nm is a transition HOMO $\rightarrow$ LUMO, and could assign to a partial metal to ligand charge transfer transition $\left(d_{x y}+p_{x}, p_{y}(C I)\right)^{*} \rightarrow\left(\pi^{*} N O\right)$, since the LUMO is resulting of the anti bonding interaction between the $d_{x y}$ and the $p_{x}$ and $p_{y}$ orbitals of the equatorial chlorine. The band at 502 nm is essentially a ligand to ligand charge transfer transition px,py(chlorine)) $\rightarrow\left(\pi^{*} N O\right)$. Interestingly, these transitions have the same symmetry and similar intensity. The band corresponding to the bonding interaction between the $d_{x y}$ and the $p_{x}, p_{y}$ orbitals of the chlorine, $\left(d_{x y}+p_{x}, p_{y}(\mathrm{Cl})\right)^{*} \rightarrow$ ( $\pi^{*} \mathrm{NO}$ ), it is supposed to occur in the UV region, at 264.5 nm . The UV bands are assigned to a superposition of ligand field transitions $2 b_{2}(x y) \rightarrow 3 b_{1}\left(x^{2}-y^{2}\right)$, at $328 n m, 6 e(x z, y z) \rightarrow 3 b_{1}\left(x^{2}-y^{2}\right)$ at 278 nm and $2 \mathrm{~b}_{2}(\mathrm{xy}) \rightarrow 3 \mathrm{~b}_{1}\left(\mathrm{z}^{2}\right)$, at 254 nm . (FAPESP and CNPq).

# ANÁLISE DFT DOS IONS [( $\left.\mathrm{NH}_{3}\right)_{5}$ RU-PIRAZINA-RU $\left.\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+} \mathrm{E}$ $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{RU}-\left(4-4-\mathrm{BIPYRIDINE-RU}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}\right.$ 

Sebastião C. da Silva ${ }^{(1) \mathrm{PQ}}$ e Francisco B. C. Machado ${ }^{(2) \mathrm{PQ}}$<br>sc_silva@terra.com.br<br>${ }^{(1)}$ Departamento de Química - Universidade Federal de Mato Grosso,<br>${ }^{(2)}$ Departamento de Química - Instituto Tecnológico da Aeronáutica<br>Palavras-chave:TD-DFT, Espectroscopia Eletrônica, LLCT

O interesse pelo estudo de compostos polinucleares começou com o trabalho de Creutz e Taube, que sintetizaram o ion $\left[\left(\mathrm{NH}_{3}\right)_{5} R u \text {-pyrazine-Ru }\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}$ (conhecido como "ín de Taube") em que os metais apresentam formalmente diferentes estados de oxidação. A importância destes sistemas vem do fato de que compostos polinucleares de valência mista podem exibir condutividade unidimensional, com potencial aplicação em eletrônica molecular. Estes compostos caracterizam-se por apresentar um elétron desemparelhado e exibir uma larga e intensa banda de absorção na região do infravermelho próximo ( $12000 \mathrm{~nm}<\lambda<25000$ nm ). Durante muito tempo atribuiu-se esta banda a uma transição intervalência, isto é, uma transição de transferência de carga entre os centros metálicos. Posteriormente, a falta de evidências experimentais que mostrassem diferença entre os centros metálicos levou a uma interpretação de que o íon de Taube apresentasse uma valência deslocalizada. Para outros compostos binucleares em geral supõe-se que a valência seja aprisionada pelo ligante ponte.

Neste trabalho usamos os métodos de cálculos quânticos DFT(Density Functional Theory ) e TD-DFT (Time Dependent - Density Functional Theory) para analisar as estruturas e espectros eletrônicos do íons $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru} \text {-pyrazine- } \mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right)^{5+}$ and $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}\right.$-(4-4-bipyridine$\left.\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}$. Os cálculos dos espectros eletrônicos foram obtidos usando o método TD-DFT, a partir das geometrias otimizadas pelo método DFT. O ligante 4 -4-bipiridina pode ser considarado um bom modelo para este estudo pois é um sistema simétrico como a pirazina e apresenta uma "ligação simples" entre os anéis piridina, o que teoricamente levaria a uma barreira para a deslocalização eletrônica entre os metais. Para avaliar o efeito das bases sobre os resultados dos cálculos foram utilizadas as bases $3-21 \mathrm{~g}$ e DZVP-DFT(Double Zeta Valence Polarized). Todos os cálculos foram realizados utilizando-se o programa de cálculos quânticos Gaussian98.

Embora trabalhos anteriores atribuam a banda do infravermelho próximo, do íon $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}-\left(4-4 \text {-bipyridine-Ru( } \mathrm{NH}_{3}\right)_{5}\right]^{5+}$ a uma transição intervalência, os cálculos efetuados neste trabalho, tanto para a pirazina quanto para a 4-4-bipiridina como ligante ponte mostram que o elétron desemparelhado está deslocalizado ao longo de toda a linha ligante-metalligante. Esta deslocalisação é reforçada por todas as propriedades calculadas: a geometria otimizada com as duas bases é totalmente simétrica com relação aos centros metálicos; as distribuições de carga e densidade de spin também são idênticas para ambos os centros metálicos metais. O espectro eletrônico calculado usando o método TD-DFT reproduz muito bem os esperctros experimentais observados para ambos os compostos. Em ambos os compostos a banda do infravermelho próximo é identificada como uma transição entre o HOMO deslocalizado ao longo de toda a linha metal-ligante-metal e o LUMO com densidade eletrônica igualmente distribuída em ambos os metais. Como nos dois casos o HOMO apresenta uma maior densidade eletrônica no ligante ponte que o LUMO, pode-se dizer que a banda do infravermelho apresenta um caráter de transição de transferência de carga ligante metal.

Os cálculos realizados não permitem analisar a estabilidade das estruturas otimizadas, mas sugerem que se questione sobre até que ponto um composto binuclear com dois metais idênticos e um ligante ponte simétrico pode apresentar uma valência localizada. (CNPq e FAPESP).

# OXIDAÇÃO DE SULFETOS POR COMPOSTOS DE COORDENAÇÃO OXO-DIPEROXO DE MOLIBDÊNIO QUIRAIS 

Juliana Angeiras B. da Silva* (IC), Ricardo L. Longo (PQ)<br>juangeiras@yahoo.com.br Universidade Federal de Pernambuco, 50740-540 - Recife, PE. Palavras-chave: Complexos de molibdênio, oxidação seletiva, ab initio


#### Abstract

Os complexos oxo-diperoxo de metais de transição, $\left[\mathrm{MO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}\right], \mathrm{M}=\mathrm{Mo}$ e $\mathrm{W}, \mathrm{L}_{1}=$ pirazol ou piridina- N -óxido, $\mathrm{L}_{2}=\mathrm{H}_{2} \mathrm{O}$ ou sílica, são utilizados na oxidação de olefinas e sulfetos. A adsorção em sílica torna estes complexos seletivos para a formação de sulfóxidos, contudo, as razōes mecanísticas para esta seletividade ainda não estão estabelecidas. Cálculos $a b$ initio das estruturas moleculares e eletrônicas destes complexos e dos estados de transição para a reação de oxidação podem servir para a proposição de um mecanismo para a reação, que possa inclusive explicar a estereosseletividade observada na formação de sulfóxidos quirais quando $L_{1}$ é quiral, por exemplo, DMLA. A primeira etapa para a proposição do mecanismo de reação consistiu na identificação da(s) espécie(s) ativa(s). Portanto, foram estudados os complexos pentacoordenados $\left[\mathrm{MO}\left(\mathrm{O}_{2}\right)_{2}\right], \mathrm{M}=\mathrm{Mo}$ e $\mathrm{W},\left[\mathrm{ReO}\left(\mathrm{O}_{2}\right)_{2}\right]^{+}$. Em seguida foram estudados os complexos hexacoordenados do tipo $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1}\right]$, onde $\mathrm{L}_{1}=$ pirazol, $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, DMLA, HMPA, $\mathrm{OP}\left(\mathrm{NH}_{2}\right)_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{SOCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, para estabelecer a estrutura e a força destes ligantes. As espécies heptacoordenadas [ $\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}$ ], $\mathrm{L}_{1}=$ pirazol, $\mathrm{L}_{2}=\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ e sílica - $\mathrm{HOSi}(\mathrm{OH})_{3}$, também foram estudadas com o intuito de determinar o efeito da adsorção na sílica na reatividade do complexo.


As espécies pentacoordenadas $\left[\mathrm{MO}\left(\mathrm{O}_{2}\right)_{2}\right], \mathrm{M}=\mathrm{Mo} \mathrm{e} \mathrm{W},\left[\mathrm{ReO}\left(\mathrm{O}_{2}\right)_{2}\right]^{+}$foram estudadas com vários métodos ab initio (HF/SDD/6-31G*, MP2/LanL2DZ/6-31G*, MP2/SDD/6-31G*, MP2/SBK/6-31G*, MP2/CRENBL/6-31G*, MP4/LanL2DZ/6-31G*) e DFT(B3LYP/SDD/6-31G*) implementados no programa Gaussian 98. Foram utilizadas cinco estruturas iniciais idealizadas: pirâmides quadradas ( $\mathrm{C}_{2 \mathrm{v}} \in \mathrm{C}_{4 \mathrm{v}}$ ), pirâmides quadradas distorcidas ( $\mathrm{C}_{s}$-assimétrica e $\mathrm{C}_{s}$-simétrica) e bipirâmide trigonal distorcida. A estrutura mais estável é a pirâmide quadrada distorcida ( $\mathrm{C}_{\mathrm{s}}$ assimétrica), e as outras estruturas não têm significado químico por apresentarem mais de uma constante de força negativa, quando são pontos extremos ( $\mathrm{C}_{2 \mathrm{v}}$ e $\mathrm{C}_{4 \mathrm{v}}$ ) da superfície de energia potencial. Esta estrutura $\mathrm{C}_{\mathrm{s}}$-assimétrica é a única observada em complexos heptacoordenados por difração de raios-X, e é inerente
 à estes complexos e não à presença dos ligantes $L_{1} e / o u L_{2}$.

O método B3L_YP/LanL2DZ/6-31G* foi utilizado para todos outros complexos, sendo que para os complexos $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} L_{1}\right]$ a estrutura mais estável corresponde ao ligante $L_{1}$ na posição equatorial, e as distâncias de ligação metal- $\mathrm{L}_{1}$ são 219 e 258 pm para $\mathrm{L}_{1}=$ pirazol e $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, respectivamente. Para as espécies heptacoordenadas $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}\right] \operatorname{com} \mathrm{L}_{1}=$ pirazol na posição equatorial é $24 \mathrm{~kJ} / \mathrm{mol}$ mais estável que na posição axial, quando $L_{2}=\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, já quando $\mathrm{L}_{2}=\mathrm{H}_{2} \mathrm{O}$, somente a estrutura com $L_{1}$ equatorial é um mínimo na superfície de energia potencial, com a distância de ligação $\mathrm{Mo}-\mathrm{OH}_{2}=$ 259 pm . As freqüências vibracionais calculadas para este complexo foram utilizadas para fazer o assinalamento do espectro vibracional experimental. A posição axial é muito lábil, como pode ser demonstrada pela baixa energia de ativação ( $3,2 \mathrm{~kJ} / \mathrm{mol}$ ) para a dissociação do ligante $\mathrm{H}_{2} \mathrm{O}$ no complexo $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}\right.$ (pirazol) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. Os complexos $\left[\mathrm{MO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{HMPA}\right], \mathrm{M}=\mathrm{Mo}$ e $\mathrm{Cr}, \mathrm{HMPA}=$ hexametilfosfoamida foram estudados numa tentativa de compreender os dados de RMN destes complexos. Resultados preliminares indicam uma forte dependência dos deslocamentos químicos dos átomos de oxigênio com as funções de base utilizadas, impossibilitando conclusões quantitativas. Para o complexo $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}(\mathrm{~N}, \mathrm{~N}-\mathrm{DMLA})\right]$ foram estudadas várias combinações da coordenação (bidentado, monodentado e mono-dentado com ligação de hidrogênio) do ligante $\mathrm{N}, \mathrm{N}$ DMLA quiral (ambas configurações $R$ e $S$ ). A estrutura mais estável foi a mesma obtida experimentalmente por difração de raios-X, contudo, a estrutura mono-dentada com ligação de hidrogênio também é muito estável e pode levar à formação de diastereoisômeros. (CNPq, CENAPAD-SP, FINEP, PADCT, RENAMI)


## P020

## ESTUDO TEÓRICO DO ESPECTRO VIBRACIONAL DA CAULINITA.

Elton Anderson Santos de Castro(PG), João B. L. Martins (PQ)<br>eltoncastro@hotmail.com, lopes@unb.br Universidade de Brasilia, Instituto de Química, CP 4478, CEP 70919-970<br>Palavras-chave: caulinita, ab initio, semi-empírico.

Como o Brasil possui a segunda maior reserva de caulim do planeta e está em terceiro lugar em termos de produção mundial, com a região norte detendo $80 \%$ das reservas nacionais, torna-se importante o estudo mais detalhado sobre o principal constituinte deste minério, o argilomineral caulinita. Os argilominerais são produtos naturais abundantes da decomposição de aluminossilicatos mais complexos, os quais têm portanto uma importante influência nas propriedades físicas e químicas de sistemas sedimentares.

A maioria dos estudos de estrutura da caulinita, grupo espacial P1, apresenta uma descrição da rede cristalina convergida para as posições dos átomos metálicos. Entretanto, existe pouca concordância para a posição das hidroxilas internas. Estes hidrogênios denominados de Hin (átomos de hidrogênio entre as folhas tetraédrica e octaédrica), são ligados aos átomos de oxigênio do alumínio octaédrico, apresentando diversos estudos de difração e teóricos, na tentativa de identificar as respectivas posições.

A espectroscopia de infravermelho é uma excelente técnica para a caracterização de estruturas de moléculas em sólidos. Este método é uma importante ferramenta utilizada na interpretação de grupamentos hidroxilas em aluminossilicatos. Com a intenção de contribuir para o esclarecimento das posições do grupo hidroxila interno, são utilizados métodos de química quântica. Os métodos semi-empíricos AM1, PM3, MNDO foram utilizados para descrição destes grupamentos hidroxilas, bem como métodos ab initio RHF e Funcional de Densidade, com função de base 3-21G e ECP de Hay e Wadt LANL2DZ com a respectiva função de base de valência. O método ONIOM foi utilizado para possibilitar o estudo ab initio de um aglomerado com um maior número de unidades da caulinita.

A estrutura da caulinita foi representada através do método de aglomerados. Os parâmetros geométricos foram obtidos da literatura: $a=5,155 \AA, b=5,155, c=7,405, \alpha=$ $75,14, \beta=84,12, \gamma=60,18^{1}$. A posição das hidroxilas foram completamente otimizadas. $O$ espectro vibracional foi calculado, nos vários níveis teóricos estudados, e comparado com os valores obtidos experimentalmente e da literatura ${ }^{2}$.


1- A. H. Hess, V. R. Saunders, J. Phys. Chem., 96 (1992) 4367.
2- E. Balan, A. M., Saitta, F. Mauri, G. Calas, Am. Min., 86 (2001) 1321.

# MIODELO MOLECULAR PARA O MAGNETISMO NO FERRO 

José R.S.Santos (PG) e Antonio C.Pavão (PQ)<br>joribasan @bol.com.br<br>Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brasil<br>Palavras-chave: magnetismo, modelo de cluster, orbitais moleculares

O sistema $\mathrm{Fe}_{2}$ tem sido bastante estudado tanto por teóricos como por experimentais com a finalidade de obter o estado fundamental, as propriedades magnéticas, as propriedades espectroscópicas, os parâmetros hiperfinos, afinidade eletrônica, etc. Nosso trabalho consistiu no estudo de um modelo para o magnetismo no ferro e não para a molécula isolada. Usamos oS métodos Hartree-Fock e Teoria do Funcional de Densidade com diferentes conjuntos de bases, tais como lanl1dz, $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}), 6-311 \mathrm{G}(2 \mathrm{~d}, \mathrm{p})$, para calcular os estado tripleto, quinteto e septeto do $\mathrm{Fe}_{2}$. Verificamos que o estado quinteto ${ }^{5}$ पfornece informações corretas em relação às propriedades magnéticas observadas experimentalmente. Com relação à origem do momento magnético do ferro, que experimentalmente corresponde a $2,22 \square \mathrm{~B}$, constatamos que no modelo molecular proposto existem duas redes de elétrons com spins paralelos junto a cada centro de Fe , em plena concordância com o spin total $\mathrm{S}=1$ determinado por aniquilação de pósitron. A configuração eletrônica do átomo de ferro, que no estado fundamental corresponde a $3 d^{6} 4 \mathrm{~s}^{2}$, no modelo molecular proposto é $3 d^{7} 4 \mathrm{~s}^{1}$. O critério de Stoner para o magnetismo, isto é, a existência de estados fortemente antiligantes no nível de Fermi, é perfeitamente obedecido no estado quinteto do dímero $\mathrm{Fe}_{2}$ onde o HOMO é um orbital do tipo $\square_{u}$. Larguras de banda sed calculadas estão em boa concordância com as medidas experimentais. Salientamos também que nossos resultados estão de acordo com o modelo de ressonância não-sincronizada proposto por Pauling para explicar a condutividade nos metais através de sucessivas transferências das ligações covalentes no cristal $M-M \quad M \rightarrow M^{+} M-$ M. Como extensão deste trabalho, o modelo molecular aqui proposto está sendo empregado para explicar a existência de magnetismo na série Fe, Co e Ni. (CNPq).

## P022

## DETERMINAÇÃO SEMI-EMPÍRICA DE ÁGUA COORDENADA EM COMPLEXOS DE EURÓPIO (III)

Rodrigo Q. Albuquerque* (PG) e Ricardo O. Freire (PG)<br>rqa@ufpe.br<br>Departamento de Química Fundamental, CCEN, UFPE, Cidade Universitária, 50670-901, Recife-PE, Brasil<br>Palavras-chave: Campo Ligante, Níveis Stark, Modelo Sparkle

A coordenação de moléculas de água normalmente ocasiona uma diminuição da luminescência em complexos de Eu ${ }^{3+}$ devido à desativação não-radiativa do estado emissor $\left({ }^{5} \mathrm{D}_{0}\right)$ causada pelos osciladores $\mathrm{O}-\mathrm{H}$ da água. Complexos com muitas águas coordenadas tornam-se, portanto, inviáveis para a construção de dispositivos luminescentes. A determinação do número de moléculas de água na primeira esfera de coordenação em complexos é essencialmente uma medida experimental, podendo ser feita através da cristalografia de raios-X, através de medidas de tempo de vida de luminescência em água e água deuterada, entre outros. Para usar estas técnicas torna-se necessária a formação de um monocristal do complexo ou a sua solubilização em água, o que nem sempre é possível.

Este trabalho tem como objetivo propor uma forma mais simples de determinar o número de moléculas de água coordenadas em complexos de európio (III), baseando-se numa nova metodologia semi-empírica. A presente metodologia foi aplicada inicialmente ao complexo Eu(PYA) $3_{3} \mathrm{nH}_{2} \mathrm{O}$, onde PYA = Pirazina (ligante bidentado).

Os dados experimentais necessários foram simplesmente os níveis Stark obtidos a partir do espectro de emissão do complexo. De posse destes níveis de energia, fez-se várias otimizações de geometria do complexo $\mathrm{Eu}(\mathrm{PYA})_{3} \mathrm{nH}_{2} \mathrm{O}$ usando o modelo Sparkle, onde variouse o número de águas ( $n=0$ a 6 ). Em seguida foi utilizado o Modelo Simples de Recobrimento para calcular os parâmetros de Campo Ligante, Bkq, para cada uma destas geometrias otimizadas e com estes parâmetros foram calculadas as energias dos níveis Stark. A comparação entre os níveis Stark teóricos e experimentais foi feita através do cálculo do desvio médio percentual, sigma. A construção do gráfico de $n$ versus sigma permitiu analisar qual das estruturas deve ser a esperada e também verificar se existiam mínimos locais (Figura).


Os resultados indicam que para o complexo acima citado o número de moléculas de água coordenadas é igual a 5 (sigma $=1,74 \%$ ), o que está em concordância com o fato de que o rendimento quântico de luminescência deste composto é bastante baixo ( $q=9,2 \%$ ), assim como a taxa de emissão radiativa do multipleto ${ }^{5} \mathrm{D}_{0}\left(\mathrm{~A}_{\mathrm{rad}}=448 \mathrm{~s}^{-1}\right)$. Estes resultados mostram que é possível, mediante o aprimoramento da presente metodologia, determinar o número de moléculas de água coordenadas em complexos de európio (III) fazendo uso apenas do espectro de emissão e expandir esta metodologia para outros lantanídeos. (CAPES, RENAMI, IMMC, CENAPAD / SP).

# ESTUDO DA COVALÊNCIA DE MOLÉCULAS DIATÔMIICAS E COMPLEXOS DE EURÓPIO(III) UTILIZANDO O CONCEITO DE POLARIZABILIDADE DA REGIÃO DE RECOBRIMENTO 

Rodrigo Q. Albuquerque (PG) e Oscar L. Malta (PQ) rqa @ufpe.br<br>Departamento de Química Fundamental, CCEN, UFPE, Cidade Universitária, 50670-901, Recife-PE, Brasil<br>Palavras-chave: Polarizabilidade da Região de Recobrimento, Covalência, Fatores de Carga

Os conceitos de Polarizabilidade da Região de Recobrimento (PRR) e Valência lônica Específica (VIE) foram recentemente desenvolvidos por O.L. Malta e colaboradores [1]. A PRR está relacionada com o grau de mobilidade da carga eletrônica que está na região de recobrimento entre dois orbitais atômicos em centros diferentes, no caso de uma ligação química simples e localizada do tipo A-B. A segunda quantidade (VIE) está relacionada com a tendência das espécies atômicas de doarem carga eletrônica para a formação da ligação química $A-B$. Estas duas quantidades foram calculadas para uma série de moléculas diatômicas e para complexos de $\mathrm{Eu}^{3+}$ com $\beta$-dicetonas. Em todos os cálculos utilizou-se o programa NWCHEM (base wtbs) para as otimizações das moléculas diatômicas e o modelo Sparkle para as otimizações de geometria dos complexos de coordenação.

Os valores da PRR foram calculados para a série $R X(R=L i, N a, K$ e $X=F, C I, B r, I)$, sendo usados para construir uma nova escala de covalência (Figura). A covalência baseada em PRR (eixo x) foi comparada com a covalência de Pauling (eixo y), mostrando uma boa concordância. Esta mesma escala está sendo expandida para levar em conta não só a série de moléculas diatômicas mostrada na Figura como também a série $\mathrm{MY}(\mathrm{M}=\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}$, $\mathrm{Ba} e \mathrm{Y}=\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te})$.


Os valores de PRR foram também calculados para os complexos de Eu ${ }^{3+}$, sendo utilizados para estudar o efeito "nefelauxético" através do monitoramento da transição ${ }^{5} D_{0}=>^{7} F_{0}$ dos mesmos. Verificou-se que o deslocamento para o vermelho desta transição ocorre com o aumento de PRR, o que indica que PRR está relacionado com' a covalência dos complexos estudados. Para estes complexos foram calculados os valores da VIE, sendo esta associada com os fatores de carga g do Modelo Simples de Recobrimento ( $\mathrm{g} \equiv \mathrm{VIE}$ ). Com estes novos valores de g , foram calculados os Parâmetros de Campo Ligante, $\mathrm{B}_{\mathrm{kq}} \mathrm{s}$, e em seguida os níveis Stark. A comparação entre os níveis Stark experimentais e teóricos mostrou uma boa concordância, indicando que a aproximação $\mathrm{g} \equiv$ VIE é bastante satisfatória para o cálculo dos fatores de carga. (CAPES, CNPq, RENAMI, IMMC).

# CÁLCULOS AB INITIO DAS PROPRIEDADES FOTOLUMINESCENTES DO TITANATO DE ESTRÔNCIO COM DEFICIÊNCIA DE SRO 

Marcos A. dos Santos ${ }^{(\mathrm{PG})}$, Emmanuelle Orhan ${ }^{(\mathrm{PQ})}$, Carlos D. Pinheiro ${ }^{(\mathrm{PQ})}$, Maria Fernanda C. Gurgel ${ }^{(P G)}$, Elson Longo ${ }^{(P Q)}$<br>marcos@liec.ufscar.br<br>Laboratório Interdisciplinar de Eletroquímica e Cerâmica (LIEC), Departamento de Quimica, Rod. Washington Luis, km 235,Universidade Federal de São Carlos,CP 676, 13565-905 São Carlos - SP<br>Armando Beltrán ${ }^{(P Q)}$, Juan Andrés ${ }^{(P Q)}$<br>Departamento de Ciències Experimentals, Universitat Jaume I; PO Box 6029 AP, 12080 Castelló Spain

PALAVRAS-CHAVES: fotoluminescência, defeitos, titanato
O objetivo desse trabalho é de relacionar dados experimentais com os dados do estudo teórico para obter uma maior compreensão do mecanismo de fotoluminescência. Observa-se que a fotoluminescência é um fenômeno que pode estar vinculado com defeitos estruturais do composto cristalino. A explicação desse fenômeno evoluiu ao longo do tempo, nos anos 90 , autores falavam de tranferências de cargas entre átomos. Esta idéia evoluiu no sentido que a própria estrutura do composto geraria a fotoluminescência.

Neste trabalho foi realizado estudo teórico utilizando métodos quânticos periódicos para interpretar as propriedades de fotoluminescência do material do tipo perovisquita do $\mathrm{Sr}_{0.75} \mathrm{TiO}_{2.75}$ (ST). Este material foi investigado em nosso Laboratório tanto sob a forma de filmes finos, quanto sob a forma de pós. O ST foi sintetizado pelo método Pechini, e sendo que antes do pó ou do filme cristalizar-se, apresentaram uma forte característica fotolumineste à temperatura ambiente que, desaparece logo depois da cristalização. Essa fotoluminescência vem da combinação de um processo da absorção de fótons com um processo de emissão de fotóns e a energia de excitação é maior que a energia de emissão do "gap". Os compostos cristalinos só apresentam fotoluminescência a baixas temperaturas, num outro mecanismo (fotoluminescência excitônica). O estudo eletro-óptico do ST revela uma diminuição do valor da energia de gap do material que apresenta defeitos. Esta diminuição é atribuído a alta densidade de defeitos da estrutura assimétrica, revelando uma forte dependência entre propriedades ópticas e àssimetria do material. Aqui pretende-se investigar os efeitos de deficiência na estrutura cristalina com o objetivo de dar mais subsídios para explicar a fotoluminescência no material de ST com defeitos em sua estrutura cristalina.

Para os cálculos utilizou-se o pacote Crystal98 com supercellulas $2 \times 2 \times 2$. O modelo usado para representar o cristal com defeitos foi da remoção de uma unidade de óxido de estrôncio (SrO) para cada supercélula. Os cálculos foram realizados utilizando-se a teoria da funcional da densidade com a funcional de troca-correlacão B3LYP. O conjunto de base empregado foi 976-41(d51)31G, $864-11(\mathrm{~d} 41) \mathrm{G}, 6-31 \mathrm{G}^{*}$ para o Sr , Ti e O, respectivamente, que descreve todos os elétrons.

Uma análise das densidades de estados e das estruturas de bandas obtidas mostra que a banda de valência sempre é composta dos estados $2 p$ dos oxigênios e a banda de condução dos estados 3d dos titânios. Os valores das energias de gap do composto com defeito é menor que o cristalino, de acordo com as observações experimentais. Novos estados localizados são criados acima da banda de valência do composto com causa do defeito no cristal.

Concluí para criar a fotoluminescência à temperatura ambiente no material cristalino, podese criar defeitos (ou vacâncias) no cristal, causando a polarização da estrutura e auxiliando a criação de pares elétron-buracos depois da excitação por fótons. O decaimento dos elétrons ocorre inicalmente com etapas na banda de condução (decaimento não radiativo) antes de ocorrer a emissão através da região de"gap" (decaimento radiativo) e de chegar nos novos estados localizados ou nos estados deslocalisados iniciais. É por isso que o comprimento de onda da emissão é maior que o da excitação. (FAPESP-CEPID, CNPq, CAPES, FINEP).

# MÉTODO MECÂNICO-QUÂNTICO PERIÓDICO PARA O ESTUDO DO $\mathrm{BaTiO}_{3}$ DOPADO COM Ni PARA APLICAÇÃO COMO PIGMENTO 


#### Abstract

Maria Fernanda C Gurgel ${ }^{(\mathrm{PGG})(2)}$; Alessandra Zenatti ${ }^{(\mathrm{PG})(1)(2)}$; Graziela P. Casali ${ }^{(\mathrm{PG})(2)}$;  palz@iris.ufscar.br (1)-Interunidades-USP-São Carlos;- Via Washington Luiz, Km 235 - Caixa Postal. 13.565-905- São Carlos - S.P. - Brasil- (2)-CMDMC-LIEC-UFSCar; (3)-Departamento de Física-UFSCar; (4)Instituto de Química-UNESPAraraquarara; Palavras-chave: mecânico-quântico, $\mathrm{BaTiO}_{3}$, Pechini

Neste trabalho foram realizados estudo teórico peródico em nível "ab intio", utilizandose o pacote computacional CRYSTAL98. Com estes cálculos verificou-se as estruturas de bandas, as densidades de estados e o "gap" teórico, para os compostos de estrutura tetragonal, para melhor embasamento e compreensão mecânico quântico dos resultados experimentais. Foram preparados utilizando-se o Método Pechini $\mathrm{BaTiO}_{3}$ dopado com Ni para estudos da propriedade óptica, como pigmento. Foi adicionado Ni na matriz em diferentes porcentagens ( $X=1,0 ; 5,0$ e $10,0 \% \mathrm{em} \mathrm{mol}$ ). Estes pós para aplicação como pigmento foram calcinados à temperaturas de $380 / 90 \mathrm{~min}$. e $1000^{\circ} \mathrm{C} / 2 \mathrm{~h}$. As amostras foram caracterizadas por difração de raios X, espectroscopia Raman, UV-visível e Colorimetria. Verificou-se por difração de raios $X$ a acomodação de Ni na rede sem que haja a formação de uma segunda fase. FTRaman não apresentou os modos vibracionais para os compostos dopados com Ni, sugerindo que o mesmo provoça uma diminuição da tetragonalidade do composto. As coordenadas colorimétricas ( L a* b) mostraram uma ativação para as cores verde e amarelo, pois estas apresentaram ( $a^{*}<0$ ) e ( $b^{*}>0$ ). Por outro lado, espectroscopia de UV-visível mostrou maior intensidade de reflectância na região de $500-580 \mathrm{~nm}$, o que corresponde a região do verde, utilizando estes espectros também foi possível verificar os valores de "gap" experimental destes compostos.


# ESTUDO MECÂNICO QUÂNTICO DAS PROPRIEDADES FOTOLUMINESCENTES DO ESPINÉLIO $\mathrm{Li}_{2} \mathrm{ZnTi}_{3} \mathrm{O}_{8}$ 

Maria Fernanda.C. Gurgel ${ }^{1 *}(\mathrm{PG})$, Maria. Suely C. Câmara ${ }^{1}(\mathrm{PG})$,Sergio .R. Lázaro<br>${ }^{1,2}(P G)$, Edson .R.Leite ${ }^{1}(P Q)$, Elson. Longo ${ }^{1}(P Q)$ e Armando. Beltran ${ }^{2}(P Q)$<br>mariafernanda @liec.ufscar.br<br>${ }^{1}$ Rodovia Washington Luis, São Carlos/SP, CEP: 13560-905<br>Laboratório Interdisciplinar de Eletroquímica e Cerâmica, Departamento de Química - Universidade Federal de São Carlos, São Carlos/SP;<br>${ }^{2}$ Universitat Jaume I, Departament de Ciencies Experimentals, Campus de Riu Sec, Castelló, 8029AP, 12080, Spain.<br>Palavras-chave: Espinélio, Fotoluminescência,modelos periódicos

A necessidade de materiais com emissão de luz sintonizável, aumenta com o desenvolvimento tecnológico, que é crescente a cada dia. Para isto, torna-se necessária a obtenção de novos materiais, a fim de acompanhar esta crescente procura. Compostos que cristalizam com estrutura espinélio possui a característica de acomodar uma grande quantidade de cátions em sua estrutura, tornado-o dessa forma, um grande promissor a uma série de propriedades para inúmeras aplicações tecnológicas, tais como pigmentos, catalisador, refratários, cerâmicas eletrônicas, entre outros.

Nas últimas décadas as propriedades fotoluminescentes têm atraído considerável atenção, devido as suas aplicações. Recentemente, observaram propriedades fotoluminescentes em materiais assimétricos, à temperatura ambiente, obtidos à baixa temperatura ( $300^{\circ} \mathrm{C}$ ), utilizando-se o método dos precursores poliméricos (método Pechini). Esta fotoluminescência foi verificada para vários titanatos, tais como $\mathrm{PbTiO}_{3}, \mathrm{BaTiO}_{3}$ e $\mathrm{SrTiO}_{3}$. A fase espinélio $\mathrm{Li}_{2} \mathrm{ZnTi}_{3} \mathrm{O}$ apresentou propriedade fotoluminescente a temperatura ambiente no seu estado assimétrico a $300^{\circ} \mathrm{C}$.

Neste contexto, analisou-se as propriedades fotoluminescentes através de cálculos periódicos ab-inito para a fase $\mathrm{Li}_{2} \mathrm{ZnTi}_{3} \mathrm{O}_{8}$ de estrutura espinélio de grupo P 4332 , com o programa CRYSTAL98, com o objetivo de compreender as propriedades fotoluminescentes deste material a nível eletrônico.

O estudo realizado em método periódico mostrou um melhor entendimento em relação a teoria de banda, densidade de estados e densidade eletrônica, para o fenômeno da fotoluminescência apresentada pelo espinélio $\mathrm{Li}_{2} \mathrm{ZnTi}_{3} \mathrm{O}_{8}$. Pela análise do DOS é observado para a estrutura simétrica e assimétrica a predominância da contribuição dos orbitais do Titânio na região da banda de condução e contribuição dos orbitais do oxigênio na região da banda de valência. Na estrutura assimétrica foi observada na estrutura de bandas e no DOS a diminuição do gap, indicando desta forma, a presença de $\mathrm{TiO}_{5}$ e $\mathrm{TiO}_{6}$. Para se ter um conhecimento mais profundo das estruturas simétrica e assimétrica, foram calculadas as densidades eletrônicas para os planos LiLiZn e OZnZn. Pode-se observar os contornos das linhas entre os átomos LiLiZn, caracterizando o tipo de ligação iônica e para o OZnZn, caracterizando tipo de ligação covalente.

# ESTUDO QSAR DE ANALOGOS DE NEOLIGNANAS 8.O.4' COM ATIVIDADE LESHMANICIDA 

Sergio R. R. Aguiar (PG), Rosivaldo S. Borges (PG), Cláudio N. Alves (PQ)<br>romeiro@ufpa.br<br>Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil E-mail:<br>Palavras-chave: neolignanas 8.O.4', leshmanicida, qsar.

Os compostos naturais e derivados sintéticos de neolignanas 8.O.4' com atividade leshimanicida, foram analisados com o objetivo de se investigar os fatores em termos de parâmetros físico-químicos responsáveis pela atividade biológica, de forma que se possa entender seu mecanismo de ação, sugerir compostos potencialmente mais ativos e dotados de menor toxidade.

Os análogos sintéticos estudados neste trabalho, foram preparados a partir de $\alpha$ -bromo-cetonas com fenóis e tiofenóis substituídos, formando éter l e sulfeto II, respectivamente. Os derivados sulfetos foram oxidados formando análogos sulfóxidos III e sulfonas IV, enquanto que o grupo cetona foi reduzido a álcool e em seguida acetilado, formando os derivados $\mathbf{V}$ e VI, respectivamente. Estes compostos se mostraram ativos em testes in vitro contra a forma amastigota intracelulares de Leshmania donovani, agente causadora da leshmaniose visceral.

Figura 1: Derivados de neolignanas 8.O.4'







Com base em uma geometria obtida da estrutura cristalográfica de trabalhos anteriores, alguns parâmetros eletrônicos e estruturais foram obtidos, através de do método semi-empirico PM3.

Os resultados dos cálculos, indicam que a energia do HOMO e a carga do carbono da posição 5, apresentam boa correlação com a atividade biológica. A equação obtida representando a atividade com um $R^{2}$ de 0,70 e o valor de significância ( $F$ ) igual a 9,07 são mostrados abaixo:

$$
\begin{gathered}
\text { L. donovani: } \log _{1} 1 / C=-1,38+5,019 C_{5}+7,8 \times 10^{-4} \mathrm{~W} \\
R^{2}=0,70 \quad F=9,07
\end{gathered}
$$

(CNPq, UFPA)

## P028

# ESTUDO TEÓRICO DA REATIVIDADE DE DERIVADOS DIMETILADOS DA N-ACETIL-P-BENZOQUINONA IMINA COM NUCLEÓFILOS 

Rosivaldo S. Borges (PG) \& Cláudio N. Alves (PQ)<br>rosborg@upfa.br<br>Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil E-mail:<br>Palavras-chave: $N A P B Q 1$, reatividade, derivados do paracetamol.

As reações dos derivados 3,5 e 2,6-dimetil- $N$-Acetil- $p$-benzoquinona Imina com nucleófilos formaram não apenas os esperados adutos de Michael descritos como os metabólitos tóxicos do paracetamol.

Os mecanismos das reações foram analisados, através dos métodos semi-empricos (PM3) e densidade funcional (B3LYP), e comparados com os resultados experimentais. Cinco nucleófilos, cloridrato, água, etanol, etanotiol e anilina reagiram com os derivados quinonaimina dimetilados, formando produtos de adição no carbono ipso, favorecidos pela energia do HOMO do nucleófilo, energia do LUMO do sistema carbonila em solventes de média polaridade, enquanto que o ataque nas posições 2 e 3 do sistema carbonila $\alpha, \beta$-conjugado, foram fovorecidos pela carga e nucleófilos mais polares.

Figura 1: Reatividade de derivados dimetilados do paracetamol.


Os fatores estéricos foram determinantes na observação de diferenças de reatividade de 3,5 e 2,6-dimetil- $N$-acetil- $p$-benzoquinona Imina com nucleófilos tanto teoricamente quanto experimentalmente.

Reação da $N$-acetil-2,6-dimetil-p-benzoquinona imina com nucleofilos formaram compostos com carbono tetrahédrico, enquanto que a reação da $N$-acetil- 3,5 -dimetil-pbenzoquinona imina, após formarem compostos com carbono saturado, produziram derivados quinona e imina, através da eliminação de acetamida.

Os resultados do estudo de reatividade estão de pleno acordo com os resultados biológicos, em especial a toxidade de derivados dimetilados do paracetamol. (CNPq, UFPA).

# DEPOSIÇÃO DE OURO SOBRE FILMES DE POLI-PARAFENILENO DE VINILA (PPV): SIMULAÇÕES DE DINÂMICA MOLECULAR 

Sergio B. Legoas ${ }^{1}$ (PQ), Marília J. Caldas ${ }^{2}$ (PQ), Douglas S. Galvão ${ }^{1}$ (PQ)* galvao@ifi.unicamp.br<br>${ }^{1}$ Instituto de Física Gleb Wataghin, Unicamp, CP 6165 CEP 13081-970, Campinas - SP - Brasil<br>${ }^{2}$ Instituto de Física, USP, CP 20516, São Paulo, SP, Brasil<br>Palavras-chave: polímeros condutores, interfaces metal-polimero

A procura por novos materiais com novas e importantes propriedades físicas, químicas e mecânicas, é uma das mais promissoras áreas de pesquisa atualmente. No campo da microeletrônica, intensivos estudos são realizados para encontrar materiais condutores e semicondutores capazes de substituir os tradicionais componentes baseados em silício. Nesse sentido, compostos orgânicos, na forma de polímeros, foram descobertos como possuindo propriedades condutoras e eletroluminescente. O poli-para-fenileno de vinila (PPV) é um dos mais importantes compostos poliméricos com potenciais aplicações tecnológicas, devido às suas propriedades ópticas e eletrônicas. Polímeros condutores, como o PPV, são utilizados por exemplo em dispositivos emissores de luz (OLEDS - diodos orgânicos). A eficiência desses dispositivos depende de diversos fatores, entre eles está a morfologia da formação da interface orgânico-metal. Muitos estudos têm sido realizados a cerca da deposição de compostos orgânicos sobre metais, porém a deposição de metais sobre orgânicos (principalmente os estágios iniciais da deposição) não tem sido suficientemente estudada. Uma vez que a transferência de cargas entre os eletrodos metálicos e o filme orgânico, se realiza através de interfaces metal-orgânico, resulta de particular importância compreender os mecanismos de formação dessas interfaces.

Neste trabalho apresentamos resultados de cálculos de dinâmica molecular, no esquema de mecânica clássica utilizando campos de força gerais [UFF-Valbond1.1 Molecular Force Field, disponível da Accelrys, Inc. como parte dos pacotes Materials Studio e Cerius2, http://www.accelrys.com], para os estágios iniciais da deposição de átomos de ouro sobre filmes de PPV. As simulações foram realizadas considerando estruturas com milhares de átomos, com a deposição de átomos de ouro sobre diferentes superfícies (orientações cristalográficas). Utilizamos dinâmica molecular de impulso no esquema microcanônico (número de partículas, volume e energia total constantes). Nossos resultados mostram um comportamento bastante diferenciado para deposições em diferentes orientações cristalográficas dos filmes (substrato), tanto em termos da profundidade da difusão dos átomos de ouro como da morfologia das interfaces formadas. Dentre os resultados obtidos, foi possível observar a formação de estruturas auto-organizadas induzidas pela interação de átomos de ouro com as cadeias superficiais do substrato orgânico. Este fenômeno nunca antes foi reportado na literatura. Estes resultados podem ser objeto de investigações experimentais com a finalidade de comprovar a relação entre a morfologia da interface metal-orgânico observada teoricamente, e as propriedades eletrônicas de dispositivos baseados em PPV.

Realizamos simulações de dinâmica molecular do processo de deposição de átomos de ouro sobre filmes de PPV, considerando diferentes orientações cristalográficas. Nossos resultados mostram que os átomos de metal adotam diferentes configurações dependendo do tipo de superfície de polímero considerado. Observamos que em determinadas superfícies os átomos de ouro se auto-organizam em estruturas comensuráveis com a simetria da superfície do polimero. Essas interfaces organizadas podem apresentar propriedades de transferência de carga muito diferentes em relação a interfaces desorganizadas, afetando por tanto o funcionamento do dispositivo eletrônico baseado em polímeros condutores. (FAPESP, CNPq, IMMP/MCT).

# ESTUDO DE ESTRUTURA-ATIVIDADE DAS TETRACICLINAS E PROPOSTADE NOVOS DERIVADOS. 

Fernando Sato ${ }^{1}(P G)$, Scheila F. Braga ${ }^{1}(P Q)$, Hélio F. Dos Santos ${ }^{2}(P Q)$, Douglas $S$. Glavão ${ }^{1}(\mathrm{PQ})$<br>${ }^{1}$ Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas - Unicamp, Campinas - SP CP6165, CEP 13081-970, Brasil<br>${ }^{2}$ Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Martelos, Juiz de Fora, MG, 36.036-330, Brasil<br>Palavras-chave: estrutura-atividade, MIE, tetraciclinas.

Desde a primeira tetracidina isolada na década de 40, outros novos compostos derivados foram amplamente explorados. As tetraciclinas têm grande importância dentro da "farmacologia" devido à grande diversidade de atuação, dentre elas a ação contra a bactéria E . Coli, que é a responsável pela diarréia se ingeridos alimentos contaminados com mais de 2000 $\mathrm{nmp} / 100 \mathrm{ml}$ (unidades de E. Coli por 100 ml ).

Neste trabalho estudamos as estruturas geométrica e eletrônica de 104 derivados das tetraciclinas, empregando os métodos semi-empíricos AM1 (Austin Method One) e PM3 (Parametric Method 3). Para correlacionarmos a atividade inibidora das tetraciclinas com parâmetros teóricos eletrônicos utilizamos a Metodologia dos Índices Eletrônicos (MIE).

A MIE é baseada no conceito de densidade local de estados (LDOS, Local Density of States) e na diferença entre as energias dos orbitais de fronteira. Para verificar a importância dos índices propostos pela MIE, aplicamos metodologias quimiométricas muito utilizadas em SAR e QSAR, como a Análise de Componentes Principais (PCA), Análise Hierárquica de Agrupamentos e também as Redes Neurais Artificiais. Estas metodologias por sua vez abarcam em sua análise parâmetros físico-químicos, eletrônicos e estereoquímicos. Verificamos que a MIE tem excelente funcionalidade e proporcionou verificar padrões que separam os compostos ativos e inativos, com acertos de $92,85 \%$ (PM3) e 100\% (AM1) na reprodução da atividade experimental. No tratamento com os métodos quimiométricos os índices eletrônicos propostos pela MIE foram automaticamente selecionados como os mais importantes.

Dentro desse estudo propomos outros 90 novos compostos derivados das tetraciclinas, dentre eles alguns potencialmente ativos no combate a E. Coli. Na proposta dos novos compostos utilizamos os padrões gerados inicialmente pela MIE, realizando assim a predição. Em uma nova verificação utilizamos os parâmetros da MIE, do conjunto inicial, como parâmetros de entrada para o tratamento com as Redes Neurais Artificiais e realizamos o treinamento da rede em seguida a predição dos novos compostos. Neste procedimento verificamos que as Redes Neurais observa o padrão inicial proposta pela MIE, e também com a predição feita com a MIE. (FAPESP, CNPq, FAPEMIG).

# INVESTIGAÇÃO DA ATIVIDADE CARCINOGÊNICA DOS HIDROCARBONETOS AROMÁTICOS POLICÍCLICOS ATRAVÉS DE DESCRITORES TEÓRICOS. 

Karla S. Troche(PG), Scheila F. Braga(PQ), Vitor R. Coluci(PG), Douglas S. Galvão(PQ)<br>Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas - Unicamp, Campinas - SP CP6165, CEP 13081-970, Brasil<br>Palavras-chave: estrutura-atividade, MIE, PAH.

Entre os agentes químicos conhecidos como indutores de câncer os Hidrocarbonetos Aromáticos Policíclicos (PAHs) desempenham um papel muito importante. Como classe, os PAHs perdem somente para as micotoxinas em potência carcinogênica ${ }^{1}$. Eles são compostos orgânicos planares e constituem uma das classes mais estudadas na tentativa de explicar a razão pela qual moléculas estruturalmente relacionadas apresentam tão grande variação de atividade carcinogênica, desde altamente ativas até completamente inertes.

Neste trabalho apresentamos estudos de estrutura-atividade realizados para 81 PAHs tentando identificar compostos carcinogênicos

Em particular, empregamos uma nova metodologia desenvolvida para tratar o problema da correlação estrutura geométrica com atividade biológica, denominada Metodologia de Índices Eletrônicos (MIE). Aplicamos na investigação da estrutura geométrica e eletrônica os métodos semi-empíricos AM1, PM3 e o novo PM5 para estudar a dependência entre a qualidade dos resultados obtidos pela MIE e a parametrização de cada método. Para os três métodos o acerto na predição da atividade carcinogênica dos PAHs foi de cerca de 85\%.

Para verificarmos a real aplicabilidade dos descritores eletrônicos utilizados pela MIE, investigamos a relação entre a atividade experimental dos PAHs e descritores teóricos (físicoquímicos, eletrônicos e estereoquímicos) através de cinco metodologias de reconhecimento de padrões: a Análise de Componentes Principais (PCA), Análise Hierárquica de Agrupamentos (HCA), K-ésimo vizinho mais próximo (KNN), Soft Independent Modeling of Class Analogies (SIMCA) e as Redes Neurais Artificiais. Para estas investigações distintas pudemos correlacionar a atividade dos PAHs estudados com parâmetros teóricos, em sua maioria eletrônicos, onde os parâmetros utilizados na MIE foram selecionados pelos diferentes métodos. A porcentagem de acerto destes métodos na predição da atividade dos PAHs foi de $83 \%$, e $92 \%$ no caso das Redes Neurais.

Este estudo valida estatisticamente a MIE como uma nova metodologia capaz de identificar compostos biologicamente ativos, e com um custo computacional menor que técnicas convencionais de SAR e apresentando um desempenho, em geral superior. (CAPES, FAPESP)

[^2]
# ESTUDO DE PROPRIEDADES TERMODINÂMICAS E ESTRUTURAIS DOS LíQUIDOS ETILENO GLICOL E GLICEROL 

Aparecido de Arruda Sobrinho ${ }^{1}$ (PG) e Luiz Carlos Gomide Freitas ${ }^{1}$ (PQ) cido@qt.dq.ufscar.br<br>Departamento de Química ${ }^{1}$ - Universidade Federal de São Carlos - São Carlos - SP Palavras-chave: simulação computacional, etileno glicol, glicerol.

As estruturas moleculares do etileno glicol e do glicerol permitem enorme variedade de conformêros, que associados a propriedade destas moléculas de formarem em fase gasosa uma, duas e até três ligações de hidrogênio intramoleculares, as tornam interessantes candidatas para o estudo de seus líquidos puros, onde ligações de hidrogênio intermoleculares também são possíveis. Este estudo pretende verificar as influências das ligações de hidrogênio sobre as propriedades conformacionais e termodinâmicas destas moléculas.

A simulação computacional destes líquidos foi efetuada em nosso laboratório através de metodologia empregando Dinâmica Molecular para se obter informações estruturais e sobre a dinâmica de formação de ligações de hidrogênio. Ao líquido etileno glicol também foi aplicada o método de Monte Carlo, que apresentou resultados termodinâmicos satisfatórios. O programa de simulação TINKER foi utilizado para se obter dinâmicas estendidas até o tempo de $1,3 \mathrm{~ns}$, no "ensemble" NpT , ajustado na pressão de $1,0 \mathrm{~atm}$ e nas temperaturas de 265 K , $300 \mathrm{~K}, 350 \mathrm{~K}, 465 \mathrm{~K}$ para o etileno glicol e $300 \mathrm{~K}, 400 \mathrm{~K}$, e 555 K para o glicerol. Neste programa as interações são descritas com um campo de força clássico com parâmetros OPLS-AA e AMBER. Rotações internas ao longo dos eixos definidos pelas ligações C-O e C-C foram consideradas, obtendo-se a evolução temporal de conformações e de formação de ligações de hidrogênio para ambos os líquidos.

Os resultados termodinâmicos e estruturais obtidos estão em bom acordo com os dados experimentais. Estatísticas de populações de conformêros e de formação de pontes de hidrogênio em função da temperatura foram obtidas e apresentam relação com cálculos "ab initio" para a fase gasosa encontrados na literatura. Foram investigadas grandezas como calor de vaporização, entalpia, distribuição radial de pares, etc. Como exemplo, estão apresentados na figura 1, a evolução temporal de dois dos diedros de uma das moléculas de glicerol dentre as 250 que tiveram suas trajetórias simuladas. O método se mostrou satisfatório em reproduzir os dados experimentais disponíveis, e com resultados bastante coerentes de um modo geral. ( Capes, FAPESP


Figura1: Evolução temporal de dois diedros da molécula de glicerol, a 300 K .

# ESP LHAAMINNTO ELÁSTICO ELÉTRON-H2O COMIINCLUSAOO DA CORRELAÇÃO ELETRÔNICA DO ALvO 

Maria G. R. Martins ${ }^{1,2,{ }^{*}}(P G)$, José David M. Vianna ${ }^{1,3}(P Q)$,<br>Angelo M. Maniero ${ }^{3}$ (PQ), Luiz E. Machado ${ }^{2}$ (PQ)<br>mgraca@df.ufscar.br, mgraca@ufba.br<br>1) Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA, Brasil<br>2) Depto de Física, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brasil<br>3) Instituto de Física, Universidade de Brasilia, 70910-900, Brasilia, DF, Brasil<br>Palavras-chave: interação de configurações, seção de choque diferencial, baixas energias

Os processos de espalhamento elétron-molécula têm despertado grande interesse, principalmente nas duas últimas décadas, levando ao desenvolvimento de métodos cada vez mais precisos para estudá-los [1,2]. Tais métodos, baseados em geral em técnicas variacionais ou iterativas, exigem cálculos numéricos extensos; em conseqüência o potencial de interação, que tem três contribuições principais - estática (S), de troca (E) e de correlação-polarização (P) - é obtido a partir do tratamento do alvo realizado na aproximação de Hartree-Fock (HF) [3]. Sabe-se entretanto que, para colisões em baixas energias, a correlação eletrônica do alvo tem influência não desprezível na determinação da seção de choque [4]. Os autores desenvolveram um método [5] no qual o potencial de interação elétron-alvo é determinado com o alvo descrito utilizando o método de interação de configurações (CI). Neste trabalho este método é aplicado ao espalhamento elástico $e^{-}-\mathrm{H}_{2} \mathrm{O}$ com elétron incidente tendo energia no intervalo $1,0-30,0 \mathrm{eV}$. A base atômica usada é uma base Gaussiana contraída de Dunning e Hay [6] acrescida de uma função $d$ para o Oxigênio e uma função $p$ para o Hidrogênio. O cálculo Cl é realizado incluindo excitações simples e duplas o que corresponde a 1.468 CSF 's e 5.823 determinantes. Com esta base, o valor da energia para o cálculo Hartree-Fock foi -76, 0198 au, para o cálculo CISD foi de -76,1759au enquanto o limite Hartree-Fock é 76,0632au. A equação de Lippmann-Schwinger é resolvida pelo método variacional iterativo de Schwinger [2] com a expansão em ondas parciais truncada em Ligual a 20 para as funções do alvo e o potencial estático, e L igual a 10 para a função de espalhamento. As contribuições para as amplitudes de espalhamento de ondas parciais, com L's superiores ( $>10$ ), são acrescentadas utilizando a relação de fechamento de Born. Neste trabalho apresentamos cálculos de Seção de Choque Diferencial. Comparamos os resultados obtidos a partir de funções Cl e Hartree-Fock com outros resultados teóricos e experimentais analisando para quais ângulos e energias a correlação eletrônica do alvo é mais importante. Nossos resultados mostram que os cálculos com a função Cl estão em muito boa concordância com os resultados experimentais, na faixa estudada. A comparação entre os resultados Cl e Hartree-Fock mostra que as discrepâncias são mais significativas para ângulos de espalhamento maiores e energias mais baixas. (Capes, CNPq)
[1] Horácek J et Sasakawa T (1983) - Phys. Rev. A28, 2151; (1984) - Phys. Rev. A30, 2274
[2] Lucchese R R, Raseev G et McKoy V (1982) - Phys. Rev. A25, 2572
[3] Ribeiro E M S, Machado L E, Lee M-T et Brescansin L M (2001) - Comp. Phys. Comm. 136, 117
[4] Sarpal B K, Pfingist K, Nestmann B M et Peyerimhoff S D (1996) - J. Phys. B. 29, 857
[5] Vianna J D M, Martins M G R, Maniero A M, Ribeiro E M S, Machado LE (2001) - J. Phys. B: 34, L617
[6] Dunning Jr. TH et Hay P J (1977)- Methods of Electronic Structure Theory, N. Y. Plenum

## P034

# INCLUSÃO DOS EFEITOS DE CORRELAÇÃO ELETRÔNICA DO ALVO NO ESPALHAMENTO ELÁSTICO DE ELÉTRONS POR OZÔNIO 

José David M. Vianna ${ }^{1,2,}(P Q)$, Maria G. R. Martins ${ }^{2,3}(P G)$,<br>Angelo M. Maniero ${ }^{1}$ (PQ), Luiz E. Machado ${ }^{3}$ (PQ)<br>jdavid@fis.unb.br, david@ufba.br 1) Instituto de Física, Universidade de Brasilia, 70910-900, Brasilia, DF, Brasil 2) Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA, Brasil<br>3) Departamento de Física, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brasil.

Palavras-chave: correlação eletrônica alvo, espalhamento elástico, método variacional iterativo de Schwinger.

O processo de espalhamento e e- $\mathrm{O}_{3}$ tem recebido uma considerável atenção tanto do ponto de vista teórico $[1,2,3,4]$ quanto experimental [5,6]. Este interesse tem origem no fato do ozônio ser um dos mais importantes gases da atmosfera terrestre e provavelmente a substância mais comumente associada à química atmosférica. A maioria dos métodos teóricos usados tem restringido o tratamento quântico do alvo $\mathrm{O}_{3}$ ao nível da aproximação Hartree-Fock (HF). A inclusão da correlação eletrônica do alvo, no entanto, é importante para a descrição correta do espalhamento de elétrons lentos. No presente trabalho nós analisamos o espalhamento $e^{-}-\mathrm{O}_{3}$ para energias do elétron incidente na faixa $1,0-30,0 \mathrm{eV}$ usando o método por nós desenvolvido [7] para incluir esses efeitos de correlação. O método permite determinar os potenciais estático, de troca e de correlação-polarização com funções Cl (interação de configurações). Para resolver a equação de Lippmann-Schwinger usamos o método iterativo de Schwinger (SVIM). O estudo feito pelos autores [8] com as bases DZV e DZV-d (DZV com a inclusão de uma função d) no espalhamento e- $\mathrm{N}_{2}$ mostra que a inclusão de excitações triplas com a base DZV é menos importante para a melhoria do cálculo da seç̧ão de choque diferencial do que a mudança da base DZV para DZV-d mantendo apenas as excitações simples e duplas. O presente trabalho continua esta análise agora considerando o sistema e$\mathrm{O}_{3}$. Neste sentido apresentamos um estudo comparativo entre resultados obtidos com a base DZV (10s5p)/[3s2p] e DZV-d (10s5p1d)/[3s2p1d] usando Cl com simples e duplas excitações. Com a base DZV, a energia Hartree-Fock obtida foi -224,2075au e o cálculo CISD, com 4.598 CSFs e 20.133 determinantes, resultou em uma energia de $-224,5787$ au. Com o cálculo CISD para a base DZV-d, correspondendo a 21.294CSFs e 97.235 determinantes, obteve-se a energia igual a -224,8338au enquanto no cálculo Hartree-Fock para esta base tem-se a energia de -224,3119au: análise da seção de choque diferencial considerando diferentes conjuntos de base atômica mostra um comportamento (no que se refere a melhoria dos resultados teóricos em comparação com os experimentais) similar ao do processo e e- $\mathrm{N}_{2}$. (Capes, CNPq)
[1] Gianturco F A et Paioletti P (1998) - Phys. Rev. A58, 4484
[2] Sarpal B K, Nestmann B M et Peyerinmhoff S D (1998) - J.Phys. B 31,1333
[3] Bettega M H, Varella M T N, Ferreira L G et Lima M A P (1998) - J.Phys. B 31, 4419
[4] Gulley R J et al. (1998) - J.Phys. B 31, 5197
[5] Allan M et al. (1996) - J.Phys. B 29, 4727
[6] Shyn T W et Sweeney C J (1993) - Phys. Rev. A 47, 2919
[7] Vianna J D M, Martins M G R, Maniero A M, Ribeiro E M S et Machado L E (2001) - J. Phys. B. 34, L617
[8] Martins M G R, Vianna J D M, Maniero A M et Machado L E (2003) - a ser submetido

# SHMULAÇÃO-COMPUTACIONAL-DO-ESPALHAMENTO DE LUZ DESPOLARIZADO RAYLEIGH DA MISTURA LÍQUIDA $\mathrm{CS}_{2} / \mathrm{C}_{6} \mathrm{H}_{6}$ 

Silvia Dani (PG) ${ }^{1,2^{*}}$ e Hubert Stassen (PQ) ${ }^{2}$<br>silvia@iq.ufrgs.br<br>(1) Departamento de Química - ULBRA, Rua Miguel Tostes, 101, 92420-280 Canoas, RS<br>(2) Instituto de Química - UFRGS, Av. Bento Gonçalves, 9500, 91540-000, Porto Alegre, RS<br>Palavras-chave: espalhamento de luz, função de correlação temporal, misturas líquidas

O sistema $\mathrm{CS}_{2} / \mathrm{C}_{6} \mathrm{H}_{6}$ apresenta estudos experimentais de infravermelho longínquo (Chem. Phys.,168,349,1992) e de espalhamento de luz despolarizado Rayleigh (J.Mol.Liq., $64,263,1995$ ) que evidenciam a formação de agregados de tempo de vida curto, na ordem de $0,1 \mathrm{ps}$, atribuídos a um efeito de empacotamento das moléculas de benzeno e dissulfeto de carbono. Também este sistema representa um modelo de interações entre $\mathrm{CS}_{2}$ e cadeias fenílicas, interações estas, sistematicamente relacionadas na literatura com a formação de complexos em polímeros (Macromol.,28,6539,1995) e em sistemas biológicos (Biochem., 33,9769, 1994).

Motivados por estas análises experimentais, uma abordagem computacional para o estudo é proposta neste trabalho. Propriedades espectroscópicas são determinadas para a mistura líquida $\mathrm{CS}_{2} / \mathrm{C}_{6} \mathrm{H}_{6}$ na temperatura de 298 K e nas frações molares de benzeno iguais a $0,25,0,50$ e 0,75 , usando simulação computacional por dinâmica molecular. As interações intermoleculares são descritas em relação a todos os átomos por um potencial Lennard-Jones (12/6) construído a partir dos potenciais de Jorgensen e Severance (J.Am.Chem.Soc., $112,4768,1990$ ) e Tildesley e Madden (Mol.Phys., $42,1137,1981$ ) dos líquidos puros benzeno e dissulfeto de carbono, respectivamente. As interações eletrostáticas são representadas por quadrupolos pontuais localizados nos centros de massas das moléculas.

Funções de correlação temporal da polarizabilidade coletiva correspondente ao espalhamento despolarizado Rayleigh são calculadas a partir do modelo dipolo induzido por dipolo (DID) de $1^{\text {a }}$ ordem (J.Chem.Phys.,72,2801,1980). As funções de correlação são divididas nas contribuições orientacional, induzida por colisão e cruzada, como também nas contribuições dos componentes (Ber.Bun.Phys.Chem.,95,995,1991). Propriedades de equilíbrio como anisotropia efetiva e intensidades integradas são determinadas para as misturas e líquidos puros. Os resultados indicam que a correlação orientacional entre as moléculas de $\mathrm{CS}_{2}$ é a maior responsável pelos espectros Rayleigh. A separação na escala temporal entre a dinâmica reorientacional e induzida por colisão é menor em relação ao experimento. Tempos de correlação da contribuição induzida por colisão são maiores em relação aos líquidos puros, em acordo com as observações experimentais, e estão relacionados a contribuições significativas das funções de correlação entre os componentes $\mathrm{CS}_{2}$ e benzeno a tempo longo.

Os espectros calculados na simulação e os espectros experimentais do espalhamento de luz despolarizado Rayleigh apresentam boa concordância, validando os modelos de potenciais de interação e indução usados. [FAPERGS].

# ESTRUTURA ELETRÔNICA E INTERAÇÕES HIPERFINAS NO RADICAL $\mathrm{CO}_{2}^{-}$NA CARBOAPATITA TIPO-B IRRADIADA. 

Patrícia Granzotto Antunes (PG), Joice Terra (PQ), Diana Guenzburger (PQ)<br>patrícia@cbpf.br<br>Centro Brasileiro de Pesquisas Físicas<br>Palavras-chave: estrutura eletrônica, interações hiperfinas, carboapatita.

A hidroxiapatita $\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{2}$, é um biomaterial de grande interesse nas ciências médicas e de materiais, por ser o principal constituinte dos dentes e dos ossos e também por ser um material que pode ser usado como controlador da poluição ambiental. Suas propriedades físico-químicas são fortemente influenciadas pela presença de impurezas tais como os íons carbonatados $\mathrm{CO}_{3}^{2-}, \mathrm{F}^{-}, \mathrm{CL}^{-}$e metais. Os grupos carbonatados são as principais impurezas na estrutura cristalina da hidroxiapatita, substituindo ou o radical OH (carboapatita do tipo A) ou os íons $\mathrm{PO}_{4}^{3-}$ (carboapatita do tipo B).

O grupo carbonato $\mathrm{CO}_{3}^{2-}$ é precursor de várias espécies paramagnéticas criadas pela radiação em hidroxiapatitas biológicas e sintéticas tais como os radicais $\mathrm{CO}_{2}^{-}, \mathrm{CO}_{3}^{3-}$, $\mathrm{CO}^{-}, \mathrm{O}^{-} \mathrm{eO}_{3}^{-}$.

Neste trabalho investigamos a estrutura eletrônica de três aglomerados de átomos definidos para representar a hidroxiapatita $e$ as carboapatitas tipo $B$, considerando os mecanismos de substituição:

$$
\mathrm{Ca}^{2+}+\mathrm{PO}_{4}^{3-}+\mathrm{OH}^{-} \rightarrow \square_{\mathrm{ca}}+\mathrm{CO}_{2}^{-}+\square_{\mathrm{oH},},
$$

onde $\square$ significa vacância, e de formação

$$
\mathrm{CO}_{3}^{2-} \xrightarrow{\mathrm{Y}} \mathrm{CO}_{2}^{-}+\mathrm{O}^{-},
$$

utilizando o método variacional discreto (DVM) na aproximação da densidade local. Consideramos os resultados EPR e ENDOR obtidos por Schramm e Rossi [1] para modelar o ion $\mathrm{CO}_{2}^{-}$.

O estudo da estrutura eletrônica mostrou que a geometria que localiza um elétron sobre o átomo de carbono pode ser escrita como $\mathrm{CO}^{*} \mathrm{O} 3$, onde $\mathrm{O}^{\star}$ está aproximadamente na interseção entre a direção $\mathrm{C}-\mathrm{O} 3$ e $\mathrm{O} 1-\mathrm{O} 2$ no triângulo do íon carbonatado $\mathrm{CO}_{3}^{2-}$.

As componentes isotrópica e anisiotrópica da interação hiperfina entre o spin do elétron desemparelhado e o spin nuclear do ${ }^{13} \mathrm{C}$ foram calculadas e comparadas com os resultados EPR.

Schramm, D.U.,Estudo por EPR e ENDOR de radicais $\mathrm{CO}_{2}^{-}$e $\mathrm{CO}^{-}$em hidroxiapatitas, carboapatitas e carbonatos de cálcio; Tese de Doutorado, CBPF (1998).

# ANÁLISE ESTRUTURAL DA MODELAGEMDA FORMAÇÃO DE CLATRATOS UTILIZANDO DINÂMICA MOLECULAR 

Mauro dos Santos de Carvalho (PQ)<br>mauro@ufla.br<br>Universidade Federal de Lavras, Departamento de Química - Campus da UFLA - Centro - Lavras cep 37200-000<br>Palavras-chave: compostos de inclusão, modelagem molecular).

A formação de compostos de inclusão do tipo clatrato é de grande interesse científico e abre possibilidades para várias aplicações tecnológicas. A formação destas associações intermoleculares específicas tem sido alvo de investigações tanto teóricas como experimentais. A abordagem de pesquisa teórica seguida por este trabalho é a modelagem da formação de compostos supramoleculares do tipo clatrato utilizando dinâmica molecular, onde um campo de força genérico para compostos orgânicos é utilizado, visando a alcançar a resposta mais universal possível para o método. O procedimento consiste em submeter os potenciais compostos formadores de clatratos a um cálculo de dinâmica molecular e analisar a estrutura dos confôrmeròs obtidos correlacionando-os com suas respectivas energias. Resultados anteriores mostraram que, para sistemas onde não há formação de ligações hidrogênio, as estruturas dos mínimos de energia são coincidentes, quando ocorre a formação do composto de inclusão(1). O objetivo deste trabalho é comparar os resultados de dinâmica molecular de dois pares conhecidos de formadores de compostos do tipo clatrato(2), cujas estruturas dos hospedeiros são muito semelhantes, sendo que a diferença entre eles é que um átomo de carbono da estrutura é substituído por um átomo de silício. O hóspede é o 1,4-dioxano em ambos os casos. Além dos resultados das interaçōes contabilizadas, é apresentada uma comparação estrutural dos resultados de dinâmica molecular que utiliza um método proposto pelo autor para este tipo de comparação. O procedimento consiste em avaliar a distribuição atômica em relação aos eixos coordenados definidos pela própria caixa de simulação, considerando-se as distâncias atômica em relação à origem da caixa. A vantagem do método, além de sua simplicidade é a comparação direta das estruturas por superposição dos gráficos e análise visual imediata dos resultados. As dinâmicas foram realizadas no ensemble TPN, em temperaturas de 300 K , com condições periódicas de contorno. O método de atribuição de cargats utilizado foi $Q$-Equilibrate. Os pontos da trajetória foram armazenados a cada 100 passos de um femtosegundo, sendo o tempo total das dinâmicas de cerca de 200 picosegundos. Foram comparadas duas estequiometrias para o sistema do hospedeiro contendo o átomo de silício, sendo uma correspondente à estequiometria do clatrato obtido com este sistema e a estequiometria correspondente ao clatrato formado pelo sistema com átomo de carbono. Os resultados mostraram que as estruturas dos mínimos de energia do sistema contendo o átomo de carbono apesar de coincidentes estruturalmente, indicando a formação do clatrato, não apresentaram a isotropia molecular esperada para o composto de inclusão. İsto pode ser devido ao fato de que a intensidade da ligação hidrogênio parece exigir um número maior de moléculas no sistema para reduzir os efeitos de simetria impostas pelas condições periódicas de contorno para reproduzir os dados experimentais. Os resultados para o sistema com silício foram bastante satisfatórios, apresentando coincidência estrutural das conformações dos mínimos de energia somente para a estequiometria experimental reportada para o clatrato, que é de 4:1. A isotropia molecular obtida é coerente com o esperado. O método proposto para análise estrutural tornou evidente vários aspectos observados no sistema tridimensional, facilitando a visualização e a interpretação dos resultados, auxiliando também na elucidação de questōes sobre a simetria das configurações obtidas e da comparação direta e rápida das posições e orientações moleculares obtidas Os resultados mostram que o método de modelagem de clatratos é válido para sistemas com formação de ligação hidrogênio, bastando averiguar a otimização dos parâmetros do campo de força e da atribuição de cargas. Além disto, expande o potencial para compostos orgânicos contendo silício, o que aumenta substancialmente o interesse no método. (Consórcio Nacional de Pesquisa e Desenvolvimento de Café).
(1) Carvalho, M. S.; "Modelagem da formação de clatratos"; Tese de Doutorado; UFRJ; 2000.
(2) Bourne et al.; J. Chem. Soc. Perkin Trans. 2; p.1707; 1991

## INTERAÇÕES ENTRE MEMBRANAS

Augusto-Agostinho Neto ${ }^{1}(\mathrm{PQ})$, Elso Drigo Filho ${ }^{1}(\mathrm{PO})$
augusto@df.ibilce.unesp.br 1 Departamento de Física. Instituto de Biociências, Letras e Ciências Exatas: Julio de Mesquita Filho, campus de São José do Rio Preto-SP.
Palavras-chave: membranas interagentes, pressão osmótica, campo médio.

A força por unidade de área entre duas membranas planas e paralelas imersas em um dielétrico continuo de permissividade $\varepsilon$ separadas por uma distância $L$, e confinando contra íons dissociados de uma ou de ambas as membranas é analisada em função das densidades superficiais de carga efetivas nas membranas.

A integração da equação de Poisson-Boltzmann permite concluir que as contribuições da transferência de momento linear e da interação eletrostática (densidades de cargas) conduzem a uma força entre as membranas que pode ser repulsiva, nula ou atrativa dependendo dos valores das densidades de carga nas superfícies.

O modelo prevê a existência de um valor limite para a pressão osmótica que independe das densidades superficiais de carga. Este resultado é interpretado como "condensação" de contra íons nas vizinhanças das membranas. (FAPESP Processo № 98/10066-7).

# OXIDAÇÃO MEDIADA POR PEROXOS METÁLICOS VIA TEORIA DE CATÁSTROFE E FUNÇÃO DE LOCALIZAÇÃO ELETRÔNICA 

Fabrício R. Sensato ${ }^{1}$ (PQ), Rogério Custodio ${ }^{1}(P Q)$, Slawomir Berski ${ }^{2}$ (PQ), Vicent S. Safont ${ }^{3}$ (PQ), Juan Andrés ${ }^{3}$ (PQ)<br>sensato@iqm.unicamp.br<br>1. Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13084-971, Campinas, Brasil.<br>2. Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Polônia<br>3. Departament de Ciencies Experimentals, Universitat Jaume I, Apartat 224, 12080, Espanha<br>Palavras-chave: Estado de transição, Teoria de Catástrofe , Função de Localização Eletrônica.

Usualmente, a descrição mecânico-quântica de uma reação química se baseia na determinação do perfil energético e da redistribuição da densidade eletrônica ao longo da coordenada de reação. Entretanto, a relação entre o perfil energético e a redistribuição da densidade eletrônica associada ao processo de formação/ruptura da ligação química no correspondente caminho de reação não é, habitualmente, conhecida.

Uma conveniente e quantitativa definição de ligação química se baseia na população de "basins de ligação" como estabelecida pela função de localização eletrônica (electron localization function, ELF) [1]. A análise de ELF é de natureza topológica e fornece um modelo matemático para a teoria de valência de Lewis desde que ELF partilha o espaço molecular em basins de atratores, definidos pelo campo do vetor gradiente da função de localização eletrônica. A função ELF, $\eta(\mathbf{r})$, depende de parâmetros, tais como coordenadas nucleares do sistema, seu estado eletrônico, etc., os quais constituem o espaço de controle \{ $[\square\}$. O sistema dinâmico do gradiente de ELF é caracterizado por seus pontos críticos na posição rc, o qual é o ponto em que $\nabla \eta \mathrm{rc} ;\{[\square\})=0$. Um fundamental conceito da teoria matemática de sistemas dinâmicos é a estabilidade estrutural. Um sistema dinâmico é estruturalmente estável se uma pequena perturbação do campo vetorial não altera os índices de seus pontos críticos. Ao longo de um caminho de reação, o sistema desenvolvese de uma região de estabilidade estrutural para outra, e esta evolução pode ser descrita em termos da teoria de catástrofes de René Thom. O uso conjunto de ELF e da teoria de catástrofe permite uma precisa descrição da evolução de uma ligação associada com uma reação química via teoria de evolução de ligação (bonding evolution theory, BET) [2].

Peroxos complexos de molibdênio, de fórmula $\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1}, \mathrm{~L}_{2}$ ( $\mathrm{L}_{1}$ e $\mathrm{L}_{2}$ são ligantes eletrodoadores), são robustos oxidantes para uma ampla gama de substratos como, por exemplo, alquenos, sulfetos e sulfóxidos. O conhecimento detalhado do mecanismo molecular de transferência de oxigênio mediada por tais complexos é importante para se estabelecer as condiçōes experimentais que garantam o controle sobre o processo.

Neste estudo, a teoria de catástrofe associada à análise topológica ELF foi utilizada para caracterizar a ligação química associada ao mecanismo de transferência de oxigênio de complexos peroxo de molibdênio às moléculas de etileno, dimetil sulfeto e dimetil sulfóxido para a formação dos correspondentes epóxido, sulfóxido e sulfona.

Os cálculos foram realizados em nível DFT/B3LYP como implementado no programa Gaussian98. Um conjunto de base (18s12p9d2f), desenvolvido com o Método da Coordenada Geradora, foi utilizado para descrever o átomo de molibdênio, enquanto o conjunto de base 6 $311+G(2 d f, 2 p)$ foi selecionado para os átomos de $H, C, O, P$ e . Caminhos de reação foram seguidos usando o método da coordenada de reação intrínseca (IRC) e a análise topológica de ELF foi realizada com os programas TopMod e SciAn.

Teoria de catástrofe associada à análise topológica de ELF revela que os estados de transição para as reações investigadas não estão associados a qualquer evento especial ao longo da coordenada intrínseca dos correspondentes caminhos de reação. Os tipos de catástrofes e seus correspondentes unfolding foram determinados para cada um destes processos. (Fapesp, Capes).
[1] B. Silvi, A. Savin, Nature 371 (1994) 683
[2] X. Krokidis, S. Noury, B. Silvi, J. Phys. Chem. 101 (1997) 7277

# ESTUDO TEÓRICO E COMPUTACIONAL DAS VIBRAÇÕES NORMAIS NO ESTADO SÓLIDO DO HIDRÓXIDO DE CÁLCIO 

Yoshivuki Hase (PQ)<br>hase@iqm.unicamp.br<br>Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, CEP 13084-971, Campinas, SP<br>Palavras-chave: vibrações no estado sólido, freqüências vibracionais, hidróxido de cálcio.

Os cálculos químicos quânticos ab initio da matriz Hessiana dos sistemas sólidos cristalinos em vetor de onda $\mathbf{k}=0$ estão sendo empregados, nos últimos anos, no desenvolvimento de campos de força cristalinos, nos estudos de modos normais internos e também externos, nas simulações de espectros vibracionais por infravermelho e Raman e, posteriormente, nas comparações e interpretações dos espectros experimentais. Com o objetivo de investigar o nível de aproximação dos cálculos e de escolher devidamente os conjuntos de funções de base, para a melhor reprodução qualitativa e/ou quantitativa dos dados espectrais experimentais e das constantes de força do campo cristalino, realizamos os cálculos empregando o programa CRYSTAL98.

Recentemente, estudamos as vibrações do estado sólido do hidróxido de magnésio, $\mathrm{Mg}(\mathrm{OH})_{2}$, através da espectrometria por infravermelho, dos efeitos isotópicos e dos cálculos Hartree-Fock periódicos. O hidróxido de cálcio, $\mathrm{Ca}(\mathrm{OH})_{2}$ tem a mesma estrutura cristalina do $\mathrm{Mg}(\mathrm{OH})_{2}$ ao cristalizar, o que permite uma comparação dos resultados obtidos, já que as bandas fundamentais de $\mathrm{Ca}(\mathrm{OH})_{2}$ e $\mathrm{Ca}(\mathrm{OD})_{2}$ são bem conhecidas experimentalmente. Os cálculos numéricos de energia do $\mathrm{Ca}(\mathrm{OH})_{2}$ em nível Hartree-Fock periódico foram feitos usando os potenciais ECP, como funções de caroço, e conjuntos de bases Gaussianas para as funções de valência. Para cada um dos modelos, denominados [Stuttgart]-31G e [Durand]-31G respectivamente, os parâmetros geométricos cristalinos e o expoente da função Gaussiana mais difusa foram otimizados. O uso das funções de polarização - uma função p nos átomos H e Ca e uma função d nos átomos O-foi também realizado. Gradientes e segundas derivadas em coordenadas Cartesianas foram calculados numericamente para deslocamentos de 0,01 Bohr dos átomos das suas posições de equilíbrio para as duas direções opostas, sobre os três eixos $x$, yez.

No caso de [Stuttgart]-31G, por exemplo, os expoentes mais difusos otimizados são: $\alpha_{4 s}(\mathrm{Ca})=0,200, \alpha_{2 s}(\mathrm{O})=0,198, \alpha_{2 \mathrm{p}}(\mathrm{O})=0,253$ e $\alpha_{1 \mathrm{~s}}(H)=0,110$, enquanto os parâmetros da rede cristalina encontrados pelo cálculo são: $a=3,662(3,589), c=5,0579(4,911), z(O)=$ $0,2354(0,2337), z(H)=0,4228(0,4256)$. Os valores entre parênteses são os experimentais por difração de nêutrons. O resultado das segundas derivadas mostra que o comportamento observado na matriz Hessiana é corretamente simétrico e fortalece as degenerescências manifestadas pela teoria de grupo, mantendo os mesmos valores nos elementos correspondentes aos movimentos equivalentes. Portanto, a partir desta matriz, o programa de análise de coordenadas normais NCT foi utilizado para executar os cálculos das freqüências vibracionais dos $\mathrm{Ca}(\mathrm{OH})_{2}$ e $\mathrm{Ca}(\mathrm{OD})_{2}$ e os modos normais no estado sólido mono-cristalino para o vetor de onda $\mathbf{k}=0$. As constantes de força relacionadas aos modos acústicos obtidas são exatamente zeros. Em relação às constantes de força definidas para as coordenadas Cartesianas de simetria, uma alta conformidade foi observada entre elementos principais calculados e os experimentais. As freqüências fundamentais foram calculadas com um desvio em torno de $10 \%$ para os dois compostos isotópicos, com a exceção do grande desvio calculado para os modos normais devido aos movimentos perpendiculares dos átomos de hidrogênio. Os deslocamentos das bandas causados pelas substituições isotópicas entre He D foram reproduzidos.(FAEP/UNICAMP)

# USO DO MÉTODO DE TOPLISS MODIFICADO PARA PREDIZER A ATIVIDADE INIBITÓRIA DA CICLOOXIGENASE TIPO 2 

Marcelo Lazzarotto (PG) ${ }^{1 *}$, Berenice da Silva Junkes (PQ) ${ }^{2}$, Vilma E. F. Heinzen $(P Q)^{1}$, Rosendo A. Yunes (PQ) ${ }^{1}$.

marcelo@cpact.embrapa.br

1. Departamento de Química, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, CEP: 88040-900.
2. Fundação do Meio Ambiente - FATMA, Rod. SC 401, Km 04, No 4240, Ed. Via Norte, Saco Grande II, Florianópolis, SC, 88032-000
Palavras-chave: Método modificado de Topliss, QSAR, ciclooxigenase
Recentemente ${ }^{1}$ mostramos a vantagem de usar o Método de Topliss Modificado (MTM). A meta do MTM é a orientação da síntese de análogos aplicando estratégias de otimização para minimizar custo e tempo. Os compostos a serem sintetizados no grupo de treinamento são um ponto inicial importante para racionalizar e dirigir uma síntese. Propomos a escolha de uma série inicial (sete substituintes) através de uma seleção teórica e empírica dos substituintes usando cinqüenta sistemas enzimáticos. ${ }^{2}$ Nosso objetivo é avaliar a predição da equação obtida com os substituintes selecionados para a correlação reduzida por o MTM, usando dados de potência de atividade de inibição da Ciclooxigenase tipo 2 (COX-2), ${ }^{3}$ e comparar com a predição usando a regressão múltipla, proposta por Hansch.

O trabalho foi desenvolvido usando uma série inicial de sete substituintes (4-CI, 3-OCH3, 4-CH $\mathrm{CH}_{3}$, $4-\mathrm{F}, 3-\mathrm{F}, \mathrm{H}$ e $4-\mathrm{OCH}_{3}$ ) para obtenção das equações reduzidas.

A equação 1 foi a melhor equação obtida usando o MTM.

$$
\left(\log 1 / I C_{50}\right)=-0,68 \times(\mathrm{MR}-\pi) 6,90
$$

$$
\begin{equation*}
N=7, s=0,0965, r^{2}=0,909, r^{2} \mathrm{cv}=0,539, r=0,953 \tag{Eq. 1}
\end{equation*}
$$

A melhor equação de Hansch (2) obtida foi com o uso de três variáveis: $\pi^{2}, \pi$ e Es.
$\log 1 / I C_{50}=-4,1205( \pm 0,9395) \pi^{2}+4,1947( \pm 0,7161) \pi+0,9432( \pm 0,1886) E_{s}+6,9514$ $( \pm 0,0882)$

Eq. 2
$N=7, s=0,1021, r^{2}=0,939, r^{2}{ }_{c v}=0,878$
Com as equações 1 e 2 foram calculados os valores das potências de atividade dos demais compostos descritos e correlacionados com os valores das atividades experimentais, Figura 1(a) e (b).

Figura 1 - Correlação das atividades experimentais dos compostos descritos com as atividades calculadas através das equações 1 e 2 , figuras (a) e (b) e os respectivos gráficos de erros residuais.


Estes resultados demonstram que o uso do MTM para esta série de compostos tem a capacidade preditiva melhor que a regressão múltipla de Hansch, além de ser mais simples. (Embrapa, CNPq).

[^3]
## P042

# APLICAÇÃO DO ÍNDICE SEMI-EMPÍRICO TOPOLÓGICO ( $\mathrm{I}_{E T}$ ) EM ESTUDOS DE OSAR DE ÁLCOOIS ALIFÁTICOS 

Berenice da S. Junkes (PQ) ${ }^{1 *}$, Marcelo Lazzarotto (PG) ${ }^{2}$, Rosendo A. Yunes $(P Q)^{2}$, Vilma E. F. Heinzen(PQ) ${ }^{2}$<br>berenice@qmc.ufsc.br<br>1.Fundação do Meio Ambiente - FATMA, Rodovia SC 401, Km 04, No. 4240, Ed. Via Norte, Saco<br>Grande II, Florianópolis, SC - 88032-000; 2.Universidade Federal de Santa Catarina, Departamento de Quimica, Campus Universitário, Trindade,Florianópolis, SC - 88040-900.<br>Palavras-chave: Descritor Topológico, Álcoois Alifáticos, QSAR.

Correlações Quantitativas entre Estrutura-Propriedade e Estrutura-Atividade (QSPR/QSAR) têm sido foco de diversas investigações com o intuito de prever propriedades físico-químicas e atividades biológicas de compostos orgânicos, bem como fornecer subsídios para obtenção de novos compostos que apresentem características de interesse. Recentemente, nosso grupo de pesquisa introduziu um descritor topológico denominado de Índice Semi-empírico Topológico (leT) para prever a retenção cromatográfica de diversos grupos de compostos orgânicos. ${ }^{1,2}$ Neste contexto, os álcoois constituem, por apresentarem propriedades biológicas de interesse, uma atraente classe de compostos orgânicos para o desenvolvimento de estudos de QSPR/QSAR. O modelo de QSPR gerado para álcoois alifáticos, empregando o $I_{E T}$, apresentou bons resultados. ${ }^{2}$ O principal objetivo do presente estudo é demonstrar e avaliar a aplicação do $\mathrm{I}_{\text {ET }}$ para prever atividades biológicas dos álcoois alifáticos em estudos de QSAR. As atividades biológicas selecionadas neste estudo foram: atividade narcótica sobre as larvas das cracas e toxicidade sobre tomates e aranhas dos álcoois. ${ }^{3}$ O Índice Semi-empírico Topológico pode ser calculado através da expressão ${ }^{2}$ :

$$
I_{E T}=\sum_{i}\left(C_{i}+\delta_{i}\right)
$$

Onde $\boldsymbol{C}_{\boldsymbol{i}}$ é o valor atribuído a cada átomo de carbono e/ou ao grupo funcional $\boldsymbol{i}$ da molécula e $\delta_{i}$ é a soma do logaritmo de cada átomo de carbono e/ou grupo funcional adjacente a i. A atividade narcótica dos álcoois sobre as larvas das cracas foi expressa em termos de valores de $p \mathrm{C}(p \mathrm{C}=\log (1 / \mathrm{C})$ ), sendo C a concentração molar que causa uma reposta biológica constante. Os valores da toxicidade dos 14 álcoois sobre tomates e aranhas testados foram expressas em termos de $p C\left(-\log L C_{50}\right)$ que representa a concentração letal requerida para atingir $50 \%$ de uma população teste. Os modelos de QSAR obtidos empregando o $I_{\text {ET }}$ e seus respectivos parâmetros estatísticos estão listados abaixo:

| Atividade | Equação de Regressão |  |
| :---: | :---: | :---: |
| $p C^{a}=0,0358+0,9762 I_{E T}$ | $N=14 ; r^{2}=0,976 ; S D=0,16 ; q^{2}=0,961$ |  |
| $p C^{b}$ | $=1,6839+0,3696$ | $I_{E T}$ |

a atividade narcótica sobre as larvas das cracas; ${ }^{5}$ toxicidade em aranhas; ${ }^{c}$ toxicidade em tomates.
Os resultados obtidos apresentaram boa qualidade estatística observando os valores do coeficiente de determinação ( $r^{2}$ ) e do desvio padrão (SD). Cabe salientar que, este é um estudo de QSAR univariado, uma vez que o $I_{E T}$ tem a função de dois ou mais descritores moleculares quando comparado a estudos tradicionais de QSAR.Conclui-se, portanto, que o $I_{\text {ET }}$ apresenta um elevado potencial de aplicação para previsão de atividades biológicas ou toxicidades, podendo ser considerado como um novo método de redução de descritores mínimos para construção do melhor modelo de regressão, revelando assim boas perspectivas para estudos futuros em QSAR. (CNPq).

[^4]
# ESTUDO TEÓRICO DE MISTURAS LÍQUIDAS DE DIOXXIDO DE CARBONO EM BENZENO E EXAFLUORBENZENO 

Raquel da S. Leviski ${ }^{1}$ (IC), Hubert K. Stassen<br>raquel@iq.ufgs.br<br>1. Grupo de Química Teórica, Departamento de Físico-Química, Instituto de Química, UFRGS.<br>Palavras-chave: dinâmica molecular, misturas líquidas, anel aromático.

No estudo de sistemas $\mathrm{CO}_{2}$-anel aromático avaliamos principalmente o comportamento das misturas $e$ as orientações espaciais relativas entre as moléculas. A obtenção de tais resultados se dá por cálculos computacionais com base na Dinâmica Molecular (DM). Sabe-se que a Mecânica Quântica fornece resultados mais condizentes com a realidade, mas se torna inviável pelo tamanho do sistema e conseqüente custo computacional.

Temos por princípio o estudo e comparação das misturas líquidas equimolares de $\mathrm{CO}_{2}$ com anéis aromáticos (benzeno $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ e hexafluorbenzeno $\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)$ ), suas propriedades estruturais e termodinâmicas.

Para traduzir as interações de VdW das moléculas fazemos uso do Potencial de Lennard-Jones (LJ). As interaçõos eletrostáticas devem ser consideradas como interações entre cargas, dipolos e quadruplos. Para $\mathrm{CO}_{2}$ e para benzeno cabe utilizar o momento quadrupolar, para $\mathrm{C}_{6} \mathrm{~F}_{6}$ usa-se cargas puntuais sobre os átomos de FeC . A fração molar do sistema simulado foi $0.5 \mathrm{CO}_{2}$ e 0.5 aromático (total de 500 moléculas no sistema). Os volumes molares aplicados foram $6.60265 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$ (para benzeno $+\mathrm{CO}_{2}$ ) e $7,93 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$ (para hexafluorbenzeno $+\mathrm{CO}_{2}$ ).

Foram obtidas, para ambos os sistemas, as funções de distribuição radial centro de massa - centro de massa ( $\mathrm{CM}-\mathrm{CM}$ ), sendo elas: aromático-aromático; aromático- $\mathrm{CO}_{2}$ e $\mathrm{CO}_{2}$ $\mathrm{CO}_{2}$. A partir da integral dessas funções é possível calcular as frações molares locais de cada sistema. Nesse ponto se observa que as misturas tem comportamento bastante diferente.

O parâmetro $x_{s}=x^{\prime}(A / A)+x^{\prime}(B / B)$ caracteriza o tipo de mistura, onde $x^{\prime}(A / A)$ e $x^{\prime}(B / B)$ são as frações molares locais $\mathrm{C}_{6} \mathrm{~F}_{6} / \mathrm{C}_{6} \mathrm{~F}_{6}$ ou $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}$ e $\mathrm{CO}_{2} / \mathrm{CO}_{2}$. Para o sistema contendo benzeno, $x_{s}$ calculado foi de 1.718 e para hexafluorbenzeno de 1.046. Quando $x_{s}$ é aproximadamente 1, a mistura tem comportamento praticamente ideal, as frações molares locais e total conferem. Se $x_{s}$ for menor ou maior que um, o sistema apresenta um compotamento com desvio da idealidade, no primeiro caso podemos inferir que o mecanismo da mistura é de caráter associativo (ou seja há formação de agregados); no segundo caso o mecanismo da mistura tem de caráter dissociativo.

Como o sistema contendo hexafluorbenzeno tem valor próximo de 1, a mistura é considerada ideal, mas para o benzeno o valor é bastante superior, o que nos permite aribuir ao sistema caráter dissociativo (ocorre separação de fases). As Funções de Correlação Angulares auxiliam o entendimento das orientaçõ̉es preferenciais entre as moléculas na fase líquida. O ângulo em questão é aquele formado entre os eixos de simetria de maior ordem de cada molécula ( $\mathrm{C}_{6}$ para $\mathrm{C}_{6} \mathrm{~F}_{6}$ e $\mathrm{C}_{6} \mathrm{H}_{6}$ e $\mathrm{C}_{\infty}$ para o $\mathrm{CO}_{2}$ ).

O ângulo preferencial de orientação entre as moléculas do benzeno e do hexafluor benzeno (entre os seus eixos $\mathrm{C}_{6}$ ) é de $0^{\circ}$ ou $180^{\circ}$. Para os dois sistemas as moléculas de CO2 se orientam a $0^{\circ}$ ou $180^{\circ}$, formando "feixes".

Observou-se, pelo cálculo das frações molares locais, um desvio da idealidade para o sistema dióxido de carbono - benzeno. Isso porque os dois sistemas em estudo tinham frações molares totais $0,5 \mathrm{CO}_{2}$ e $0,5\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right.$ ou $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)$ e as frações locais do sistema com benzeno destoam desses valores. Esse desvio representa o comportamento das misturas. Para o sistema $\mathrm{CO}_{2}+\mathrm{C}_{6} \mathrm{~F}_{6}$ o fator $\mathrm{x}_{s}$ mostra que ocorre uma mistura relativamente ideal, mas para $\mathrm{CO}_{2}+\mathrm{C}_{6} \mathrm{H}_{6}$ esse valor mostra separação de fases.

As orientações preferenciais entre as moléculas para distâncias curtas (sobrepostas umas às outras) são entendidas como um efeito de empacotamento, que foi verificado para todas as distribuições espaciais de moléculas do mesmo tipo (nos dois sistemas). (CNPq).

## P044

## MODELO DE CLUSTER PARA SUPERCONDUTORES 123

Antonio C.Pavão ${ }^{1}(P G)$ e lorge A int R.Rocha ${ }^{2}(P G)$<br>jamrrocha@yahoo.com.br<br>Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brasil<br>Palavras-chave: supercondutores 123, modelo de cluster, orbitais moleculares

Neste trabalho estudamos uma das características fundamentais dos supercondutores, a resistividade (quase) nula, através cálculos ab initio Hartree-Fock com a aproximação effective core potential (ECP). Usamos como modelo de cluster a estrutura da célula unitária do supercondutor YBCO 123 com parâmetros de rede determinados experimentalmente por difração de nêutrons. Para evitar defeitos do tipo "dangling bonds", os átomos de cobre nos limites do cluster saturados com hidrogênio. O cluster foi considerado diamagnético. Os cálculos foram realizados com o programa Gaussian 98 usando a base mínima lanl1mb. Usando a teoria dos orbitais de fronteira, espera-se que o gap de energia HOMO-LUMO neste modelo de cluster seja praticamente nulo.

| Estequiometria | Cluster | Gap(meV) |
| :---: | :---: | :---: |
| $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7,00}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{19} \mathrm{H}_{40}$ | 38 |
| $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7,00}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{19} \mathrm{H}_{40}$ | 78 |
| $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7,00}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{19} \mathrm{H}_{40}$ | 37 |
| $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6,95}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{19} \mathrm{H}_{40}$ | 58 |
| $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6,84}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{19} \mathrm{H}_{40}$ | 45 |
| $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6,7}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{19} \mathrm{H}_{40}$ | 34 |
| $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6,64}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{18} \mathrm{H}_{40}$ | 54 |
| $\mathrm{YBBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6,49}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{18} \mathrm{H}_{40}$ | 65 |
| $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6,45}$ | $\mathrm{YBa}_{2} \mathrm{Cu}_{16} \mathrm{O}_{18} \mathrm{H}_{40}$ | 65 |

Na Tabela ao lado mostramos os gaps HOMO-LUMO sob a influência da introdução de vacância(s) de oxigênio no(s) sítio(s) O(4). Os gaps calculados variam de 34 a 78 meV em várias estequiometrias. Considerando os limites experimentais obtidos por espectroscopia STS ( 25 a 30 meV ), absorção de infra-vermelho ( 65 meV ), espectroscopia ARPES e espalhamento inelástico de nêutrons ( 41 meV ), podemos afirmar que este modelo de cluster é bastante satisfatório para a descrição dos supercondutores do tipo 123. Também observamos que as distribuições de cargas atômicas nos átomos de Cu e O estão de acordo com as previsõ̃es da teoria da ressonância não-sincronizada de L. Pauling. (CNPq).

# BAND GAP-ENGHEERNGG FOR POLY(P-PHENYLENE) AND POLY(P-PHENYLENEVINYLENE) COPOLYMERS USING TIGHTBINDING APPROACH 

Ronaldo Giro ${ }^{1}$ * (PG), Marília Junqueira Caldas ${ }^{2}(P Q)$ and Douglas Soares Galvão ${ }^{1}$ (PQ)<br>giro@ifi.unicamp.br<br>${ }^{1}$ Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, C. P. 6165, CEP 13083970, Campinas - SP, Brazil, ${ }^{2}$ Instituto de Física, Universidade de São Paulo, CP 20516, São Paulo, SP, Brazil.<br>Palavras-chave: Gap engineering, poly(p-phenylene) and poly(p-phenylene vinylene) copolymers, Hückel simplified hamiltonian.

In recent years, semiconducting conjugated polymers have emerged as a highly promising class of materials for electronic and optical applications. In a relatively short period, great achievements have been accomplished by a truly multi-disciplinary community of chemists, physicists and materials science investigators. In special we can mention the pioneering discovery of conductivity in polyacetylene [1], the first detection of electroluminescence from poly(para-phenylene vinylene) (PPV) [2], and the first fabrication of a blue light-emitting device using poly (para-phenylene) (PPP) [3].

PPP is a good material to be used in optoelectronic devices, such as LEDs with blue light emission [3] while PPV can be used as an active medium for both electroluminescent and photovoltaic devices since high quality films can be easily made and it has a yellow-green photoluminescent band centered at 2.2 eV [2], just below the gap between $\pi$ and $\pi^{*}$ states which is about 2.5 eV [4].

The interest for PPP and PPV copolymers stems from the fact that these homopolymers present interesting optical and electronic properties, which allow a great variety of technological applications. Combining PPP with PPV we hope to obtain new structures with intermediate gap values from homopolymers ( 2.8 eV [5] and 2.5 eV [4] for PPP and PPV, respectively). We expect that varying the concentration of PPP and PPV units in a polymeric chain would change the eletroluminescence, in principle from yellow-green (PPV) to blue (PPP). For this study we use a Hückel Hamiltonian tight binding [6] coupled to the Negative Factor Counting (NFC) technique [7]. We have carried out a systematic search to determine the optimum relative concentrations for disordered binary polymeric alloys with pre-defined gap values. The NFC technique allows us to obtain the eigenvalues of large matrices without direct diagonalization, drastically reducing the required computational time. Once obtained binary alloys with specific gap values we used the semiempirical methods AM1/PM3 and ZINDO/S-Cl for geometrical and optical studies respectively. Our theoretical results show that is possible to obtain stable copolymers of PPP and PPV with intermediate gap values of their homopolymer parents. (FAPESP, CNPq, and IMMP/MCT).
[1] H. Shirakawa, C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).
[2] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347,539 (1990).
[3] G. Grem, G. Leditzky, B. Ulrich, G. Leising, Adv. Mater. 4, 36 (1992).
[4] R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughs, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121 (1999).
[5] H.S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, John Wiley \& Sons New York, Vol. 2, (1997) pag. 248.
[6] A. Streitwieser Jr., Molecular Orbital Theory, Wiley, New York, (1961).
[7] P. Dean, Proc. Roy. Soc. A254, 507 (1960); A259, 409, (1960);A260, 263 (1961); P. Dean, Rev. Mod. Phys. 44, 127 (1972).

# MOLECULAR DYNAMICS SIMULATIONS OF C 60 NANOBEARINGS 

Ronaldo Giro (PG), Sergio B. Legoas (PQ), Douglas S. Galvão (PQ)<br>giro@ifi.unicamp.br<br>Instituto de Física Gleb Wataghin, Unicamp, CP 6165, CEP 13081-970, Campinas-SP, Brazil<br>Palavras-chave: nanotribology, fullerene, graphite

Nanotribology has recently emerged as a new research field, focused on the understanding of tribological properties at molecular and atomic scale. With the coming of the nanotechnology era advances in the tribology field become crucial for the design and engineering of mechanical components at different scales. On the other hand, since their discovery, fullerene compounds (such as $\mathrm{C}_{60}$ ) have been recognized as promising solid lubricants. Fullerene have interesting tribological properties, with relatively low friction coefficient at high loads, and high thermal and chemical stability. Their highly symmetric molecular shape and high bulk modulus make fullerene materials promising soft solid lubricants.

Recently, using atomic force microscopy techniques, Miura et al. [Phys. Rev. Lett. 90, 055509 (2003)], have reported the experimental realization of a type of molecular bearing, using $\mathrm{C}_{60}$ molecules deposited on highly oriented pyrolytic graphite. They measured lateral forces of graphite flakes positioned on a $\mathrm{C}_{60}$ monolayer and observed an effective ultra-low friction regime under different axial loads. In order to explain this ultra-low friction regime, Miura et al. proposed a model based on stick-slip and rotational molecular motions. Their model assumes that the observed $A B$ stacking between a $C_{60}$ molecule and graphite would be preserved when a $\mathrm{C}_{60}$ monolayer is formed.

In the present work, we report molecular dynamics studies for these systems. We have used molecular dynamics techniques in the framework of classical mechanics, with standard force fields which include van der Waals, bond stretch, bond angle bend, and torsion rotation terms. Systems of thousands of atoms were considered, and impulse dynamics were applied in the microcanonical ensemble (constant number of particles, volume and total energy). The aim of our studies was to understand the dynamical process of the ultra-low friction regime between graphite flakes over a $\mathrm{C}_{60}$ monolayer in relative motion. Our results for the case of isolated $\mathrm{C}_{60}$ molecule on a graphite surface are in accordance with previous theoretical investigations. However, when a $\mathrm{C}_{60}$ monolayer is formed on a graphite surface, we observed that frustrated $A B$ stacking is the most stable arrangement between each $\mathrm{C}_{60}$ molecule and the graphite, in spite of the hexagonal symmetry of the $\mathrm{C}_{60}$ monolayer. In this process, we did not observe a stick-slip process for the $\mathrm{C}_{60}$ motion when a graphite flake is moved on a $\mathrm{C}_{60}$ monolayer, which had been proposed by Miura et al.. Our results show that the ultra-low friction regime can be explained by the decrease of the van der Waals interactions between the $\mathrm{C}_{60}$ monolayer and the graphite sheets. Our results also explain experimental features when different axial load regimes are considered in the experimental set-up. As the number of graphite planes is increased over a $\mathrm{C}_{60}$ monolayer, the axial load is largely absorbed by the graphite, leaving the $\mathrm{C}_{60}$ molecules region with no deformation. In this way, the friction force profiles will present little changes, as experimentally observed.

We have carried out molecular dynamics simulations of the tribological properties of $\mathrm{C}_{60}$ molecules deposited over graphite sheets. Our results explain the main experimental features reported by Miura et al. The ultra-low friction behavior of $\mathrm{C}_{60}$ molecules and graphite sheets can be explained due to the decreasing of the van der Waals interaction between them, as well as the straight line movement of the graphite flakes over $\mathrm{C}_{60}$ monolayer. (FAPESP, CNPq, IMMP/MCT).

# DFT STUDY OF THE ADSORPTION OF EORMALDEHYDE ON 

## $\mathrm{Pd}_{4}$ CLUSTERS.

José Walkimar de M. Carneiro ${ }^{1}$ (PQ) and Mauricio Tavares de M. Cruz ${ }^{2}$ (PG)<br>tavaresdemacedo@ig.com.br<br>${ }^{1}$ Departamento de Química Inorgânica, Universidade Federal Fluminense - UFF<br>${ }^{2}$ Pós-Graduação em Química Orgânica, Universidade Federal Fluminense - UFF, Palavras-chave: DFT, aldehyde, Pd clusters

Hydrogenation of carbon-oxygen double bond on a metallic catalyst surface is an important process, mainly in the production of specific stereoisomers of alcohol derivatives. In order to understand the mechanism for the estereodifferentiation one must know the adsorption mode of the carbonyl group over the metallic surface. Therefore we decided to study the adsorption of compounds containing carbonyl group over Pd surfaces, taking formaldehyde as a prototype. Two coordination modes for adsorption of aldehydes have been reported from experimental characterization techniques. In the first one, called $\eta 1$, the formaldehyde molecule stays up over the surface binding through the oxygen lone pair, while in the second mode, $\eta_{2}$, the binding involves both the carbon and the oxygen atoms, through the $\pi$ electrons. Semiempirical extended Hückel calculations showed that the $\eta_{2}$ adsorption form is the preferential one, with adsorption energy of $-31.8 \mathrm{kcal} / \mathrm{mol}$. HREEL experiments also showed the $\eta_{2}$ form as the most probable.

In this work we employed DFT (B3LYP) method to calculate different adsorption forms of formaldehyde on $\mathrm{Pd}_{4}$ (111) clusters in a tetrahedral arrangement. The LANL2DZ pseudopotential was used. The geometry of the metal cluster was fixed to that of the bulk metal with PdPd distances of $2.751 \AA$. The geometry of formaldehyde was fully optimized, according to the forms showed in figure 1.

Our results are shown in table 1.Geometry F is the most stable one, with adsorption energy of -11.12 $\mathrm{kcal} / \mathrm{mol}$. In this arrangement the $\pi$ electrons of formaldehyde are used to interact with two palladium atoms, with C-Pd and O-Pd distances of $2.17 \AA$ and $2.20 \AA$, respectively. This adsorption
 form agrees with experimental results ( $\eta_{2}$ adsorption form).

The total charge density over palladium atoms was found positive for both $E$ and F adsorption forms (table 1). This suggests that electron transfer occurs preferentially from the palladium cluster to the formaldehyde

| AdS |  | - |  | D | Hek |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{E}_{\text {ats }} \\ \mathrm{Kcal} / \mathrm{mol} \\ \hline \end{gathered}$ | + 3.56 | -1.45 | -7.50 | - 7.91 | -9.52 | -11.12 |
| Total charge on $\mathrm{Pd}_{4}$ | -0.025 | -0.069 | -0.056 | -0.064 | +0.069 | +0.117 | antiboding $\pi$ orbital. (CAPES, CNPq).

# ADSORPTION OF GOLD ON CARBON NANOTUBES 

José Carriio Faria (PG)*, Mariana R. C.arvalho (IC)*, Antônio J. R. da Silva (PQ)*, Edison Z. da Silva (PQ), and Adalberto. Fazzio $(P Q)^{*}$<br>e-mail carrio@ifuspor

Instituto de Física, USP, CP 66318, 05315-970, São Paulo - SP, BRAZIL<br>"Instituto de Fisica "Gleb Wataghin". UNICAMP, CP 6165, 13083-970, Campinas - SP, BRAZIL

## KEY WORDS: electronic structure, carbon nanotubes, gold.

Since the discovery by lijima [1] of carbon nanotubes (NTs), a new class of materials with reduced dimensionality has been introduced. Carbon NTs are, in principle, ideal templates for obtaining a variety of nanowire materials by simply depositing, for example, a metal on them. However, various metals when deposited on nanotubes form discrete clusters [2,3]. On the other hand, continuous nanowires of virtually any metal can be obtained by using Ti as a buffer layer. This shows that different metal atoms will have quite different interactions with NTs, which motivated us to study in detail the adsorption of Au on single walled carbon nanotubes (SWCN). All our results are based on ab initio total energy Density Functional Theory calculations within the generalized gradient approximation (GGA) for the exchangecorrelation potential. We have used the SIESTA code [4], which performs a fully selfconsistent calculation solving the Kohn-Sham equations. The core electrons are replaced by non-local, norm-conserving pseudopotentials, and the Kohn-Sham orbitals are expanded in a localized basis set of the Double-Zeta plus polarization quality. In particular, we have studied in great detail the interaction of a single gold atom and a dimer of Au atoms with a metallic $(6,6)$ SWCN. For the single gold atom, the lowest energy adsorption sites are on top of the C atoms (the DT site in Figs. 1 (a) and 1 (b)), with a binding energy of the order of 0.3 eV , and there is a maximum in the potential energy surface for adsorption of a single Au atom at the HC site of Fig. 1(a) (center of a hexagon in the tube wall).


Figure 1. a) Upper panel shows a top view of the $(6,6)$ SWNT, with the six $C$ atoms in one of the hexagons marked from C1 to C6. The lower panel shows schematically one of these hexagons with labeled adsorption sites; b) DT configuration; c) configuration of lowest energy for a Au dimer.
The energy difference between the DT site and the HC site is approximately 0.2 eV . The barriers to migrate between two DT sites along the C-C bonds are $\cong 0.05 \mathrm{eV}$ and $\cong 0.1 \mathrm{eV}$, through the BM2 and BM1 sites, respectively (see Fig. 1(a)). Therefore, at room temperature, we can conclude that the Au atoms will migrate quite easily along the C-C bonds. Results of Au diffusion based on the Kinetic Monte Carlo method will be presented. Finally, larger structures, like dimers, will also be discussed. In Fig. 1(c) we show the lowest energy dimer structure that we have found, with a binding energy approximately 0.6 eV . A detailed analysis of the electronic structure of the different systems discussed above will be presented.
[1] S. lijima, Nature (London) 354، 56 (1991).
[2] Y. Zhang and H. Dai, Appl. Phys. Lett. 77, 3015; 2000.
[3] Y. Zhang, N. W. Franklin, RR. J. Chen and H. Dai, Chem. Phys. Lett. 331, 35; 2000.
[4] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garcia and J. M. Soler, Phys. Stat. Sol. (b) 215, 809(1999).
(FAPESP, CNPq and CENAPAD-SP are acknowledged.)

# INVESTIGATING STRUCTURAL TRANSITION OF INTERMEDIATE SILICON CLUSTERS 

Luiz R. Marim ${ }^{1}$ (PG), Maurício R. Lemes ${ }^{2}$ (PQ) e Arnaido Dal Pino Jr. ${ }^{3}$ (PQ) marim@fis.ita.br<br>1 - Rua Antares 175, apto 307-C - São José dos Campos - São Paulo. 2 - Rua 4, 39 - Residencial São Francisco - Taubaté - São Paulo. 3- Rua João de Almeida Caldas, 123- Jacareí - São Paulo. Departamento de Física, Instituto Tecnológico de Aeronáutica

Palavras-chave: aglomerado de silício, otimização, energia total.

O método de otimização NAGA (Neural Network Assisted Genetic Algorithm), desenvolvido pelos autores [1], combina a grande capacidade de seleção das redes neurais com a eficiência do algoritmo genético na determinação do mínimo global de problemas de otimização que disponham de algum conhecimento prévio. O cálculo de energia total utilizado pelo NAGA foi o Tight-Binding, todavia esse pode ser facilmente substituído por qualquer outro, como, por exemplo, métodos ab-initio, sem perda de sua eficiência. O NAGA foi aplicado no estudo da seqüência de crescimento de aglomerados de $\mathrm{Si}_{\mathrm{n}}(10 \leq \mathrm{n} \leq 21)[2,3,4]$. Dados experimentais dão conta de que há uma coexistência entre sequâencias distintas, uma prolata e outra oblata. Nesse trabalho, investigamos as seqüências de $\mathrm{Si}_{n}(13 \leq \mathrm{n} \leq 21)$ das duas formas (prolata e oblata). Mostraremos que no caso do $\mathrm{Si}_{13}$ encontramos duas geometrias praticamente degeneradas, com energia de ligação ligeiramente maior da prolata. Para os casos do $\mathrm{Si}_{15}$ ao $\mathrm{Si}_{17}$, as energias das oblatas são particularmente competitivas com as das prolatas. Para os casos do $\mathrm{Si}_{17}$ ao $\mathrm{Si}_{21}$ a energia da prolata é claramente indicativa de um sistema mais ligado. (FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo)
[1] Application of Artificial Intelligence to Search Ground-State Geometry of Clusters LEMES, Maurício Ruv; MARIM, Luiz Roberto; PINO JR, Arnaldo Dal Physical Review A, v. 67, p. 33203-33210, 2003.
[2] Neural Network Assisted Genetic Algorithm Applied to Silicon Clusters MARIM, Luiz Roberto; LEMES, Maurício Ruv; PINO JR, Arnaldo Dal Physical Review A, v. 67, p. 33203-33210, 2003
[3] Geometry of Silicon Clusters Using Artificial Neural Networks LEMES, Maurício Ruv; MARIM, Luiz Roberto; PINO JR, Arnaldo Dal Materials Research, v. 5, p. 281-288, 2002
[4] Ground-State of Silicon Clusters by Neural Network Genetic Algorithm MARIM, Luiz Roberto; LEMES, Maurício Ruv; PINO JR, Arnaldo Dal Journal of Molecular Structure (THEOCHEM), aguardando publicação.

## P050

# USING ARTIFICIAL NEURAL NETWORKS TO SOLVE DENSITY FUNCTION MODE EOUATION 

Bruno Werneck ${ }^{1}$ (IC), Luiz R. Marim ${ }^{2}$ (PG), Maurício R. Lemes ${ }^{3}$ (PG) e Arnaldo Dal Pino Jr. ${ }^{4}$ (PQ)

1 - Pça Mchal Eduardo Gomes, 50 - São José dos Campos - São Paulo.
2 - Rua Antares 175, apto 307-C - São José dos Campos - São Paulo.
3-Rua 4, 39 - Residencial São Francisco- Taubaté - São Paulo. 4 - Rua João de Almeida Caldas, 123 - Jacareí - São Paulo. Departamento de Física, Instituto Tecnológico de Aeronáutica
Palavras-chave: neural network, density function theory, numerical methods.
Recentemente, foi testado um método baseado em redes neurais feed-forward (NN) para resolver as equações de Schrodinger em sistemas simples, como por exemplo o oscilador harmônico. Todavia, nas situações mais práticas, a função de onda é uma função complexa, testes são restritos a funções de onda reais e a sistemas de um elétron. Para se tornar uma ferramenta mais útil, esse método deve ser extendido a sistemas de muitos elétrons. Por outro lado, a Teoria do Funcional Densidade permite a substituição de uma função de onda complicada de n-eletrons e da equação de Schrodinger por uma densidade de elétrons muito mais simples e seu esquema de cálculo associado. Aqui, nós aplicamos o método NN para resolver a equação de Thomas-Fermi, devido ao cálculo mais simples baseado na teoria da densidade. Algoritmo Genético, uma estratégia de otimização global baseada na evolução biológica, é usada para treinar a rede. Apesar de mais aplicações e refinamento serem necessários, esse método fornece uma alternativa estável e geral para procedimentos padrões. (FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo)

# MODELAGEMIDO COMMPORTAMENTO REOLÓGICO DE SOLUÇÕES POLIMÉRICAS NÃO-NEWTONIANAS 

Raphael da C. Cruz ${ }^{1}$ (PG), Rosana J. Martins ${ }^{2}$ (PQ), Márcio J. E. de M. Cardoso ${ }^{1}$ (PQ), Oswaldo E. Barcia (PQ)<br>e-mail: rdccruz @iq.ufrj.br.<br>1 - Laboratório de Físico-Química de Líquidos e Eletroquímica, Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco A, sala 411, Cidade Universitária, CEP 21949-900, Rio de Janeiro, RJ, Brasil.<br>2 - Departamento de Físico-Química, Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n ${ }^{\circ}$, CEP 24020-150, Niterói, RJ, Brasil.<br>Palavras-chave: Reologia, Soluçōes Poliméricas, McMillan-Mayer

Neste trabalho foi desenvolvido um modelo para o cálculo da viscosidade dinâmica de soluções poliméricas não-newtonianas. O modelo baseia-se na teoria da velocidade absoluta de Eyring e colaboradores, e na teoria de soluções de McMillan-Mayer. O termo referente a energia de ativação molar de fluxo viscoso na teoria de Eyring foi considerada como sendo um potencial termodinâmico tipo McMillan-Mayer. Utilizou-se uma equação de estado para o cálculo da pressão osmótica (e.g. a equação de Soave-Redlich-Kwong) e, conseqüentemente, para o cálculo da energia livre tipo McMillan-Mayer molar em excesso da solução.

Desta forma, pôde-se escrever uma expressão para a viscosidade de uma solução polimérica, em função da tensão de cisalhamento, onde tem-se um termo que descreve a viscosidade de uma solução diluída e newtoniana, combinado com um segundo termo que descreve o desvio do comportamento newtoniano, e com um terceiro termo que representa o desvio da idealidade termodinâmica.

O modelo proposto possui quatro parâmetros ajustáveis. Destes quatro dois estão associados ao desvio do comportamento newtoniano para o escoamento da solução polimérica em questão, enquanto os outros dois estão associados ao desvio da idealidade termodinâmica - parâmetros da equação de estado.

Verificou-se que para sistemas de comportamento newtoniano o ajuste de dois parâmetros da equação de estado foi suficiente para a boa correlação do modelo proposto aos dados experimentais. Para sistemas de comportamento pseudoplástico os quatro parâmetros foram necessários, tanto na região de médias, como de altas tensões de cisalhamento. Os desvios em relação aos valores experimentais de viscosidade foram próximos ou inferiores ao erro experimental ( $10 \%$ ).

A dependência dos parâmetros do modelo com a tensão de cisalhamento mostrou-se ser constante para os sistemas considerados newtonianos. No caso de sistemas pseudoplásticos a altas tensões, os parâmetros pouco variaram em magnitude, sendo então utilizado um valor médio destes parâmetros. Na região de médias tensões a dependência dos parâmetros do modelo com a tensão de cisalhamento não apresentou um comportamento regular.

A dependência dos mesmos parâmetros com a temperatura não apresentou comportamento regular para nenhuma região investigada.

Ressalta-se que o modelo mostrou-se adequado para descrever a variação da viscosidade com a concentração da solução. (CAPES, CNPq, FJPF, FAPERJ, FINEP e FUJB).

# ESTUDO TEÓRICO DO EFEITO PIEZOELÉTRICO DA PEROVSKITA ( $\mathrm{BaTIO}_{3}$ ) 

Oswaldo Treu Filho (PQ) ${ }^{1}$, José Ciríaco Pinheiro ( PQ$)^{2}$, Rogério Toshiaki Kondo (PQ) ${ }^{3}$<br>ciriaco@ufpa.br<br>${ }^{1}$ Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brasil.<br>${ }^{2}$ Laboratório de Química Teórica e Computacional, Departamento de Química, Universidade Federal do Pará, PA, Amazônia, Brasil.<br>${ }^{3}$ Seção de Suporte, Centro de Informática de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil.<br>Palavras-chave: Conjuntos de bases Gaussianas, Método da CGHF, Perovskita ( $\mathrm{BaTiO}_{3}$ ).

Conjuntos de bases Gaussianas (24s14p, 30s19p14d e 33s21p14d para os átomos $\mathrm{O}\left({ }^{3} \mathrm{P}\right), \mathrm{Ti}\left({ }^{5} \mathrm{~S}\right)$ e $\mathrm{Ba}\left({ }^{5} \mathrm{~S}\right)$, respectivamente) são desenvolvidos com a estratégia do Método da Coordenada Geradora Hartree-Fock (CGHF). Os conjuntos de base são então contraídos para [6s4p], [10s5p4d] e [16s9p5d] para os átomos O, Ti e Ba, respectivamente, e usados em cálculos de energias orbitais e totais de fragmentos de ${ }^{1} \mathrm{TiO}_{3}{ }^{+2}$ e ${ }^{1} \mathrm{BaO}$ para avaliação de suas qualidades em estudos moleculares. Para o oxigênio, o conjunto de base [6s4p] é enriquecido com função de polarização d e usado, juntamente, com os conjuntos de base [10s5p4d] e [16s9p5d] para o estudo teórico do efeito piezoeléctrico da perovskita ( $\mathrm{BaTiO}_{3}$ ).

O fragmento $\left[\mathrm{BaTiO}_{3}\right]_{2}$ estudado é mostrado na Figura 1. O mesmo representa o sistema cristalino periódico-3D $\mathrm{BaTiO}_{3}$. O Ti encontra-se localizado no centro do octaedro envolvido por 6 átomos de O, dispostos no plano reticular (200) e 2 átomos de Ba arranjados no plano reticular (100).

Em nosso estudo, foi usada a seguinte estratégia: (i) Inicialmente, foi feita a otimização da geometria do fragmento $\left[\mathrm{BaTiO}_{3}\right]_{2}$ na simetria $\mathrm{C}_{\mathrm{s}}$ e estado eletrônico 1 A ; (ii) finalmente, com a geometria otimizada, segundo o descrito na Figura 1, foram realizados cálculos "single-point".

Na Figura 1 (la), (a) representa o fragmento $\left[\mathrm{BaTiO}_{3}\right]_{2}$ com os átomos de Ti fixos no espaço; (b) representa o fragmento com os átomos de Ti deslocados de $+0,005 \AA ̆$ no eixo de simetria X, enquanto os átomos de Ba e O são mantidos fixos; (c) representa o fragmento no qual os átomos de Ti são deslocados de $-0,005 \AA$ no eixo de simetria $X$ e os átomos de Ba e O são mantidos fixos.

A Figura 1 (lb) representa o fragmento $\left[\mathrm{BaTiO}_{3}\right]_{2}$ com os comprimentos de ligações $\mathrm{Ti}_{1}-\mathrm{O}_{1}, \mathrm{Ti}_{1}-\mathrm{O}_{6}$ e $\mathrm{Ti}_{2}-\mathrm{O}_{6}$ encurtados de $0,005 \breve{\mathrm{~A}}$.


Figura 1. Fragmento $\left[\mathrm{BaTiO}_{3}\right]_{2}$ estudado.
As propriedades de interesse foram momento dipolo, energia total e cargas atômicas totais e os cálculos foram feitos no nível RHF como implementado no programa Gaussian 98.

A análise dos resultados evidencia que as propriedades piezelétricas in $\mathrm{BaTiO}_{3}$ podem ser causadas por interaçães eletrostáticas. (CNPq/FAPESP/CENAPAD-SP).

## GERAÇÃO DE REPRESENTAÇÕES DA VARIÁVEL DISCRETA OTIMIZADAS PARA A SOLUÇÃO DE PROBLEMAS MULTIDIMENSIONAIS.

Lucas Resende Salviano (PG) (lucas@fis.unb.br), Joaquim José Soares Neto (PQ). Instituto de Física, Universidade de Brasilia.
Palavras-chave: representação da variável discreta, diagonal, otimizadas.
A grande maioria dos problemas estudados em mecânica quântica não pode ser resolvida analiticamente, daí a necessidade de utilizarmos métodos numéricos eficientes na resolução de tais problemas. Um método numérico bastante eficiente na resolução de alguns problemas mecânico quânticos, e que reduz consideravelmente o trabalho computacional, é o chamado Método da Representação da Variável Discreta (DVR - Discrete Variable Representation).

O objetivo deste trabalho é gerar numericamente funções do tipo DVR e aplicá-las no tratamento da dinâmica nuclear de alguns sistemas moleculares.

Foi desenvolvido um programa em linguagem Fortran 90 que, a partir de funções de base conhecidas, soluções do problema unidimensional de uma partícula numa caixa, escreve o Hamiltoniano de uma partícula sujeita à ação de um dado potencial,

$$
H=-\frac{1}{2 m} \frac{d}{d x^{2}}+V(x)
$$

calcúla os autovalores e autovetores desse Hamiltoniano, utiliza os autovetores encontrados como funções de base para escrever novamente a matriz de energia potencial e, finalmente, diagonaliza esta matriz, fornecendo os autovetores que a tornam diagonal.

$$
f_{i}(x)=w_{i} \sum_{j=1}^{N} g_{j}^{*}\left(x_{i}\right) g_{j}(x)
$$

Obtidas a partir de funções de base $g_{j}(x)$ conhecidas, as funções de base $f_{i}(x)$ que diagonalizam a matriz de energia potencial são chamadas de representações da variável discreta otimizadas.

No tratamento de problemas que envolvem a expansão da função de onda em funções de base conhecidas, é fundamental uma boa escolha do conjunto de funções de base. Do contrário, o problema pode se tornar intratável numericamente. As funções de base do tipo representação da variável discreta otimizadas reduzem consideravelmente o gasto computacional, daí a sua importância. Foram obtidas representações da variável discreta otimizadas para o potencial do oscilador harmônico e da molécula de $\mathrm{H}_{2}$. O método aqui utilizado foi estendido a problemas multidimensionais.

# THEORETICAL PHOTODETACHMENT AND PHOTOIONISATION VIBRATIONAL RESOLVED SPECTRA OF $\mathrm{NI}_{2}$ AND $\mathrm{NI}_{2}$ SPECTRA USING TDPT 

Freddy Fernandes Guimarães ${ }^{1}$ (PG) and Amary Cesar ${ }^{1}$ (PQ) freddy @ufmg.br<br>${ }^{1}$ Universidade Federal de Minas Gerais (UFMG) - Instituto de Ciências Exatas (ICEx) Departamento de Química. Av. Antônio Carlos 6627 - Pampulha - Belo Horizonte - Minas Gerais Brazil - Postal Code: 31270-901

Key-words: Metal dimer, Photoelectronic and Photodetachment spectra; Time-dependent Schrödinger equation.

Transition metal clusters have been studied in either ion or neutral states. These clusters can be obtained by laser vaporization techniques, which generate a set of clusters of different sizes. The size of the cluster, in general, is selected in a time-of-flight mass spectrometer. Using this technique it is possible to do some size selected spectroscopic experiments. Some of these experiments were reported for $\mathrm{Ni}_{2}$ and $\mathrm{Ni}_{2}$ dimers, where the photoelectronic and photodetachment spectra were obtained for both cases [1, 2]. The $\mathrm{Ni}_{2}$ spectra were obtained by a two-color photodissociation experiments. Therefore, these spectra have a high resolution, which makes easier the comparison between the experimental and theoretical results. For $\mathrm{Ni}_{2}$ a vibrational resolved spectrum was obtained where five excited electronic states, one more than the previous studies [3] on $\mathrm{Ni}_{2}$, could be assigned. A photodetachment spectrum for $\mathrm{Ni}_{2}$ was obtained, although displaying a fairly good quality. In the present work the theoretical vibrational resolved valence spectrum for $\mathrm{Ni}_{2} \leftarrow \mathrm{Ni}_{2}$ and $\mathrm{Ni}_{2} \leftarrow \mathrm{Ni}_{2}$ dimer are presented. The spectra analysis and comparisons between our results and earlier ones will be presented, as well as, the assignment of the electronic transitions.

The electronic vibrational bands were calculated by solving the time-dependent Schrödinger equation, where time-dependent perturbation theory (TDPT) and Franck-Condon analysis were applied to obtain the spectra. Morse potential has been used to model the ground and all excited electronic states. The Morse parameters, for each different electronic state, were taken from experimental results [1-4]. In order to obtain the spectra the eSPec program was used [5]. The eSPec program uses discretization of the coordinate space to solve the Schrödinger equation in the time space. This means that all the information is in the space of the time rather than in the energy space, where the photo-electronic spectrum is obtained. In spite of the information being in the energy space, it is possible to obtain the information in the energy space by a simple Fourier transformation.

The $\mathrm{Ni}_{2}$ spectrum was constructed for the transition of its ground state of the
 a complex spectrum with the assignment of the [09.86]9/2, [12.83]9/2, [13.07]9/2, [14.57]9/2 and [14.96] $9 / 3$ exited electronic states. The nomenclature used for excited state is in accord with that used in the experimental work [2, 3]. For the $\mathrm{Ni}_{2}$ only the X band [1] is computed rather than the whole spectrum. The X band corresponds to the $\mathrm{Ni}_{2}\left[3 \mathrm{~d}^{18}(\square \square)\left(4 \mathrm{~s} \square_{g}\right)^{2}(4 \mathrm{~s} \square)_{4}{ }^{1}\right]$ transition to the vibrational manifold of the ground electronic state of the neutral $\mathrm{Ni}_{2}\left[3 \mathrm{~d}^{18}(\square \square)(4 \mathrm{~s} \square \mathrm{~g})^{2}\right]$. The parameters entering in the Morse potential have been slightly modified, still keeping them within the range of the experimental error bars, in order to achieve better accordance between the theoretical and experimental results.

The theoretical $\mathrm{Ni}_{2}{ }^{-}$spectrum shows up to be in a good agreement with the experimental one. The computed and experimental photoionization spectrum of $\mathrm{Ni}_{2}$, on the other hand, does not display very good agreement for the intensity distribution for a few electronic transitions states what suggests that their spectroscopic parameters should be revised. (CNPq, CAPES, FAPEMIG).

# MD STUDY OF 1-BUTYL-3-METHYLIMIDAZOLIUM TETRAFLUOROBORATE IONIC LIQUID SOLVATION IN WATER 

Carlos Eduardo Resende Prado(PG), Luiz Carlos Gomide Freitas(PQ)<br>Universidade Federal de São Carlos, Rod. Washigton Luiz, Km 235. São Carlos, SP - Brazil.

Palavra-chave: Room-Temperature Ionic Liquid, Molecular Dynamic, Solvation
The 1 -butyl-3-methylimidazolium tetrafluoroborate, $\left[\mathrm{BMIM}^{+}\right]^{+}\left[\mathrm{BF}_{4}\right]$, belongs to a solvent class in accession, which it's known in chemistry universe as room-temperature ionic liquids. Ionic liquids are generally formed by large organic cations and small inorganic anions and their melting point are lower than 373 K . They show a great number of interesting physical and chemical properties like: they are non volatile and therefore may be used in high-vacuum systems cutting down many problems with containment; ionic liquids are generally solvated by organic and inorganic solvents; sometimes unusual combination of reagents are coexistent in the same phase. There are many discussions in the literature about the advantages of
 substituting the ordinary organic solvents by ionic liquids. Also, it's interesting to note the possibility of recycling this class of solvents without lowering their efficiency as a reaction media. The ionic liquids have shown in many reactions extensively catalytic action.

In this work a 10 ns molecular dynamic calculation was performed to simulate the solvation of one pair of $[\mathrm{BMIM}]^{+}\left[\mathrm{BF}_{4}\right]^{-}$in a cubic box filled with 1450 SPC water molecules. The initial equilibrium distances, angles and dihedrals of the solute were obtained with Hartree-Fock 6-31G(d) optimzation. The partial point charges over solute atoms were calculated with the

ChelpG methodology. The Lennard-Jones parameters were optimized to reproduce DFT B3LYP interaction energy obtained with 6-31G(d) basis set. All the calculations were performed using the GAUSSIAN 98 package.

The NPT simulation was performed with GROMACS 3.1.4 with a time step integration of 1 fs, temperature of 300 K and pressure of 1 atm. The radial distribution function shows a strong correlation between water's hydrogen and anion fluorine's similar to the ones observed for hydrogen bonded atoms; a weak correlation between the hydrogen atoms of imidazolium ring and water oxygen was observed. These data are shown on figure 1 . Diffusion coefficients of 1.54 x $10^{-9} \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$ and $1.37 \times 10^{-9} \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$ to cation and


Figure 2: msd to cation and anion anion respectively were obtained. These diffusion coefficients are similar to the ones for methanol and ethanol. It's interesting to note that in spite of anions being comparatively smaller than cations, they have also smaller diffusion coefficients. This property is in agreement with the results obtained for the mean square displacement, msd, of both ions, figure 2. The smaller anion diffusion coefficient could be attributed to the larger correlation between the water molecules and anion.
(CNPQ)

# PLANEJAMENTO TEÓRICO DE COMPOSTOS ORGANOMETÁLICOS PARA A POLIMERIZAÇÃO DE OLEFINAS: PSEUDOMETALOCENOS DE Fe, Ti, Zr. 

Ênio Dikran V. Bruce (IC), Willian R. Rocha (PQ)<br>eniobruce@hotmail.com<br>Departamento de Quimica Fundamental, CCEN<br>Universidade Federal e Pernambuco(UFPE)<br>Cidade Universitária, Recife, PE, 50670-901, Brasil.<br>Palavras-chave: Pseudometalocenos, Catálise Homogênea, DFT.

Dentre os compostos organometálicos, homogêneos, mais utilizados na polimerização de olefinas se encontram os metalocenos de titânio $\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / \mathrm{AlR}_{2} \mathrm{Cl}, \mathrm{Cp}=\eta^{5}\right.$ Ciclopentadienila, $R=$ Alquil), descrito por Breslow e Natta em 1955 e os metalocenos de zircônio ( $\left.\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{AlMe}_{3}\right)$, descritos por Kaminsky e Sinn em 1980. Recentemente divulgamos a síntese, caracterização e resultados de cálculos ab initio para uma nova classe de compostos heterocíclicos de cinco membros contendo P e As, chamados de arsadifosfóis (W. R. Rocha, L. W. M. Duarte, W. B. De Almeida, V. Caliman, J. Braz. Chem. Soc., 13, 597 (2002)). Este trabalho constitui a etapa inicial de um projeto que visa o planejamento a priori de compostos organometálicos para reações de polimerização de olefinas e ativação de ligações $\mathrm{C}-\mathrm{H}$ de alcanos. A idéia básica é investigarmos o efeito dos diferentes ligantes heterocíclicos sobre a reatividade e seletividade presentes em tais reações. Nesta primeira etapa a estrutura eletrônica e química de coordenação dos compostos do tipo $M(L)_{2}$ (onde $\mathrm{M}=\mathrm{Fe}, \mathrm{Zr}, \mathrm{Ti}$ e L representa os ligantes mostrados na figura abaixo) foram investigadas.
$\mathrm{L}=$

(Cp)

(2P)

(3P)

(2PAs1)

(2PAs2)

Cálculos DFT, utilizando o funcional híbrido B3LYP foram feitos, empregando potencial efetivo de caroço para os átomos metálicos e funções de base $6-31 \mathrm{G}(\mathrm{d})$ para os átomos dos ligantes. O efeito das funções de base de valência utilizadas para os átomos metálicos foi avaliado, onde conclui-se que o esquema de contração do tipo [441/2111/(N-1)1], onde $\mathrm{N}=5$ para Fe e Ti e 4 para o Zr , fornece os melhores resultados estruturais. Nossos resultados indicam que o modo de coordenação preferencial destes ligantes ao centro metálico, é do tipo $\eta^{5}$, isto é, através dos cinco átomos do anel heterocíclico e o $\Delta \mathrm{G}$ para a reação de deslocamento de ligante aumenta à medida que mais átomos pesados são inseridos no anel, como pode ser visto na tabela 1, para os compostos de Fe. O efeito dos diferentes ligantes sobre a natureza das interações Metal-Ligante foi avaliado utilizando combinação linear de fragmentos de orbitais (LCFO), e serão discutidos, bem como o efeito dos mesmos sobre o espectro eletrônico, vibracional e propriedades elétricas dos diferentes compostos formados. (CNPq, PIBIC-UFPE).

Tabela 1: Variação da energia livre para as reações de deslocamento de ligantes.

|  |  |  |  |
| :--- | :--- | :--- | :---: |
|  |  |  |  |
| $\mathrm{Fe}(\mathrm{Cp})_{2}+\mathrm{P}^{-}$ | $\rightarrow$ | $\mathrm{Fe}(\mathrm{Cp})(\mathrm{P})+\mathrm{Cp}^{-}$ | $\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$ |
| $\mathrm{Fe}(\mathrm{Cp})_{2}+2 \mathrm{P}^{-}$ | $\rightarrow$ | $\mathrm{Fe}(\mathrm{Cp})(2 \mathrm{P})+\mathrm{Cp}^{-}$ | 16,4 |
| $\mathrm{Fe}(\mathrm{Cp})_{2}+3 \mathrm{P}^{-}$ | $\rightarrow$ | $\mathrm{Fe}(\mathrm{Cp})(3 \mathrm{P})+\mathrm{Cp}^{-}$ | 28,8 |
| $\mathrm{Fe}(\mathrm{Cp})_{2}+2 \mathrm{PAs} 1^{-}$ | $\rightarrow$ | $\mathrm{Fe}(\mathrm{Cp})(2 \mathrm{PAs} 1)+\mathrm{Cp}^{-}$ | 37,6 |
| $\mathrm{Fe}(\mathrm{Cp})_{2}+2 \mathrm{PAs}^{-}$ | $\rightarrow$ | $\mathrm{Fe}(\mathrm{Cp})(2 \mathrm{PAs} 2)+\mathrm{Cp}^{-}$ | 35,5 |

# SHAULAÇÃO COMAPUTACIONAL DE DINÂHHEA MOLECULAR DE VIDROS OXIFLUORETOS 

Flávia de S. L. Borba* (IC) e Ricardo L. Longo (PQ)<br>borbinha10@yahoo.com.br<br>Departamento de Química Fundamental, Universidade Federal de Pernambuco<br>Palavras-chave: dinâmica molecular, difusão, vidros iônicos


#### Abstract

Vidros oxifluoretos são materiais importantes para aplicações em fotônica, pois além de apresentarem baixas temperaturas de transição podem conter nanopartículas ou filmes superficiais, cujas propriedades podem ser moduladas e exploradas tecnologicamente. A determinação da estrutura destes vidros e das propriedades dinâmicas, principalmente, transporte de massa (difusão) é importante para o desenvolvimento racional destes vidros. Particularmente, os vidros $\mathrm{Pb}-\mathrm{Ge}-\mathrm{F}-\mathrm{O}$ formam a matriz para nanopartículas de prata e, após tratamento térmico, filme fino de prata.

A simulação computacional de dinâmica molecular (DM) permite obter propriedades macroscópicas (termodinâmicas, de transporte, fator de estrutura, etc.) e microscópicas (estruturas, ligações, coordenação seletiva, etc.) a partir dos potenciais de interação entre as partículas, sendo a ferramenta mais apropriada para a determinação de propriedades de transporte. A principal propriedade estudada foi o coeficiente de difusão calculado de duas maneiras: 1 ) ajuste por mínimos quadrados da região linear dos deslocamentos quadráticos médios (MSD = Mean-Square Displacements) das partículas em função do tempo; ii) integração temporal da função de autocorrelação de velocidade (ACF = Time Autocorrelation Functions). Estes dois procedimentos devem fornecer os mesmos valores para o coeficiente de difusão no caso de longos tempos de simulação de sistemas equilibrados. O protocolo de simulação consistiu de: caixas cúbicas e condições periódicas de contorno, contendo os seguintes íons $57 \mathrm{Ge}^{4+}, 55 \mathrm{~Pb}^{2+}, 151 \mathrm{O}^{2-}$ e $36 \mathrm{~F}^{-}$e tamanho compatível com a densidade igual a $6,72 \mathrm{~g} / \mathrm{cm}^{3}$. O intervalo de tempo de integração foi de $0,01 \mathrm{ps}$ e o somatório de Ewald foi utilizado para calcular as interações Coulômbicas no sistema infinito. O potencial de interação entre as partículas foi: $v\left(r_{i}\right)=A_{i j} e^{-v_{v} r_{p} p_{0}}+\frac{z_{i} z_{i} z^{2}}{4 \pi \pi_{0} r_{j}}$, Parâmetros $A_{i j}(\mathrm{eV})$ e $\rho(\mathrm{A})$ entre parênteses.


|  | $O$ | $F$ | $G e$ | $P b$ |
| :--- | :---: | :---: | ---: | ---: |
| $O$ | $736,4(0,35)$ | $661,5(0,32)$ | $1.703,8(0,30)$ | $10.728,3(0,25)$ |
| F |  | $524,2(0,30)$ | $936,2(0,30)$ | $3.488,7(0,30)$ |
| Ge |  |  | $15.134,4(0,30)$ | $29.058,1(0,30)$ |
| Pb |  |  |  | $274.579,0(0,29)$ |

Partiu-se de uma distribuição aleatória dos íns numa temperatura inicial de 5000 K . O sistema foi resfriado ao longo de 22 equilibraçães de 2000 passos de integração usando o ensemble NpT, permitindo-se flutuações de 20 K na temperatura e tempo de relaxação igual a $0,04 \mathrm{ps}$, até a temperatura de 300 K . Após a equilibração, o ensemble NVE foi utilizado para a aquisição e estatística durante 10.000 passos de integração. O cálculo do coeficiente de difusão com a metodologia ACF mostrou-se insatisfatório, pois o tempo de correlação é muito longo e o número de passos não foi suficiente para fornecer uma integração adequada da função de auto-correlação. No cálculo do MSD a 1900 K , o maior coeficiente de difusão foi do $\mathrm{O}^{2-}=0,8 \times 10^{6} \mathrm{~nm}^{2} / \mathrm{ps}$, aproximadamente 1,3 vezes maior que o do $\mathrm{F}^{-}=0,6 \times 10^{6} \mathrm{~nm}^{2} / \mathrm{ps}$. Para os cátions, o $\mathrm{Ge}^{4+}$ apresentou um valor para o coeficiente de difusão ( $0,5 \times 10^{5} \mathrm{~nm}^{2} / \mathrm{ps}$ ) cerca de 10 vezes maior que o do $\mathrm{Pb}^{2+}\left(0,5 \times 10^{4} \mathrm{~nm}^{2} / \mathrm{ps}\right)$, podendo ser explicado pelos valores elevados dos parâmetros repulsivos $\left(A_{i j}\right)$ do chumbo quando comparados com os do germânio. Estudos da dependência do coeficiente de difusão com a temperatura estão em andamento, com o intuito de determinar a temperatura mais apropriada para realizar o tratamento térmico destes vidros.(PET-CAPES-MEC-SESu, CENAPAD-SP, FINEP, PADCT, RENAMI)

# DETERMINAÇÃO DA MUDANÇA DE ENERGIA POTENCIAL INTERMOLECULAR NA MISTURA $\left\{X\left(\mathrm{H}_{2} \mathrm{O}\right)+(1-\mathrm{X}) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right\}$ USANDO O MODELO DE VAN LAAR. 

Roberto P.G. Monteiro ${ }^{1}$ (PG); Luciano S. Virtuoso ${ }^{2}$ (PG); Luís H. M. Silva ${ }^{3}$ (PQ) e João P. Braga ${ }^{2}$ (PQ)<br>rpgm@cdtn.br<br>${ }^{1}$ Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN<br>Rua Prof. Mário Werneck $s / n . \stackrel{\varrho}{,}$, Campus da UFMG - Caixa postal 941 -30123-970 Belo HorizonteMG<br>${ }^{2}$ Departamento de Química - Universidade Federal de Minas Gerais - (31270-901) Belo HorizonteMG<br>${ }^{3}$ Departamento de Química - Universidade Federal de Viçosa - Viçosa -MG<br>Palavras-chave: energia potencial, van Laar, misturas líquidas.

O estudo de sistemas líquidos através da estimativa de propriedades termodinâmicas derivadas da mecânica estatística [1] é objeto de constante pesquisa, por um lado, visando conhecer os desvios do comportamento ideal e tentar interpretar resultados mais próximos possíveis da realidade experimental e por outro, validar modelos teóricos que mais se aproximam do comportamento real. Como conhecer o comportamento de misturas líquidas em condições elevadas de temperatura e pressão é de caráter relevante no setor industrial, muitos trabalhos vem sendo realizados nesta área[2].

Neste trabalho pesquisou-se o sistema líquido etanol-água para a determinação da mudança da energia potencial intermolecular, $\Delta u^{\circ}$, baseando-se em dados experimentais [3], obtidos para medidas calorimétricas do excesso de entalpia, $H^{e x}$, na mistura $\left\{x\left(\mathrm{H}_{2} \mathrm{O}\right)+(1-\right.$ x) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, onde $x$ é a fração molar da água, em temperaturas situadas no intervalo de $\mathrm{T}=398 \mathrm{~K}$ a $\mathrm{T}=548 \mathrm{~K}$ e pressão de 15 Mpa .

Como modelo teórico, utilizou-se para a determinação de $\Delta u^{0}$, a formulação de van Laar [4] e discutiu-se as suas limitações considerando-se o modelo de misturas aleatórias e de partículas de mesmo tamanho. Os resultados foram obtidos através da relação $\Delta u^{0}=\frac{H^{e x}}{x(1-x) N_{0}}$, da equação empírica de Wormald \& Lloyd[3], $H^{e x}(x)=4 x(1-x)\left\{a_{0}(1-2 x)+a_{2}(1-2 x)^{2}\right\}$, e de um tratamento mais geral envolvendo a dependência com a composição e a temperatura $H^{e x}(x, T)$, Figura 1.


Figura 1 - Excesso de entalpia em função de $x$ e $T$ (CNPq).
[1] Hill, T.L., An Introduction to Statistical Thermodynamics, Dover Publications,New York,C1986.
[2] Lee LS,Huang MY, Hsu HL., Journal of chemical and Engineering data, 44(3):528:531 1999.
[3] Wormald,C.J. \& Lloyd,M.J., J.Chem. Thermodynamics,28,615-626,1996.
[4] Praunitz,J.M., Molecular Thermodynamics of Fluid-Phase Equilibria, $2^{\text {nd }}$ edition, PrenticeHall,Englewood Cliffs, N.J.,c1986.

# HOODELAGEME ESTUDO ESPECTROSCÓPHCODO COMPLEXO $\left[E m(D P A)_{3}\right]^{3-}$ 

Patrícia P. Lima ${ }^{1}(P G)^{*}$, Gerd B. Rocha (PQ), Oscar L. Malta (PQ), Severino A. Júnior (PQ) omlm@ufpe.br<br>Universidade Federal de Pernambuco - CCEN - Departamento de Química Fundamental. Cidade Universitária - 50.670.901-Recife - PE - Brasil<br>Palavras-chave: Íons Lantanídeos, Espectroscopia, Modelo Sparkle.

O interesse em estudar complexos de íns lantanídeos com ligantes orgânicos vem aumentando nas últimas décadas, uma vez que esses complexos quando apresentam uma eficiência quântica elevada são considerados promissores dispositivos moleculares conversores de luz (DMCL). Este processo de conversão de luz, também conhecido como Efeito Antena, envolve absorção de radiação ultravioleta e emissão na região visível.

Neste trabalho foram sintetizados complexos de íons lantanídeos, $\left(\mathrm{Ln}^{3+}=\mathrm{Eu}^{3+}\right.$ e $\mathrm{Gd}^{3+}$ ), com o ligante DPA, ácido dipicolínico. Os complexos tiveram a formulação geral $\mathrm{Na}_{3}\left[\mathrm{Ln}(\mathrm{DPA})_{3} \cdot \mathrm{nH}_{2} \mathrm{O}\right.$, onde $\mathrm{n}=6$ e 9 , respectivamente. Para o complexo $\mathrm{Na}_{3}\left[\mathrm{Eu}(\mathrm{DPA})_{3} .6 \mathrm{H}_{2} \mathrm{O}\right.$ foi calculada a geometria do estado fundamental, considerando apenas o complexo $\left[\mathrm{Eu}(\mathrm{DPA})_{3}\right]^{3-}$, através do modelo SMLC III. Com a geometria do estado fundamental deste complexo foi possível calcular os níveis eletrônicos excitados singletos e tripletos, os quais foram utilizados para estudar possíveis mecanismos de transferência de energia. O rendimento quântico teórico (razão entre o números de fótons emitidos e o número de fótons absorvidos) foi calculado para o complexo $\left[\mathrm{Eu}(\mathrm{DPA})_{3}\right]^{3-}$ e comparado com o valor experimental. Os parâmetros de intensidades de Judd-Ofelt ( $\Omega_{\lambda}$ ) foram determinados experimentalmente a partir do espectro de emissão experimental do complexo $\mathrm{Na}_{3}\left[\mathrm{Eu}(\mathrm{DPA})_{3} .6 \mathrm{H}_{2} \mathrm{O}\right.$ (Figura), obtido em temperatura ambiente, e comparados com os valores teóricos.


O valor do rendimento quântico teórico para o complexo de $\mathrm{Eu}^{3+}$ foi de $46,5 \%$ e o experimental foi de $6,3 \%$. A divergência entre esses valores encontrados sugere fortemente a existência de um canal de supressão via uma banda de transferência de carga (BTC), a qual não foi levada em consideração em nossos cálculos. De acordo com a posição do estado tripleto de mais baixa energia do ligante DPA, observada no complexo de $\mathrm{Gd}^{3+}$, a transferência de energia se dá via mecanismo de troca, sendo predominantemente do estado tripleto para os níveis ${ }^{5} \mathrm{D}_{1}$ e ${ }^{5} \mathrm{D}_{0}$ do íon $E u^{3+}$.

Apesar da grande diferença entre os rendimentos experimental e calculado, este último teve um valor bem próximo do valor da eficiência quântica de emissão que foi de $47 \%$ para este complexo, o que também reforça a possibilidade de um canal de supressão via a BTC. (RENAMI, CNPq, IMMC, PROFIX, PRONEX).

# FOTOIONIZAÇÃO LIMIAR DO BUTADIENO E DO TETRACLORETO DE CARBONO 

Helder Couto ${ }^{1}$ (PQ), H. Rojas ${ }^{2}$ (PQ), Eduardo $N$ de Azevedo ${ }^{1}$ (PG), H. Silva ${ }^{1}$ (IC), Maria Cristina A. Lopes ${ }^{1 *}$ (PQ)<br>criss@fisica.ufjf.br.<br>1) Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora - MG, 36036-330, Brasil<br>2) Escuela de Fisica. Universidade Central de Venezuela, Venezuela<br>Palavras-chave: butadieno, CCl 4 , fotoionização

O estudo experimental da dinâmica de fotoionização de moléculas através da Espectroscopia de Fotoelétrons Limiares (Threshold Photoelectron Spectroscopy - TPES) fornece informações sobre mecanismos intramoleculares pelos quais energia e momento são trocados e redistribuídos entre os graus de liberdade internos de moléculas altamente excitados, ou seja, de mecanismos que determinam caminhos de decaimento a estados finais resultantes. Com o objetivo de esclarecer estes mecanismos fundamentais e produzir o desenvolvimento do entendimento geral qualitativo destes processos em moléculas poliatômicas, estamos iniciando um programa de estudos experimentais utilizando a TPES junto ao Laboratório nacional de Luz Síncrotron - (LNLS). Como primeira fase de nosso programa de pesquisa, aplicamos a TPES no estudo das moléculas 1,3-Butadieno e Tetracloreto de Carbono. Registramos para cada molécula espectros TPE cobrindo parcialmente a região de energia de ionização da camada de valência externa. O espectrômetro TPE implantado junto a linha de luz TGM foi ajustado para operar com poder de resolução ( $E / \Delta E$ ) de 375, definido principalmente pela resolução do feixe de fótons. Utilizamos fendas de entrada e saída do monocromador da linha TGM de $300 \mu \mathrm{~m}$. Como trabalhamos com moléculas grandes, com grande número de graus de liberdade, os espectros adquiridos apresentam, como característica geral, largas e intensas bandas provenientes de processos de ionização simples por rotas diretas e indiretas. As rotas indiretas envolvem a formação de estados neutros de Rydberg que decaem por autoinização. O espectro TPE do 1,3-Butadieno foi adquirido na região de energia de 12 a 26 eV em passos de 10 meV e apresenta quatro bandas intensas e largas com algumas estruturas sobrepostas as elas. No espectro do $\mathrm{CCl}_{4}$, cobrindo a região de 12 a 20 eV , verifica-se a formação de pelo menos sete estados iônicos. Na Tabela 1 apresentamos os potenciais de ionização registrados, sua atribuição, bem como a comparação com dados da literatura. (CNPq, CAPES).

Tab. 1: Potenciais de ionização da camada de valência registrados pela TPES do 1,3Butadieno e Tetracloreto de Carbono.

| Orbitais de valência do 1,3-Butadieno:$\left(4 b_{u}\right)^{2}\left(5 b_{u}\right)^{2}\left(5 a_{n}\right)^{2}\left(6 a_{k}\right)^{2}\left(6 b_{u}\right)^{2}\left(7 a_{q}\right)^{2}\left(1 a_{u}\right)^{2}\left(1 b_{q}\right)^{2}$ |  |  |  |  | Orbitais de valència do $\mathrm{CCl}_{4}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| estado | OM | Pl(eV) |  |  | estado | OM | Pl(eV) |  |  |
|  |  | Presente | Kimura ${ }^{1}$ | Holland ${ }^{2}$ |  |  | Presente | Kimura' | Basset ${ }^{3}$ |
| $B^{2} A_{q}$ | $7 a^{-1}$ | 12.21 | 12.24 | 12.2 | ${ }^{2} T_{1}$ | $2 t_{1}^{-1}$ | 11.69 | 11.64 |  |
| $C^{2} B_{u}$ | $6 b_{u}{ }^{-1}$ | 13.48 | 13.84 | 13.49 | ${ }^{2} \mathrm{~T}_{2}$ | $7 t_{2}{ }^{-1}$ | 12.51 | 12.62 | 12.51 |
| $D^{2} A_{g}$ | $6 a_{g}{ }^{-1}$ | 13.90 | 14.22 | 13.9 | ${ }^{2} E$ | $2 e^{-1}$ | 13.37 | 13.44 | 13.37 |
| $E^{2} A_{g}$ | $5 a_{g}{ }^{-7}$ | 15.60 | 15.98 | 15.3 | ${ }^{2} T_{2}$ | $6 t_{2}{ }^{-1}$ | 14.12 |  |  |
| $F^{2} B_{u}$ | $5 b_{u}{ }^{-1}$ | 16.17 | 16.47 | 15.8 |  |  | 14.67 |  |  |
| $G^{2} B_{u}$ | $4 b u^{-1}$ | 18.30 | 18.1 |  |  |  | 16.70 | 16.58 | 16.68 |
|  |  |  |  |  |  |  | 18.59 |  |  |

[^5]
# NHOLECULAR DYNAANHES SINULATION OF $\mathrm{H}_{2} \mathrm{O} / \mathrm{CCl}_{4}$ LIQUID/LIQUID INTERFACE 

Ney Henrique Moreira (PG )*, Munir Skaf (PQ )<br>ney@iqm.unicamp.br<br>Departamento de Físico-Química - Instituto de Química/UNICAMP<br>Campinas SP - Caixa Postal 6154 ZipCode : 13083-970<br>Molecular Dynamics simulation, liquid surfaces, water dynamics.

Because of their obvious implications to condensed phase chemistry and molecular biology, a molecular level understanding of interfacial phenomena has been subject of extensive scientific works in recent years. The inhomogeneous nature of these systems makes liquid/liquid interfaces an interesting reactant media, since the dynamic and structural behavior of molecules a the vicinity of interfaces can differ largely from that found in the bulk. At a molecular level, questions such as how thick and rough is the interface region become decisive for structural purposes. In addition to the development of new experimental techniques, have made it possible to extract useful information about these systems, Molecular Dynamics (MD) simulation arises as a powerful tool for the study of interfacial molecular level properties.

In this work, we report MD studies about the structural and dynamical properties on the water/carbon tetrachloride liquid/liquid interface at ambient conditions. From the analysis of the global structural features of this interface, like the particle density profile and probability distributions for the interface width and position, we can show that the interface is a smooth structure on molecular scales. with a thick overlap between both phases.

Particular structural features of water molecules was described in terms of site-site radial distribution functions and orientational probability distributions. The results show that the non isotropic electric field produces a preferential guide on water molecules at the surface that keep their dipoles parallel to interface plane, with one of the hydrogen atoms pointing obliquely to the organic phase.

Translational and reorientational dynamics of water molecules for separated regions from the interface are investigated through several quantities, and In all cases, the molecular motions at interface is "freer" than in the bulk, in consequence of the reduced number of hydrogen bonds that water molecules experiences at interface.

We have also computed approximated far-infrared spectra in bulk and surface regions, and the results are consistent with experimental data from Second Harmonic Generation studies in literature, pointing a little blue shift in IR spectra. (CNPq and FAPESP).

# SECÇÃO DE CHOQUE TOTAL ABSOLUTA DO 1,3-BUTADIENO NA REGIÃO DE ENERGIA DE 150 A 500 EV 

Joelma O. Mello (PG), Helen Silva (IC), Eliane S. Ladislau (IC), Helder Couto (PQ), Maria Cristina A. Lopes* (PQ)

criss@fisica.ufjf.br.<br>Depto de Física, Universidade Federal de Juiz de Fora, Juiz de Fora - MG, 36036-330, Brasil<br>Palavras-chave: Secção de Choque Total, butadieno, impacto de elétrons

Valores precisos de Secções de Choque Total Absolutas (SCTA) do espalhamento de elétrons por átomos e moléculas são reconhecidamente necessários em várias aplicações científicas e tecnológicas. Embora medidas de SCT tenham sido feitas no decorrer das últimas décadas para uma grande variedade alvos atômicos e moleculares, existe apenas um dado do butadieno na literatura, publicado recentemente (C. Szmytkowski and S. Kwitnewski, J. Phys. $B, 36$ (2003) 2129) e que cobre a região de energia até 370 eV . Neste trabalho reportamos pela primeira vez dados absolutos de SCT desta molécula cobrindo a região de energia de impacto até 500 eV . O 1,3 butadieno é um importante poluente atmosférico, considerado como um potencial agente carcinogênico. Por fazer parte da gasolina ele é liberado para a atmosfera no seu transporte, armazenamento e também na combustão incompleta em veículos automotores. Assim, a motivação do trabalho foi produzir dados fundamentais que contribuam para o entendimento das características desta molécula e para o desenvolvimento de novas tecnologias que modifiquem a gasolina. Valores absolutos de SCT do 1,3-butadieno foram obtidos em um aparelho de medidas construído em nosso laboratório, que aplica a técnica de transmissão linear. O aparelho é composto por um canhão de elétrons, uma célula gasosa, um sistema analisador composto por lentes eletrostáticas desaceleradoras e um Analisador Cilíndrico Dispersivo de $127^{\circ}$ (ACD $127^{\circ}$ ) e um coletor de Faraday. Os valores das SCT, $\sigma(E)$, para dada energia $E$, foram derivados pela medida das intensidades do feixe de elétrons transmitidos, com ( $I_{p}$ ) e sem ( $I_{0}$ ) o alvo gasoso na célula e aplicando a relação de LambertBeer: In $\left(l_{\rho} / l_{0}\right)=-(P L \sigma(E) / k T)$, onde $k$ é a constante de Boltzman, $L$ é o comprimento da região de interação, P a pressão absoluta e T a temperatura da amostra. A resolução em todas as medidas foi de $0,7 \mathrm{eV}$. Na Fig. 1 apresentamos um gráfico das SCTA do argônio comparado com dados da literatura, ilustrando a eficiência do aparelho construído. Na Fig. 2 apresentamos os dados de SCTA obtidos para o Butadieno na região de energia de 150 a 500 eV. (CNPq e CAPES e FAPEMIG).


Fig. 1 : Secção de Choque Total para o Argônio.


Fig.2: Seç̧ão de Choque Total do Budadieno

# FOTOELÉTRONS LIMIARES 

Maria Cristina A. Lopes ${ }^{*}(\mathrm{PQ})$, Helder Couto (PQ), Cleber D. Moreira (PG), Helen<br>Silva (IC), Eduardo N. de Azevedo (PG), Marcelo P. Gomes (PG)<br>criss@fisica.ufjf.br.<br>Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora - MG,36036-330, Brasil<br>Palavras-chave: TPES, fotoionização, Radiação Sincrotron

A utilização de luz sincrotrônica sintonizável na região do Ultra-Violeta de Vácuo, associada a Espectroscopia de Fotoelétrons Limiares (Threshold Photoelectron Spectroscopy - TPES) consiste em um importante avanço no estudo de estados iônicos de átomos e moléculas, pois oferece características importantes de alta sensibilidade e alta resolução em energia. Construímos um espectrômetro TPE em nosso laboratório na UFJF, que foi levado ao Laboratório nacional de Luz Síncrotron (LNLS) e instalado junto a linha de luz TGM. A concepção do espectrômetro foi essencialmente baseada na proposta de Hall e cols. [J. Meas. Sci. Tech. 3 (1992) 316], que consiste basicamente da fonte de luz UV sintonizável, uma fonte de gás efusivo e um analisador de energia de elétrons que aplica a técnica de campo penetrante. O feixe de fótons monocromatizado é entregue na região de interação através de um capilar de Pirex com diâmetro interno de 2 mm , com a ponta aterrada, a fim de prevenir efeitos de carga que afetam a eficiência de extração dos elétrons com energias próximas de zero. O analisador de fotoelétrons inclui elementos extratores, lentes eletrostáticas de entrada, um analisador eletrostático de campo dispersivo cilíndrico de $127^{\circ}$ e um multiplicador de elétrons de um único canal. Os elementos extratores submetidos a um potencial em torno de 100 V , produzem um campo eletrostático fraco na região de interação, que extrai e focaliza preferencialmente elétrons com energias próximas de zero na entrada do analisador. Alta resolução é obtida em função da queda muito rápida da eficiência de extração com o aumento da energia dos fotoelétrons. O analisador $127^{\circ}$ é utilizado para filtrar do feixe extraído os fotoelétrons com energias mais altas que são ejetados dentro do ângulo sólido de detecção. O feixe gasoso é formado por efusão através de uma agulha com diâmetro interno de $0,13 \mathrm{~mm}$, situada aproximadamente a 2 mm acima do feixe de fótons. A agulha fica submetida a um potencial a fim de melhorar a eficiência de detecção do analisador. A intensidade da fonte de luz é monitorada durante a aquisição dos espectros através de um fotodiodo de $\mathrm{Al}_{2} \mathrm{O}_{3}$, posicionado no eixo do feixe de fótons cerca de 25 cm distante da região de interação. A câmara de alto vácuo em que o analisador está instalado permanece aquecida a uma temperatura constante de aproximadamente $70^{\circ} \mathrm{C}$ durante todo experimento a fim de manter maior estabilidade do espectrômetro após a introdução de amostras gasosas e é mantida a uma pressão residual menor que $5 \times 10^{-7}$ mbar. Esta câmara foi revestida internamente com cinco camadas de $0,01 \mathrm{~cm}$ de mu-metal, reduzindo os campos magnéticos residuais na região de interação para valores inferiores a 2 mGauss.

O espectrômetro foi extensivamente testado, até atingirmos um excelente desempenho. Registramos na linha TGM espectros com uma resolução energética record já obtida nesta linha de luz, variando de 18 meV a 13 eV a 47 meV a 34 eV , o que corresponde a um poder de resolução igual a 716. Nos estudos da dependência do tamanho das fendas do monocromador com a resolução e intensidade do feixe produzido, verificou-se que ao se utilizar fendas de entrada e saída de 250 micro m , comparativamente às fendas de 100 micro m , a resolução cai por um fator de 1,8 , enquanto o sinal aumenta em 5,74 vezes. Utilizando-se fendas de 500 micro m , a resolução fica de fato prejudicada, pois cai por um fator de 1,56 , enquanto a intensidade aumenta incrivelmente por um fator de 13,31 . Estes dados indicam que em determinadas investigações, vale a pena utilizar fendas um pouco maiores, sem comprometer demasiadamente a resolução espectral, aumentando entretanto muito a taxa de formação de dado processo e minimizando o tempo necessário de coleta de dados para se atingir boa estatística. Esta foi a primeira vez que a TPES é aplicada em nosso país. (LNLS, CNPq e CAPES).

# DIMENSIONALIDADE E TRANSIÇÃO ESTRUTURAL NO COMPOSTO $\mathrm{Fe}_{3} \mathrm{O}_{2} \mathrm{BO}_{3}$ 

Maria Matos ${ }^{1}$ (PQ) e Anivaldo Xavier Souza ${ }^{2}$ (PQ)<br>mmatos @fis.puc-rio.br<br>${ }^{1}$ Departamento de Física, PUC-Rio, CP 38071, Gávea, Rio de Janeiro, RJ, CEP 22453-970, Brasil<br>${ }^{2}$ Ctur, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.<br>Palavras-chave: Ludwigita, Extended Húckel, Transição De Fase

Foi encontrada recentemente ${ }^{1}$ uma transição de fase estrutural na ludwigita $\mathrm{Fe}_{3} \mathrm{O}_{2} \mathrm{BO}_{3}$, na temperatura de 238 K , na qual a estrutura cristalina muda de Pbam (estrutura regular), acima de 238 K , para Pbnm (estrutura distorcida), abaixo de 238 K , esta, de simetria mais baixa. A ludwigita possui uma estrutura cristalina formada por planos corrugados $\mathrm{Fe}-\mathrm{O}$ na coordenação octaédrica, ligados por interações fortemente covalentes no grupo $\mathrm{BO}_{3}$. Nos planos há um grupo magneticamente ativo, responsável pelo variado comportamento magnético observado nesse material. Esse grupo consiste na tripla formada por três octaedros ligados por arestas, tendo um átomo de ferro em seus centros, nos sitios cristalinos 2 e 4, formando assim uma linha $\mathrm{Fe}(4)-\mathrm{Fe}(2)-\mathrm{Fe}(4)$, onde $\mathrm{Fe}(4)$ tem carga formal $3+$. A tripla 4-2-4 cresce ao longo da direção $c$ da célula unitária ortorrômbica da ludwigita, formando a tríade. A transição estrutural foi inicialmente explicada ${ }^{2}$, como sendo o resultado de uma instabilidade de Peierls no grupo ativo do composto. A previsão teórica foi feita através do modelo (1D) da fita regular de três pernas. Foi visto ${ }^{3}$, no entanto, que a instabilidade desaparece se levarmos em conta as distorções já existentes nas duas fases do material, respectivamente abaixo e acima da temperatura de transição. Neste trabalho investigamos a estabilidade das duas estruturas cristalinas, a fim de determinar que outras interações são capazes de explicar a estabilidade da estrutura distorcida em baixas temperaturas. Supomos o estado fundamental (spin zero) das estruturas cristalinas obtidas diretamente de resultados de raios $X$ e utilizamos o método Hückel estendido já utilizado nesse sistema ${ }^{4}$ com resultados bastante satisfatórios.

Consideramos diferentes modelos físicos para descrever o sistema, respectivamente, a tríade (1D), os planos corrugados (2D) e o cristal como um todo (3D). Através de cálculos nos três modelos físicos e levando em conta estequimetrias diversas ${ }^{4}$, foi possível desligar determinadas interações $\mathrm{Fe}-\mathrm{Fe}$, forma considerada conveniente para desenvolver o presente estudo. Verificou-se que a estrutura cristalina distorcida (em baixas temperaturas) é mais estável quando se considera o sistema formado pelo plano corrugado (2D) ou pelo sistema cristalino (3D). Para a tríade (1D), a forma cristalina mais estável é a forma regular. Esses resultados contrariam a hipótese de que a transição estrutural se deve a uma dimerização do tipo Peierls, devido a interações na tríade. Os cálculos deste trabalho indicam, por outro lado, a interação $\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$, fora da tríade, onde todos os átomos têm carga formal $2+$, como a responsável pela estabilidade da estrutura distorcida. Uma análise cuidadosa foi feita variandose o número de pontos especiais na zona de Brillouin a fim de obter-se convergência de energias totais por célula unitária.

Como conclusão deste trabalho, sugerimos que para compreender os mecanismos físicos envolvidos na transiçào estrutural observada para a ludwigita $\mathrm{Fe}_{3} \mathrm{O}_{2} \mathrm{BO}_{3}$, é necessário levar em conta interações fora do grupo magneticamente ativo do composto, especificamente o grupo 3-2-3, situado próximo à tríade 4-2-4.

1 - M. Mir et al., Phys. Rev. Letters, 87,147201 (2001)
2 - A. Latgé et al., Phys. Rev. B, 66, 094113 (2002)
3 - M. Matos e Anivaldo Xavier, a ser publicado
4 - M. Matos et al., J. Molecular Struct., (THEOCHEM) 539, 181 (2001)

# A STUDY OF ELETRONIC AND STRUCTURAL PROPERTIES OF THE [ $\mathrm{Co}(\mathrm{Tpy}-\mathrm{SH})_{2}$ ] 

Renato Borges Pontes (PG), Antônio J. R. da Silva (PQ), Adalberto Fazzio (PQ)<br>e-mail: pontes@if.usp.br

Instituto de Fisica da Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil

KEYWORDS: electronic structure, potential energy surface, organo metallics

A new trend in the science and technology of nanometer-scaled systems is the use of molecules as electronic components. Molecules containing a Co ion bonded to polypyridil ligands were studied by Park et al. [1], and they verified that these molecules may be used as transistors. The aim of this work is to determine and understand the electronic and structural properties of the molecule $\left[\mathrm{Co}(\mathrm{tpy}-\mathrm{SH})_{2}\right]$ where (tpy-SH) is $4^{\prime}$-(mercapto)- $2,2^{\prime}: 6^{\prime}, 2^{\prime}$-terpyridinyl. This study is an essential first step to understand the transport properties in this system.


Figure 1:a) Geometry of Tpy-SH, with the dihedral angles $\phi_{1}$ and $\phi_{2}$ shown in detail. b) Schematic picture of molecule $\mid \mathrm{Co}(\mathrm{t} \text { py-SH })_{2} \mid$

For this we have performed first-principles, total energy calculations, based on the density functional theory (DFT) with the generalized gradient approximation (GGA) for the exchangecorrelation potential. The electron-ion interaction is described using a norm-conserving pseudopotential of Troullier-Martins form. The Kohn-Sham orbitals were expanded in a atomcentered localized DZP basis set. We will present the potential energy surface for the molecule tpy-SH as a function of the dihedral angles of the pyridynil rings $\phi_{1}(N-C-C-N)$ and $\phi_{2}(N-C-C-N)$, (see Figure 1a). The angles $\phi_{1}$ and $\phi_{2}$ are measured from the reference configuration in Figure 1 a , and $\phi_{1}$ changes from $0^{\circ}$ to $180^{\circ}$, whereas $\phi_{2}$ changes from $0^{\circ}$ to $360^{\circ}$. For the gas phase isolated (Tpy-SH) molecule, the lowest energy configuration is found for $\phi_{1}$ and $\phi_{2}$ equal to $180^{\circ}$. However, when Co is bound to it, the configuration with $\phi_{1}=\phi_{2}=0^{\circ}$ becomes the ground state.

Again, for the isolated (Tpy-SH) molecule, the energy barrier to go from the $\phi_{1}=\phi_{2}=180^{\circ}$ to the $\phi_{1}=\phi_{2}=0^{0}$ is estimated to be 0.7 eV , and the energy difference between these two configurations is 0.5 eV . The binding energy of the Co atom to the (Tpy-SH) molecule is found to be 4.45 eV .
The next step was the study of the $\left[\mathrm{Co}(\mathrm{Tpy}-\mathrm{SH})_{2}\right]$ molecule. For the neutral system, we find an angle of approximateiy $96^{\circ}$ between the two (Tpy-SH) groups bound tho Co atom. The energy to separate the $\left[\mathrm{Co}(\mathrm{Tpy}-\mathrm{SH})_{2}\right]$ into $[\mathrm{Co}(\mathrm{Tpy}-\mathrm{SH})]+[\mathrm{Tpy}-\mathrm{SH}]$ is 1.92 eV . Similar results for different charge states will be presented, as well as a detailed analysis of the electronic structure. Moreover, results will also be shown for Fe and Ni .
[1] Park et. al., Nature, 417, 722-725 (2002).

## P066

## ELETRONIC AND STRUCTURAL PROPERTIES OF $\mathrm{C}_{59} S I$ ON A HYDROGENATED SI(100) SURFACE

Ivana Zanella(PG), Antônio J. R. da Silva (PQ), Adalberto Fazzio (PQ) ivana @ macbeth.if.usp.br<br>Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP, Brazil<br>Keywords: electronic structure, fullerenes, $\mathrm{Si}(100)$, adsortion

Since the discovery of $\mathrm{C}_{60}$ molecule, many experimental and theoretical efforts have been done to synthesize fullerene-based materials with specific physical and chemical properties. In particular, the synthesis of $\mathrm{C}_{59} \mathrm{Si}$ heterofullerenes has been reported. We propose the use of the Si atom in the $\mathrm{C}_{59} \mathrm{Si}$ molecule to form a strong bond to another Si atom in the $\mathrm{Si}(100)$. For this, we have performed $a b$ initio calculations based on the Density Functional Theory. We have considered a hydrogenated $\mathrm{Si}(100)$ surface, with one H per Si atom (dimerized surface). One of the H atoms was removed, and the $\mathrm{C}_{59} \mathrm{Si}$ molecule was placed close to the Si surface dangling bond. The final Si-Si bond distance is $2.37 \AA$, and the binding energy is 3.0 eV . We have also considered the energy balance of the following reaction: Hydrogenated Surface $+\mathrm{C}_{59} \mathrm{SiH} \rightarrow$ (Surface $\left.+\mathrm{C}_{59} \mathrm{Si}\right)+\mathrm{H}_{2}$. We find this overall reaction to be exothermic by 0.41 eV . A detailed analysis of the electronic structure of the different systems discussed above will be presented.

# MOCALC: NOVO SOFTWARE DE GERENCIAMENTO DE CÁLCULO MOLECULAR 

Daniela Bertolini Depizzol (IC), Marcia Helena Moreira Paiva (IC), Thiago Oliveira dos Santos (IC) e Anderson Coser Gaudio (PQ)<br>anderson@cce.ufes.br<br>Departamento de Física, Centro de Ciências Exatas, Universidade Federal do Espírito Santo - Av. Fernando Ferrari, s/n, Vitória, ES 29060-900.<br>Palavras-chave: software de gerenciamento, Gamess, Mopac.

O software de gerenciamento de cálculo molecular, denominado MoCalc, foi desenvolvido para facilitar as operações envolvidas nas etapas mais importantes do cálculo de orbital molecular ab initio e semiempírico. MoCalc é uma interface gráfica que gerencia a execução dos programas Gamess, Mopac, Rasmol e Babel. Seu código foi escrito em linguagem Visual Basic e é compatível com os sistemas operacionais Windows 95/98/NT4/ME/2000/XP. MoCalc é capaz de executar todas as operações típicas de um programa projetado para o ambiente Windows, tais como (a) criar, abrir e fechar arquivos, (b) configurar página, visualizar impressão e imprimir formatado, (c) desfazer, refazer, localizar e substituir, (d) configurar o ambiente de execução e (e) exibir ajuda on line em linguagem HTML. Em sua versão 1.0.0, MoCalc é capaz de executar as seguintes operações específicas (a) criar e abrir arquivos de entrada de Gamess e Mopac, (b) importar arquivos produzidos por Gamess e Mopac, (c) converter a geometria molecular entre coordenadas cartesianas, coordenadas internas e coordenadas do tipo Gaussian, (d) editar e validar as palavras-chave que controlam o cálculo executado por Gamess e Mopac, (e) visualizar a geometria molecular de entrada (Mopac) e de saída (Gamess e Mopac), (f) executar trabalhos (jobs) individuais ou em lotes (batch) e visualizar automaticamente os arquivos de saída obtidos, ( g ) extrair resultados numéricos dos arquivos de saída de Gamess e Mopac na forma de planilha, tais como, ordens de ligação, análise de valência, momento dipolar, cargas eletrônicas, energia, análise populacional, função de onda e distâncias interatômicas e (g) calcular índices de reatividade (superdeslocalizabilidades, densidade de orbitais de fronteira, etc.) e desvio médio quadrático entre as geometrias moleculares de entrada e saída. Todos os resultados gerados por MoCalc podem ser imediatamente transferidos para editores de texto e planilhas eletrônicas, o que facilita a análise posterior detalhada e a publicação dos resultados. Além disso, os resultados obtidos podem ser exportados para HTML, o que permite a exposição rápida na Internet. Quando vários arquivos de saída de Gamess e/ou Mopac estão carregados, MoCalc permite a execução de análise comparativa dos resultados, por meio de sua organização em planilhas. Também é possível gerar gráficos a partir dessas planilhas, o que facilita ainda mais a comparação. Futuras versões de MoCalc deverão incorporar um programa de mecânica e dinâmica molecular e um editor molecular.
MoCalc também deverá ser capaz de gerenciar a execução de trabalhos em máquinas remotas, que operam sob sistema Linux. MoCalc está disponível nos idiomas Português e Inglês. A página oficial do programa na Internet é http://tau.cce.ufes.br/ anderson/htm/mocalc .htm. (CNPq e PPGFIS-UFES)


# MP2 STUDY OF THE INTERACTION BETWEEN AMINES AND METHY PYRUVATE 

José W.M. Carneiro (PQ) ${ }^{1}$, Ceciliana S.B. Oliveira (PG) ${ }^{2}$, Fabio B. Passos (PQ) ${ }^{3}$, Donato A.G. Aranda (PQ) ${ }^{4}$, Paulo R.N. Souza (PG) ${ }^{4}$, Octávio C.V. Antunes (PQ) ${ }^{5}$ cecibraga@ hotmail.com<br>${ }^{1}$ Dept. de Química Inorgânica, Universidade Federal Fluminense - UFF ${ }^{2}$ Pós-Graduação<br>em Química Orgânica, Universidade Federal Fluminense - UFF,<br>${ }^{3}$ Dept. de Engenharia Química, Universidade Federal Fluminense - UFF<br>${ }^{4}$ Dept. de Engenharia Química, Universidade Federal do Rio de Janeiro - UFRJ<br>${ }^{5}$ Dept. de Química Inorgânica - Universidade Federal do Rio de Janeiro UFRJ

Keywords: pyruvate, cinchonidine, enantioselective hydrogenation
The increasing interest on asymmetric hydrogenation in heterogeneous catalysis has been stimulated by the highly stereospecific catalytic systems that have been developed in the last two decades. In order to accomplish the desired enantioselectivity, the reaction must be carried out in the presence of a chiral modifier.

Enantioselective hydrogenation of alpha-ketoesters over $\mathrm{Pt}_{\mathrm{t}} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst in the presence of cinchona modifiers has been reported with enantiomeric excess of over $97 \%$ with high conversions. No enantiodifferentiation is observed in the absence of the alkaloid. The interaction between cinchonidine (1) and methyl pyruvate (MP, 2) has been proposed as the key step leading to enantiodifferentiation in the enantioselective hydrogenation of alpha-ketoesters. As the main interaction involves only the basic quinuclidine ring, calculation with model compounds that mimics the behaviour of this system should give relevant information on the nature of the acid-base interaction thought to be present in this case. In the present work, we employ ab initio MP2(fc)/6$31 \mathrm{G}(\mathrm{d})$ and MP2(fc)/6-31G(d,p) methods to quantify the interaction between the model systems ammonia, trimethylamine and quinuclidine and the methyl pyruvate molecule. All calculations were done with the Gaussian 98W suite of molecular orbital program.

The amine molecules interact with MP in an orientation almost normal to the plane of MP. The nitrogen atom is almost equidistant from both carbonyl carbons, although always nearer to the carbonyl than to carboxyl carbon. The N-C distance is about 2.6-3.0 $\AA$. There is a small but steady reduction in the $\mathrm{N}-\mathrm{C}$ distance from ammonia, trimethylamine to quinuclidine, probably due to increased nucleophilic strenght of the amines. There is no significative difference in the N-C distances for the s-trans and s-cis conformers. This interaction is mainly due to orbital superposition between the lone pair of the amine and the antibonding $(\mathrm{C}=\mathrm{O})^{*}$ orbital, which is mainly centered on the carbon atom.

The interaction energy, corrected for BSSE, indicates that the donor-acceptor interaction in the case of ammonia is rather small, increasing significantly in the case of trimethylamine and quinuclidine, where the donor-acceptor interaction is almost $10 \mathrm{kcal}^{2} \mathrm{~mol}^{-1}$. The difference in the interaction energy for the two carbonyl carbons is worth to note. While the interaction with the keto group involves an energy about $9-10 \mathrm{kcal}^{-1} \mathrm{~mol}^{-1}$, the corresponding interaction with the ester carbonyl is only on the order of $3-4 \mathrm{kcal}_{\mathrm{c}} . \mathrm{mol}^{-1}$. This clearly reflects the higher eletrophilicity of the carbonyl carbon, as compared to the carboxyl one. Note that, although the total interaction energy is higher for the s-cis conformers, this does not reflect in stronger donor-acceptor interactions, which is essentially of the same magnitude for the both conformers. Therefore, this should be dependent mainly of the distance and orientations of the two species.

Based on these results, we concluded that the energy and the geometry of the modifiersubstrate complex, per se, are not enough to explain the observed enantioselectivity. In some way, the catalytic surface participates in the step leading to enantiodifferentiation. (CNPq).

cinchonidine (1)

methyl pyruvate (2)

# A GENERAL METHODOLOGY TO OPTIMIZE DAMPING FUNCTIONS TO ACCOUNT FOR CHARGE PENETRATION EFFECTS IN ELECTROSTATIC CALCULATIONS USING MULTICENTERED MULTIPOLAR EXPANSIONS 

Araken S. Werneck ${ }^{1}$ (PQ), Tarcísio M.R. Filho ${ }^{2}$ (PQ) and Laurent E. Dardenne ${ }^{3}(\mathrm{PQ})$ araken@ucb.br<br>1 Departamento de Física - Universidade Católica de Brasillia - UCB<br>2 Instítuto de Física - Universidade de Brasilia - UnB<br>3 Coordenação de Mecânica Computacional - Lab. Nacional de Computação Científica - LNCC<br>Keywords: Multicentered Multipolar Expansions, Damping Functions, Electrostatic Calculations

The use of multicentered multipolar expansions (MME) to compute molecular electrostatic properties has the advantage to be computationally faster than the exact ab initio procedure and can exhibit very satisfactory accuracy depending on the level of the multipolar expansion and the number of expansion points taken. However, at short distances (e.g., van der Waals distances) the accuracy of electrostatic properties calculated using the MME method decreases considerably due to charge penetration effects. A possible way to obtain more accurate molecular electrostatic properties using the MME method is to introduce distance dependent damping functions associated with each multipolar expansion center.

We developed a straightforward methodology to optimize exponential damping functions, $1.0-\exp \left(-\alpha_{i} r\right)$, to account for charge penetration effects when computing molecular electrostatic properties using the MME method. In this methodology for a particular molecular system the multicentered multipolar (up to octupoles) expansions are derived from ab initio Hartree-Fock/6-31G** wave functions considering the atomic positions and the middle of each chemical bond as expansion centers. The $\alpha_{i}$ damping function parameters are optimized to minimize the difference between the $a b$ initio and the MME electrostatic potential calculated in a set of concentric grid of points generated with the Connolly algorithm. A two step local fitting procedure is used to optimize the $\left\{\alpha_{i}\right\}$ set of parameters: (i) A first $\left\{\alpha_{i}\right\}$ set is generated using a fast iterative procedure where each $\alpha_{i}$ parameter is optimized using only the $a b$ initio and MME values for grid points distant $\leq 1.8 \AA$ from the respective expansion point. (ii) The first $\left\{\alpha_{i}\right\}$ set is used as starting point for a local minimization procedure using an adapted simplex algorithm to obtain a final set of optimized parameters. We tested two different ways to obtain distinct sets of optimized damping parameters. For the $\left\{\alpha_{i}\right\}^{\text {inner }}$ set we use the five inner concentric surfaces of grid points (constructed with the atomic vdW radii scaled by a factor ranging from 0.5 to 0.9 ). For the $\left\{\alpha_{i}\right\}^{v d W}$ set only points at the vdW molecular surface are used.

The corrected MME electrostatic potential, electric field intensity and direction are compared with the ab initio values in order to test the methodology. We investigate four small systems (methanol, ammonia, water and formamide) and the twenty amino acids. We also investigate the error in the calculation of the electrostatic interaction energy for four hydrogen bonded dimers (water-water; water-ammonia, water-formamide and methanol-methanol) at their equilibrium geometry using the Morokuma analysis as reference. For the electrostatic interaction energy the $\left\{\alpha_{i}\right\}^{\text {inner }}$ parameter set gives the best results with an average absolute difference of $0.357 \mathrm{Kcal} / \mathrm{mol}$ between the value obtained with the corrected MME method and the value obtained with the Morokuma analysis (an average error decrease of $72.2 \%$ relative to the error associated with the standard MME method). However, for the molecular electrostatic properties calculated at the vdW surface we obtained more accurate results using the $\left\{\alpha_{i}\right\}^{v \mathrm{vw}}$ parameter set. At the molecular vdW surface the corrected electrostatic potential and electric field show an average error decrease $>73 \%$ for the small systems and $>53 \%$ for the amino acids.

The methodology developed in this work can be a very useful tool to optimize electrostatic damping parameters even for relatively larger molecular systems. The $\left\{\alpha_{i}\right\}^{\text {inner }}$ parameter set is more appropriate for electrostatic interaction energy calculations using effective fragment models for modeling solvent effects in quantum mechanical calculations. The $\left\{\alpha_{i j}{ }^{v d W}\right.$ parameter set is more appropriate to be used in the calculation of molecular electrostatic properties of larger systems (e.g. protein macromolecules) by fragment reassociation methods. (FAPERJ, CNPq).

# ESTUDO TEÓRICO DA LACUNA DE ENERGIA E FENÔMENOS DE TRANSFERENCIA DE CARGA DO BITIOFENO 

Marcos A. De Oliveira ${ }^{1}(\mathrm{PQ})$, Hélio F. Dos Santos ${ }^{1}(\mathrm{PQ})$<br>oliveira@ netuno.qui.ufmg.br<br>${ }^{1}$ Núcleo de Estudos de Química Computacional (NEQC), Instituto de Ciências Exatas (ICe) do Departamento de Quimica da Universidade Federal de Juiz de Fora (UFJF).<br>Keywords: ZINDO-CI, CIS, Coupled-Cluster.

Em 2000 Sirakawa, Mac-Diarmid e Heeger foram agraciados com o prêmio Nobel de Química pela descoberta e desenvolvimento da Ciência dos polímeros condutores e inúmeras investigações experimentais e teóricas tem sido feitas com o objetivo de produzirem-se materiais com propriedades apropriadas.

O tiofeno é um excelente protótipo para o estudo de propriedades eletrônicas de semicondutores orgânicos, pois apresenta estabilidade ao ar e dispositivos com diversas funções práticas como diodos emissores de luz, transistores de efeito de campo já ocupam o mercado. Além disso, é sua molécula dimérica já apresenta comportamento de um sistema polimérico com relativamente poucos elétrons, o que permite cálculos sofisticados como a aproximação 'coupled cluster' e métodos perturbativos de alta ordem ou investigação sistemática utilizando métodos menos precisos o que foi nossa primeira tentativa. A variação da lacuna de energia no nível $\mathrm{ZINDO}-\mathrm{Cl} / / \mathrm{HF} / 6-31 \mathrm{G}^{*}$ com a variação do espaço ativo está representada abaixo, Figura 1. A curva foi ajustada como uma Gaussiana e mostra uma diminuição da lacuna de energia como função do aumento do espaço ativo.


Figura 1) Variação da lacuna de energia do Bitiofeno como função do espaço ativo,ZINDO-CI//HF/6$31 \mathrm{G}^{*}$.

Em seguida calculamos a lacuna utilizando a diferença de energia dos estados excitado e fundamental nos níveis MP2/6-31G*, MP3/6-31G*, MP4D/6-31G*, MP4DQ/6-31G* e CCD/6-31G* utilizando geometrias HF/6-31G* e MP2/6-31G* para o estado fundamental e $\mathrm{CIS} / 6-31 \mathrm{G}^{*}$ para o estado excitado. Os resultados preliminares mostram uma convergência dos valores da lacuna de energia e mapas de densidade eletrônica evidenciam não haver variação qualitativa da função de onda do sistema. Anteriormente utilizamos um procedimento do tipo $\triangle S C F$ aplicado ao estudo de cianotiofenos que apresentou valores bem próximos dos experimentais obtidos por voltametria cíclica ${ }^{1}$. No presente estudo pretendemos um maior rigor na determinação dos mecanismos envolvendo transições entre orbitais ocupados e virtuais.

1) International Journal of Quantum Chemistry, 90, 603-610, 2002.

## P071

# EXCITED DOUBLET AND QUARTET STATES OF SiP: A HIGH LEVEL THEORETICAL INVESTIGATION 

Levi Goncalves dos Santos (PG), Fernando R. Ornellas (PQ),<br>frornell@iq.usp.br<br>Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970, São Paulo, S.P.

In recent studies, we characterized the ground state ( $\mathrm{X}^{[\square}$ ) [1] and two excited states of ${ }^{\square}$ symmetry [2] of the radical SiP. In the first investigation, a very accurate multireference configuration interaction calculation was set up to definitely establish the relative order of the first two electronic states which had been a subject of discussion in previous studies [3], and in the second work, due to the small adiabatic excitation energy ( $470 \mathrm{~cm}^{\prime}$ ) between the two lowest states estimated in the first study, we described the next ${ }^{\square}$ state and proposed that transitions involving this state would be a promising path for the spectroscopic characterization of all three states. More recently, in a study by Jakubek et al. [4], the SiP radical was observed in the laboratory and the three lowest states characterized spectroscopically, thus verifying our predictions, and providing accurate laboratory data that can aid astrophysicists in the search of this species in interstellar/circumstellar gases. Since other silicon-containing diatomics like SiC , $\mathrm{SiN}, \mathrm{SiO}$, and SiS [5] had been observed in outer space, as well as the isoelectronic radical CP , and also the species PN, the possibility of observation of the SiP molecule has become a challenge since the cosmic abundance of Si and P atoms makes its formation very likely.

In this work, we extended the previous studies (CASSCF/MRCI/aug-cc-pVQZ) of SiP to include several electronic states of both doublet and quartet multiplicities that correlate with the first four dissociation channels. The potential energy curves give a global view of the manifold of possible electronic states and permit the identification of new possibilities of transitions to the ground state, as well as provide reliable data that can guide spectroscopists to make the first observation of quartet transitions. For selected states, dipole and transition moment functions, and transition probabilities and radiative lifetimes are also reported as well as an extensive set of spectroscopic constants. Among the new possibilities, a ${ }^{\square} \square$ state offers a very likely route for exploring transitions to excited vibrational states of both $X{ }^{[\square} \square$ and $A$ states. Spectroscopic data for selected states are shown in the table below. (CNPq, FAPESP, LCCA-USP).

| Adiabatic energies ( $T_{e}$, in $\mathrm{cm}^{\prime}$ ), equilibrium distances ( $\mathrm{R}_{\mathrm{e}}$, in u.a.) and vibrational and rotatio constants (in $\mathrm{cm}^{\prime}$ ) for selected states of SiP. Experimental values are given in italics [4] |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Estado | T。 | $\mathrm{R}_{\text {e }}$ | $\omega_{0}$ | $\omega_{0} \chi_{0}$ | $\omega_{3} y_{0}$ | $\mathrm{B}_{0}$ | $\alpha_{0}$ | $\gamma_{8}$ |
| $x^{2} \Pi$ | 0 | $\begin{aligned} & 3.947 \\ & 3.926 \end{aligned}$ | $\begin{aligned} & 612.5 \\ & 615.7 \end{aligned}$ | $\begin{aligned} & 2.888 \\ & 2.34 \end{aligned}$ | 0.022 | 0.2629 | 0.122E-02 | -0.350E-04 |
| $A^{2} \Sigma$ | 465395 | $\begin{aligned} & 3.777 \\ & 3.715 \end{aligned}$ | $\begin{aligned} & 6761 \\ & 680 \end{aligned}$ | $\begin{aligned} & 3804 \\ & 2.8 \end{aligned}$ | 0.066 | 0.2871 | 0.146E-02 | -0.229E-04 |
| $B^{2} \Pi$ | 19795 | 4.422 | 439.9 | 3.851 | 0.151 | 0.2095 | 0.155E-02 | -0.516E-04 |
| $C^{2} \Sigma$ | $\begin{aligned} & 2105921 \\ & 398 \end{aligned}$ | $\begin{aligned} & 4.035 \\ & 4.021 \end{aligned}$ | $\begin{aligned} & 464.1 \\ & 454.6 \end{aligned}$ | $\begin{aligned} & 3.465 \\ & 2.83 \end{aligned}$ | 0.062 | 0.2515 | 0.141E-02 | -0.757E-04 |
| $a^{4} \Sigma$ | 15432 | 4.141 | 510.2 | 7.405 | 0.254 | 0.2390 | 0.201E-02 | 0.138E-04 |
| $b^{4} \mathrm{II}$ | 15478 | 4.440 | 409.3 | 2.098 | 0.003 | 0.2078 | 0.153E-02 | 0.105E-04 |
| $c^{4} \Delta$ | 19987 | 4.149 | 491.0 | 3.716 | 0.042 | 0.2379 | $0.123 \mathrm{E}-02$ | -0.707E-04 |
| $\mathrm{d}^{4}{ }^{5}$ | 23326 | 4.165 | 474.8 | 4.136 | 0.093 | 0.2360 | 0.160E-02 | -0.407E-04 |

[1] F.R. Ornellas, C.M. Andreazza, A.A. de Almeida, Astrophys. J. 538 (2000) 675.
[2] F.R. Ornellas, Chem. Phys. Lett. 335 (2001) 420.
[3] P.J. Bruna, H. Dohmann, S. Peyerimhoff, Can. J. Phys. 62 (1984) 1508.
[4] Z.J. Jakubek, S.G. Nakhate, B. Simard, J. Chem. Phys. 116 (2002) 6513
[5] M.C. McCarthy, C.A. Gottlieb, P. Thaddeus, Mol. Phys. 101 (2003) 697.

# NANOPARTÍCULAS DE CdS - ESTUDO CINÉTICO E TERMODINÂMICO 

Patrícia M. A. de Farias ${ }^{1), 2)}(\mathrm{PQ})$, Beate S. Santos ${ }^{1), 3)}(\mathrm{PQ})$, Ricardo L. Longo ${ }^{1)}(\mathrm{PQ})$, Ricardo Ferreira ${ }^{1,2)}$ (PQ), Frederico D. de Menezes ${ }^{1)}(\mathrm{IC})$ e Carlos L. Cesar ${ }^{4)}$ pmaf@ufpe.br<br>1) Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife PE, Brazil;<br>2) Departmento de Biofísica, Universidade Federal de Pernambuco, Recife PE, Brazil; 3)<br>Departmento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife PE, Brazil;<br>4) Departmento de Eletrônica Quântica, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas SP, Brazil<br>Palavras-chave: Nanopartículas, Cinética, Nanotermodinâmica

Nanopartículas de semicondutores luminescentes tem atraído a atenção de muitos grupos de pesquisa, em especial nas últimas duas décadas. Parte deste crescente interesse, certamente deve-se a fato de que propriedades ópticas e elétricas podem ser sintonizadas de acordo com o tamanho das partículas. O Sulfeto de Cádmio (CdS) tem sido amplamente utilizado como um sistema modelo para o estudo do crescimento de cristais em diferentes domínios de tamanho. Estudos teóricos e experimentais têm demonstrado que algumas propriedades físico-químicas do CdS , tais como: comprimento de onda de emissão, gap de energia e ponto de ebulição variam consideravelmente de acordo com o tamanho das partículas obtidas. Num sistema de nanopartículas, grande parte dos átomos que as compõem, encontram-se na superfície das mesmas. Isso confere uma elevada energia livre, a qual não é compensada pela entropia dos átomos internos. Assim, os átomos superficiais desempenham importante papel na estabilidade das nanopartículas em questão. Entretanto, a investigação direta da superfície de estruturas de dimensões nanométricas, constitui-se numa tarefa experimentalmente difícil, já que as técnicas experimentais disponíveis, não fornecem dados como por exemplo: número e natureza de átomos que constituem as camadas superficiais das nanopartículas.

Aspectos energéticos e estruturais dos sistemas de nanopartículas de semicondutores continuam oferecendo um amplo espaço de investigação. Para o caso do CdS, bem como para outros semicondutores com os quais temos trabalhado, foram realizados cálculos de função de distribuição radial (RDF) para obtenção de parâmetros de superfície. Cálculos MM foram realizados para determinação da energia de partículas crescidas a partir de retículos cúbicos e/ou hexagonais de CdS, tendo sido obtidos valores bem diferenciados para os dois casos. Esses valores apresentam boa concordância com os obtidos através de cálculos cinéticos, que relacionam energia total(fator energético) e fator geométrico de forma (fator estrutural).

# MODELAGEA DE COMAPLEXOS MACROCICLICOS DE Gd(III) USADOS COMO AGENTES DE CONTRASTES EM MRI. 

Gustavo H. B. Araúio ${ }^{1}$ (IC) ${ }^{*}$, Cristiana Gonçalves Gameiro ${ }^{1}(\mathrm{PQ})$, Gerd Bruno Rocha ${ }^{1}(\mathrm{PQ})$, Severino Alves ${ }^{1}(\mathrm{PQ})$, Jean Dexseur ${ }^{2}(\mathrm{PQ})$.<br>gustavohba@yahoo.com.br<br>${ }^{1}$ Departamento de Química Fundamental, UFPE, 50670-901, Recife, PE, Brasil.<br>${ }^{2}$ Coordination and Radiochemistry, University of Liège, Sart Tilman B16, B-4000 Liège, Belgium. Palavras-Chaves: Magnetic Resonance Imaging, Complexos macrocíclicos de Gd(III), DFT.

Complexos macrocíclicos de Gd (III) são largamente empregados como agentes de contrastes na técnica de análise MRI (Magnetic Resonance Imaging). Através desta técnica podemos obter imagens detalhadas de tecidos humanos e desta forma é possível diagnosticar alterações resultantes de doenças. Esses compostos são substâncias paramagnéticas que possibilitam a intensificação da taxa de relaxação dos prótons da água no tecido analisado (relaxatividade). Podemos destacar vários fatores que afetam a relaxatividade: o número de moléculas de água coordenadas ao íon central, propriedades eletrônicas do íon lantanídeo, distância interatômica entre o íon lantanídeo e os prótons da água $\mathrm{R}_{\mathrm{Gd}-\mathrm{H}}$, tempo de correlação rotacional ( $t_{r}$ ) e etc.

Sabe-se que o mecanismo de relaxação dos prótons da água coordenada ao ion central possui uma dependência de $1 / r^{6}, r=R_{G d-H}$ (mecanismo dipolar). Sendo assim, o conhecimento exato desta distância pode ser uma ferramenta útil para o design de novos agentes de contrastes para MRI. Porém, experimentalmente, o que se obtém são apenas estimativas para estas distâncias, tanto quando se utiliza a técnica de raio-X, devido a incapacidade de se resolver os prótons da água, ou mesmo, a partir do ajuste de dados de relaxatividade, devido a contaminação pela relaxação dos prótons das moléculas de água localizadas além da primeira esfera de coordenação. Desta forma a investigação teórica das geometrias do estado fundamental para estes complexos macrocíclicos nos permite prever esta distância e a partir disto propor novos complexos para atuarem como bons agentes de contrastes em MRI.

Neste trabalho nós apresentamos novos complexos macrocíclicos de Gd(III) derivados de compostos já comercialmente utilizados. Para isso, calculamos as geometrias do estado fundamental dos complexos $[\mathrm{Gd}(\mathrm{PhenHDO} 3 \mathrm{~A})(\mathrm{H} 2 \mathrm{O})]^{-1},[\mathrm{Gd}(\mathrm{PhenEDTA})(\mathrm{H} 2 \mathrm{O})]^{-1}$ e $[\mathrm{Gd}(\mathrm{PhenDPTA})(\mathrm{H} 2 \mathrm{O})]^{-2}$ e comparamos os valores de $\mathrm{R}_{\mathrm{Gd}-4}$ para estes complexos com o valor para o complexo macrocíclico $\left[\mathrm{Gd}(\mathrm{DOTA})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-1}-{ }^{-1}$ DOTA $=$ ácido $1,4,7,10$ -tetraazaciclododecano-1,4,7,10-tetraacético -, $\mathrm{R}_{\mathrm{Gd}-\mathrm{H}}=2.72 \AA$. As geometrias do estado fundamental dos quatro complexos foram otimizadas sem nenhuma restrição de simetria, utilizando-se o funcional da densidade RB3LYP numa base formada pelo ECP MWB53 para o átomo de gadolínio e uma base 3-21G para os demais átomos. Este ECP, considera $46+4 f^{n}$ elétrons no caroço tratando explicitamente apenas onze elétrons.


Phen-EDTA


Phen-HDO3A


Phen-DTPA

Nossos resultados revelaram que nos complexos propostos a distância $\mathrm{R}_{\mathrm{Gd}-\mathrm{H}}$ é menor que no complexo $\left[\mathrm{Gd}(\mathrm{DOTA})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-1}$. Por exemplo, para o composto com o macrocíclico PhenHDO3A temos $\mathrm{R}_{\mathrm{Gd}-\mathrm{H}}=2.67 \mathrm{~A}$. Este resultado foi interpretado como sendo um indicativo de que este complexo possa ser mais eficiente como agente de contrastes empregado em análise de Magnetic Resonance Imaging. Neste momento, as sínteses dos compostos propostos neste trabalho estão em andamento. (Instituto do Milênio de Materiais Complexos, CNPq, Capes, Pronex, Cenapad/SP, Profix).

# TRANSFERÊNCIA DE ELÉTRONS NO PROCESSO DE ENOVELAMENTO DA POLIALANINA 

Antenor J. Parnaiba da Silva' (PG) , João Bosco P. da Silva ${ }^{1}(P Q)$, Alfredo Arnóbio S. da Garna ${ }^{1}$ (PQ)<br>* e-mail: parnaiba@dqf.ufpe.br<br>${ }^{1}$ Departamento de Quimica Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife (PE), 50740-540.

Palavras-Chaves: Funçōes de Green, Enovelamento de Peptideos, Ligações de Hidrogēnio.
Com o advento de um método de cálculo para elementos de matriz de interação eletrônica efetiva $\left(V_{D A}\right)$, o estudo teórico da contribuição eletrônica para processos de transferência de elétrons (TE), baseado no formalismo das funçöes de Green ${ }^{[11}$, tem ganho destaque na literatura, principalmente em estudos teóricos de condutância molecular ${ }^{[2]}$.

Neste trabalho, o processo de TE no enovelamento de polipeptideos foi investigado utilizando-se como sistema modelo a polialanina, i.e., um oligômero constituido por dez residuos de alanina. Apesar da TE neste oligopeptideo se dar de forma intramolecular, portanto, não permitindo, de forma simples, o cálculo da quantidade de elétrons transferida na formação das ligações de hidrogênio (ligações-H), recentemente, nosso grupo mostrou que o elemento de matriz da função de Green ( $G_{D A}$ ) se correlaciona com a quantidade de carga transferida na formação de ligações-H em sistemas lineares do tipo $\mathrm{C}_{n} \mathrm{NH}-\ldots \mathrm{NC}_{n} \mathrm{H}$ e $\mathrm{C}_{n} \mathrm{NH}-\ldots$ $\mathrm{C}_{n} \mathrm{NH}$, com $n=1$ e $3^{[3]}$.

Inicialmente a polialanina teve sua geometria otimizada pelo método AM1 na forma hélice-a. Em seguida, os valores dos ângulos diédricos ( 0 e e $\varphi$ ) desta estrutura foram sistematicamente transferidos para um mesmo oligômero, porém, arranjado na forma estendida, de maneira a simular um processo de enovelamento seqüencial.

Na forma de hélice- $\alpha$, a polialanina apresenta seis ligaçōes de hidrogênio. Cada par $\mathrm{C}=\mathrm{O}--\mathrm{H}-\mathrm{N}$ foi monitorado durante o processo de enovelamento através do cálculo dos elementos de matriz da Função de Green ( $G_{D A}$ ), sobre a matriz de Fock obtida pelo método AM1.

Na Figura 1, apresenta-se o gráfico do logaritmo do Goa versus os parâmetros do enovelamento. Desta figura, pode-se observar que na formação da primeira ligação-H (passo 8) ocorre um aumento da interação entre os grupos doador (par isolado do oxigênio na carbonila) e aceitador de elétrons (ligação N-H) da ordem de $10^{5}$ e assim permanecendo até o final do processo de enovelamento. É interessante notar que na formação das demais ligaçöes$H$, um aumento similar pode ser observado para os pares $\mathrm{C}=\mathrm{O}--\mathrm{H}-\mathrm{N}$ correspondentes. Finalmente, vale destacar que os últimos pares $\mathrm{C}=\mathrm{O} / \mathrm{H}-\mathrm{N}$ (por exemplo, LH6), revelam efeitos cooperativos nos seus valores de interação, devido às ligações-H já formadas (LH1, LH2, $L H 3, \ldots)$, mesmo antes da formação das respectivas ligações $-H$, as quais os pares pertencem.


Figura 1: Monitoramento de $G_{D A}$ para os pares $\mathrm{C}=\mathrm{O}--\mathrm{H}-\mathrm{N}$

Referências:
[1] A.A.S. da Gama, Theor. Chim. Acta 68, 159 (1985).
[2] V. Mujica, M. Kemp. M. A. Ratner, J. Chem. Phys 101, 6849 (1994).
[3] A. J. Parnaida-daSilva, J. B. P. da Silva, A. A. S. da Gama, M. N. Ramos, Chem. Phys.Lett. 362, 159 (2002).

# EFEITO DE MOLÉCULAS DO SOLVENTE NO CÁLCULO DE EFICIÊNCIA DE TRANSFERÊNCIA ELETRÔNICA INTRAMOLECULAR PARA PARANITROANILINA 

Antenor J. Parnaiba da Silva ${ }^{1}(P G)^{\circ}$, Willian R. Rocha ${ }^{1}(P Q)$, Alfredo Arnóbio S. da Gama ${ }^{1}(P Q)$ * e-mail: parnaiba@dqf.ufpe.br<br>${ }^{1}$ Departamento de Quimica Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife (PE), 50740-540.

Palavras-Chaves: Funçōes de Green, Monte Carlo, Transferência de Elétrons.
Com intuito de avaliar o efeito do solvente no processo de transferência de elétrons intramolecular, por meio de cálculos de interações efetivas ( $V_{D A}$ ), baseados no formalismo das funçōes de Green, é proposto, neste estudo, um modelo que permite considerar o efeito explicito de moléculas do solvente sobre a contribuiçāo eletrônica da constante de velocidade de transferência de elétrons para sistemas fracamente acoplados.

$$
k=\frac{2 \pi}{\hbar}\left|V_{n, 1}\right|^{2}(F . C .)
$$

onde, $\left|V_{D . A}\right|^{2}$ é a matriz de tunelamento eletrônico e (F.C.) é o fator de Franck-Condon.
Admitindo processos de transferência de elétrons a grandes distâncias, o fator eletrônico pode ser calculado como:

$$
V_{p, 1}=V_{n, 1} G_{1, v}(E) V_{v i}
$$

portanto, a constante de velocidade pode ser admitida como proporcional ao $V_{D A}$ e também ao elemento de matriz da função de Green ( $\left.G_{1, N}(E)\right)$.

Especificamente neste estudo, a eficiência de transferência de elétrons entre os sitios doador e receptor é calculada por meio do elemento de matriz $G_{D A}$ :

$$
G_{D, i}(E)=\frac{V_{D i}^{\text {lif }}(E)}{\left(E-E_{l,}^{c \cdot l}(E)\right) \cdot\left(E-E_{A}^{c / f}(E)\right)-V_{D .1}^{E / f}(E)^{2}}
$$

onde, $V_{D, I}^{E / f}(E)$ é a interaçäo efetiva entre os sitios doador e receptor de elétrons, $E_{d}^{\prime / f}(E)$ e $E_{l}^{c / l}(E)$ são, respectivamente, as energias corrigidas dos sitios receptor e doador de elétrons e, $E$ é a energia de tunelamento do sistema.

A metodologia adota neste estudo consiste de três partes, sendo a primeira destinada à otimização de geometria da molécula de paranitroanilina, onde utilizou-se a base $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ ao nivel MP2 para a molécula no estado gasoso. A segunda parte destinou-se à inclusão de moléculas do solvente através da simulação de Monte Carlo (MC) utilizando o algoritmo de Metropolis. As simulaçōes foram realizadas no ensemble canônico (NVT) com 300 moléculas de solvente (água), e o volume da caixa foi determinado pelo valor experimental da densidade da água para $T=298 \mathrm{~K}$. Por fim, a terceira parte destinou-se à realização dos cálculos de eficiência de transferência de elétrons para a molécula de paranitroanilina, em cada configuração não correlacionada obtida pela simulação de MC. Nesta terceira parte, devido à alta demanda computacional para os cálculos dos elementos de matriz da função de Green, ao nivel ab initio, considerou-se nestes cálculos, apenas as moléculas de água da primeira esfera de solvatação. Os cálculos dos elementos de matriz GA foram realizados empregando as bases $3-21 \mathrm{G}$ e $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ ao nivel HF .

Os resultados obtidos sugerem que as moléculas do solvente aumentam consideravelmente a eficiência de transferência de elétrons para a paranitroanilina [ $G_{D A}=0,502$ $E_{h}{ }^{-1}$ ao nivel HF/6-31G(d,p)], quando se compara com os resultados dos cálculos realizados para a paranitroanilina isolada e no estado gasoso $\left[G_{D A}=0,296 \mathrm{E}_{\mathrm{h}}{ }^{-1}\right.$ ao nivel HF/6-31G(d,p)].

# AN ACCURATE GAUSSIAN BASIS SET FOR $N_{2}$, BF, AND CO MOLECULES 

Antonio Canal Neto* (PG), Francisco E. Jorge (PQ), and Reinaldo Centoducatte (PQ). canal@cce.ufes.br

Departamento de Física, Universidade Federal do Espírito Santo, 29060-900 Vitória, ES, Brasil Palavras-chave: gaussian basis sets, molecular improved generator coordinate hartree-fock method, second-order electron correlation energies.

We have used the molecular improved generator coordinate Hartree-Fock (HF) method [1] to generate an accurate universal Gaussian basis set (UGBS) for the fourteen electron molecules $\mathrm{N}_{2}, \mathrm{BF}$, and CO. In this method, the Griffin-Hill-Wheeler-HF equations are integrated through the ID technique. For all molecules studied, our ground state HF total energies are lower than the corresponding ones computed with larger GBSs [2,3] (see Table 1). Our total energy errors are $0.2069,0.1319$, and 0.1874 mHartree for $\mathrm{N}_{2}, \mathrm{BF}$, and CO respectively. For $\mathrm{N}_{2}, \mathrm{BF}$, and CO our second-order correlation energies correspond to 95.7, 88.4 , and $96.8 \%$ of the exact second-order correlation energies given by Wilson et al $[4,5]$.

Table 1-Ground State HF total energies (in hartree) for the molecules $\mathrm{N}_{2}, \mathrm{BF}$, and CO .

| Basis set | $\mathrm{N}_{2}$ | BF | CO | Refs. |
| :---: | :---: | :---: | :---: | :---: |
| (26s18p10d7f) | -108.9935109 | -124.1684706 | -112.790617 | $[2]$ |
| $(30 \mathrm{~s} 15 \mathrm{p} 15 \mathrm{~d} 15 \mathrm{f})$ | -108.9936102 | -124.1686185 | -112.7907104 | [3] |
| $(26 \mathrm{~s} 15 \mathrm{p} 8 \mathrm{~d} 5 \mathrm{f})$ | -108.9936188 | -124.1686473 | -112.7907199 | This |
| - | -108.9938257 | -124.1687792 | -112.7909073 | $[6]$ |

From the results presented in this work, we can conclude that our UGBS is appropriate to calculate various properties of small molecules. (CAPES,CNPq).
[1] F. E. Jorge, R. Centoducatte, and E. V. R. De Castro, Theor. Chem. Acc. 103 (2000) 477.
[2] H. F. M. Da Costa, A. M. Simas, V. H. Smith Jr., and M. Trsic, Chem. Phys. Lett. 192 (1991) 195.
[3] D. Moncrieff and S. Wilson, J. Phys. B 31 (1998) 3819.
[4] D. Moncrieff and S. Wilson, J. Phys. B 29 (1996) 2425.
[5] S. Wilson and D. M. Silver, J. Chem. Phys. 72 (1980) 2159.
[6] D. Moncrieff, J. Kobus, and S. Wilson, J. Phys. B 28 (1995) 4555.

# ESTUDO COMMPARATIVO DO MIODO DE INCLUSÃO DA TETRACICLINA EM CICLODEXTRINAS 

Roberta P. Dias ${ }^{1^{*}}$ (IC), Beatriz A. Ferreira ${ }^{1,2}$ (PQ), Wagner B. de Almeida ${ }^{1}$ (PQ) roberta@netuno.qui.ufmg.br<br>${ }^{1}$ LQC-MM, Departamento de Química, ICEx, UFMG, Belo Horizonte, MG, 31270-901<br>${ }^{2}$ FACIBIS, Centro Universitário Newton Paiva, Belo Horizonte, MG, 30460-000.<br>Palavras-chave: tetraciclina, ciclodextrina, Dinâmica Molecular

A tetraciclina (Figura) é o principal constituinte de uma família de antibióticos de amplo espectro antibacteriano. Entretanto, a tetraciclina possui uma série de reaçōes adversas, que podem ser diminuídas no processo de inclusão em um veículo adequado e abrem novas perspectivas de estudo de uma série de derivados.


Figura. Representação estrutural da tetraciclina (espécie zwiteriônica).
Por outro lado, as ciclodextrinas (CD) são oligossacarídeos cíclicos de baixa massa molar relativa que, do ponto de vista estrutural, propiciam a formação de complexos de inclusão e dissolução em solução aquosa de substratos hidrofóbicos, devido ao caráter hidrofóbico no interior da sua cavidade e hidrofilico na parte externa. Dessa forma, um estudo teórico sistemático da possibilidade e do modo de formação de tais complexos torna-se de grande interesse, visando a melhoria da sua solubilidade e biodisponibilidade. Esse é o objetivo desse trabalho, utilizando para o seu desenvolvimento metodologias baseadas em Mecânica e Dinâmica Molecular (MDM). Os sistemas estudados foram: tetraciclina (TC), beta e gama ciclodextrina ( $\beta$-CD e $\gamma$-CD) e seus respectivos complexos de inclusão. O melhor campo de força para o estudo desse sistema, implementado no programa Macromodel ${ }^{1}$, foi o OPLS (Optimized Potentials for Liquid Simulations) ${ }^{2}$. As simulações foram realizadas a partir de estruturas otimizadas no nível semi-empírico de Mecânica Quântica (método PM3 implementado no programa MOPAC7.0 $0^{3}$ ) durante um tempo total $\mathrm{t}=500 \mathrm{ps}(\Delta \mathrm{t}=1 \mathrm{fs}$ ), no vácuo, a 298 K .

Os resultados obtidos até o presente momento mostraram que, para o caso da tetraciclina, a inclusão é energeticamente mais favorecida na $\gamma$-CD ( $\left.E_{\text {complexação }}=-259 \mathrm{~kJ} / \mathrm{mol}\right)$ em relação à $\beta-C D$ ( $\left.E_{\text {complexaçao }}=-175 \mathrm{~kJ} / \mathrm{mol}\right)$, onde $E_{\text {complexacăo }}=E_{\text {complexo }}-\left(E_{T C}-E_{C D}\right)$

As médias das distâncias dos oxigếnios do interior da cavidade da ciclodextrina e a tetraciclina (carbono C12a, que representa aproximadamente o centro de massa da tetraciclina) também foram estimadas e revelaram que, após a inclusão, a tetraciclina acomoda-se de tal forma que não se observa uma considerável variação dessas distâncias. Além disso, a partir das distâncias encontradas, observa-se uma interação intermolecular mais forte no complexo formado com a $\gamma-\mathrm{CD}$ (Tabela).

Dessa forma, pode-se supor que, no vácuo, a inclusão da tetraciclina em $\gamma$-CD é mais viável energeticamente em relação à inclusão em $\beta$-CD. Estudos relacionados ao modo de inclusão na água estão sendo realizados. (FUNADESP, NEQC/ICE/UFJF, FAPEMIG).

Tabela. Média das distâncias entre o carbono C12a e os oxigênios do interior da cavidade das ciclodextrinas ( $\AA$ ), obtidas da simulação (MDM) dos complexos de inclusão no vácuo, a 298 K .

| Distância C12a | O 1 | O 2 | O 3 | O 4 | 05 | O | 0 | O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta-\mathrm{CD}$ | $9,8(3)$ | $7,4(3)$ | $10,0(3)$ | $6,8(2)$ | $7,9(3)$ | $8,9(3)$ | $10,9(3)$ | - |
| $\gamma-\mathrm{CD}$ | $6,5(3)$ | $6,0(3)$ | $6,5(3)$ | $6,3(3)$ | $6,9(2)$ | $6,7(3)$ | $6,3(3)$ | $6,3(3)$ |

[^6]
# Estudo da formação de complexos de inclusão de tetraciclinas em $\beta$-ciclodextrinas 

Beatriz A.Ferreira ${ }^{1,2^{2}}(\mathrm{PQ})$, Carla G. Duräes ${ }^{1,2}(\mathrm{IC})$, Herick C. Ferreira (IC) ${ }^{1,2}$, Clébio S.N. Júnior ${ }^{2}(\mathrm{PG})$

beatriz.prof@newtonpaiva.br

${ }^{1}$ FACIBIS, Centro Universitário Newton Paiva, Belo Horizonte, MG, 30460-000.
${ }^{2}$ LQC-MM, Departamento de Quimica, ICEx, UFMG, Belo Horizonte, MG, 31270-901
${ }^{3}$ NEQC, Departamento de Química, ICE, UFJF, Juiz de Fora, MG, 36038-330

Palavras Chave: tetraciclinas, $\beta$-ciclodextrinas, Dinâmica Molecular.

A $\beta$-ciclodextrina ( $\beta-C D$ ) é um oligossacarideo cíclico de baixa massa molar relativa, constituida por sete unidades de glicose unidas por ligações $\alpha(1 \rightarrow 4)$. Estruturalmente, o interesse na $\beta$-CD reside no fato de ela possuir caráter hidrofóbico no interior da cavidade e hidrofilico na parte externa, favorecendo a formaçäo de complexos de inclusāo e dissolução em solução aquosa de substratos hidrofóbicos.

As tetraciclinas (TC), por outro lado, constituem uma conhecida familia de antibióticos de amplo espectro de atuação, que, pelo fato de apresentarem uma série de reações adversas, têm seu uso restrito. Essas reações adversas podem ser diminuidas no processo de inclusão e abrem perspectivas de estudo de uma série de novos derivados da tetracilina.

Dentro dessa perspectiva, o objetivo desse trabalho é o estudo do modo de formação de complexos de derivados de TCs (Figura) em $\beta$-CDs que visam a methoria da sua solubilidade e biodisponibilidade, utilizando métodos de Mecânica e Dinâmica Molecular (MDM). As simulações foram realizadas a partir de estruturas otimizadas no nível semi-empírico de Mecânica Quântica (método PM3 implementado no programa MOPAC7.0 ${ }^{1}$ ), utilizando o campo de força OPLS ${ }^{2}$ (Optimized Potentials for Liquid Simulations) implementado no pacote computacional MacroModel ${ }^{3}$. Os sistemas $\beta$-CD, TCX ( $X=1,2,3,4,5$ e 6 ) e seus respectivos complexos foram simulados durante um tempo total $t=500 \mathrm{ps}(\Delta t=1 \mathrm{fs})$ no vácuo à 298 K .


III


(13)


[5]



Figura. Estrutura da tetraciclina, TC1 e dos derivados TC2, TC3, TC4, TC5 e TC6.
Os resultados obtidos até o momento mostraram que o processo de formação de complexos da tetraciclina e seus derivados em $\beta$-CD é energeticamente favorecido no vácuo (Tabela). Dos derivados estudados, o que apresenta maior viabilidade de ser incluído é TC6. O estudo dessas reações em meio aquoso está sendo realizado.
Tabela. Energias de complexação, no vảcuo, à 298 K para a reaçăo $T C X+\beta-C D \rightarrow T C X \ldots \beta-C D$.

| Sistema | $\beta-C D ~ k J m o l$ |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
|  |  | TCX kJmol $^{-1}$ | $\beta-C D \ldots$ TCX kJmol $^{-1}$ | EC $^{\prime \prime} \mathrm{kJmol}^{-1}$ |
| $X=1$ | 843 | 194 | 866 | -171 |
| $X=2$ | 843 | 171 | 744 | -270 |
| $X=3$ | 843 | 202 | 885 | -160 |
| $X=4$ | 843 | 90 | 698 | -235 |
| $X=5$ | 843 | 202 | 854 | -191 |
| $X=6$ | 843 | 141 | 711 | -273 |

[^7]
# SITE-SPECHFIG BOND-BREAIKAG FOLLOWHNG VALENCE AND CORE EXCITATIONS IN POLYMERS 

Maria Luiza M. Rocco ${ }^{1}$ (PQ), Gustavo S. Faraudo ${ }^{1}$ (PG), Frederico C. Pontes ${ }^{1}(P Q)$, Roberto R. Pinho ${ }^{2}(\mathrm{PQ})$, Marysilvia Ferreira ${ }^{3}(\mathrm{PQ})$ and Gerardo Gerson B. de Souza ${ }^{1}$<br>(PQ)<br>luiza@iq.ufr.br<br>${ }^{1}$ Instituto de Química, Universidade Federal do Rio de Janeiro, ${ }^{2}$ Departamento de Física, Universidade Federal de Juiz de Fora, ${ }^{3}$ PEMM-COPPE, Universidade Federal do Rio de Janeiro

Keywords: photon stimulated ion desorption, polymers, electronic excitation
The observation of selective bond breaking in polymers through excitation with soft $x$ ray photons was first discussed with PMMA [1]. It is believed that the main process governing ion desorption in these materials is the Auger process, which can be described in a simplified form as a relaxation process following ionization (normal Auger) or excitation (resonant Auger) of a core electron. The importance of spectator Auger decay processes in the enhancement of PSID (Photon Stimulated Ion Desorption) [2] has been also pointed out. For example, one possible mechanism for the $\mathrm{CH}_{3}{ }^{+}$ion production in PMMA is believed to be due the scission of the $\mathrm{O}-\mathrm{CH}_{3}$ bond through O 1s excitation, localized in the side chain. It is important to notice that the electronic excitation, which is responsible for this ionic fragment, corresponds to a transition to an unoccupied molecular orbital of $\sigma^{*}$ symmetry $\left(\mathrm{CO}-\mathrm{CH}_{3}\right)$ and not to a continuum state, showing the importance of the resonant Auger decay mechanism to the ionic emission [3]. In other words, if the deposited energy into the system is enough to produce resonant core level transition, which means localized excitation, the degradation of the excess of energy will be mainly by bond scission at the site of excitation.

In this work PSID studies covering a broad energy range from valence up to core excitations have been performed in poly(vinyl chloride) (PVC) and poly(vinylidene chloride) (PVDC) using synchrotron radiation from the Brazilian Synchrotron Radiation Laboratory (LNLS). The experiments were performed at the TGM beamline of LNLS that covers a photon energy range from 12 to 310 eV . The experimental setup includes a sample manipulator and a time-of-flight mass spectrometer (TOF-MS) which are housed in an ultra-high vacuum chamber (UHV) with a base pressure of about $10^{-9}$ Torr. The TOF-MS consists of an efficient electrostatic ion extraction system, a drift tube and a pair of microchannel plate (MCP) detectors, disposed in the chevron configuration. After extraction, positive ions travel through three metallic grids (each of which with a nominal transmission of $90 \%$ ), before reaching the MCP. In order to perform a precise calibration of the mass spectrum, the new calibration procedure previously employed in ESID (Electron Stimulated Ion Desorption) studies of PMMA has been used [4]. Partial ion yields have been determined for the main ionic fragments as a function of the photon energy. The chlorine ions showed a different behavior as compared to the other ions. They can be only observed at the Cl 2 p -edge, being much less intense or even non observable at energies below about 195 eV and also around the carbon 1s-edge. (LNLS, FAPERJ, CNPq).
[1] Tinone MCK, Tanaka K, Maruyama J, Ueno N, Imamura M, Matsubayashi N. J. Chem. Phys.1994; 100: 5988.
[2] Tanaka K, Tinone MCK, Ikeura H, Sekiguchi T, Sekitani T. Rev. Sci. Instrum. 1995; 66: 1474.
[3] Ueno N, Tanaka K. Jpn. J. Appl. Phys. 1997; 36: 7605.
[4] Rocco MLM, de Souza GGB, Weibel DE. Rev. Sci. Instrum. 2001; 72: 2827.

# ESTUDO TEÓRICO DE REAÇõES DE ATIVAÇÃO DE PROPANO CATALISADAS POR ZEÓLITAS 

Emerson Allevato Furtado ${ }^{1}$ (PG), Edílson Clemente da Silva ${ }^{1}$ (PQ) e Marco Antonio Chaer Nascimento ${ }^{1}$ (PQ).<br>emerson@chaer.iq.ufrj.br<br>1- Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio de Janeiro, CT, Bloco A, Sala 412, Cidade Universitária, Rio de Janeiro, RJ, CEP 21949-900. Palavras-chave: zeólitas, ativação de alcanos, estado de transição.

A catálise heterogênea como área do conhecimento científico e tecnológico vêm se apresentando como grande fonte de interesse em decorrência de seu elevado potencial e aplicabilidade em atividades tais como: síntese, processos de purificação, etc. Vale destacar também a grande importância econômica, especialmente na área de química fina (estrutura de canais e cavidades de diversos tamanhos que permite uma seletividade quanto à forma e tamanho dos reagentes, produtos e estados de transição) e em química ambiental na obtenção de insumos derivados do petróleo através de processos mais limpos. A atividade catalítica que as zeólitas apresentam está intimamente relacionada à presença em sua estrutura de sítios ácidos de Brønsted.

Como conseqüência do exposto acima observa-se um grande interesse no estudo tanto teórico como experimental de reações catalisadas por zeólitas. No entanto, vale ressaltar que, apesar deste interesse, ainda se sabe muito pouco a respeito dos mecanismos destas reações.

Neste trabalho, foram estudadas as etapas das reações de (ativação) desidrogenação do propano. Os mecanismos das reações estudadas foram investigados em nível de cálculo DFT (B3LYP) usando as bases double-zeta 6-31G** e posteriormente para cálculos um pouco mais refinados triple-zeta $6-311 \mathrm{G}^{* *}$. Para representar a estrutura zeolítica foram utilizados aglomerados-modelo, primeiramente do tipo 5 T , e em seguida aglomerados maiores, do tipo 20T. Inicialmente, os substratos foram adsorvidos na estrutura do aglomerado-modelo e a partir destas estruturas calcularam-se os estados de transição para cada reação estudada.

Os resultados preliminares mostraram que a natureza do estado de transição para a desidrogenação em carbono secundário do propano é a mesma em qualquer um dos dois níveis de representação da estrutura zeolítica, com a observação de um estado de transição tanto em nível 5T quanto em 20T, para a reação de desidrogenação do propano, do tipo iônico e semelhante a um íon carbênio secundário.

Por outro lado, uma diferença significativa é observada nos valores de energia de ativação dos estados de transição para diferentes tipos de representação da zeólita (5T ou 20T) sendo menor energia de ativação encontrada para a representação 20T.

No momento estamos dando continuidade aos estudos do efeito da cavidade zeolítica (aglomerados modelo tipo 20T, 34T e 60T) no valor de energia de ativação e da estrutura para os estados de transição calculados (se ocorrem também estados de transição iônicos), calculando também os potenciais eletrostáticos na região em que se localizam os estados de transição obtidos para as reações de ativação de alcanos. (CNPq, PRONEX, FUJB).

# ESTUDO EXPERIMENTAL E TEÓRICO DA FOTOLUMINESCÊNCIA DE Lil $\mathrm{TiSiO}_{5}$ 

Emmanuelle Orhan ${ }^{* 1(\mathrm{PQ})}$, Viviane C. Albarici $i^{1(\mathrm{PG})}$, Elson Longo ${ }^{1(\mathrm{PQ})}$, Edson R. Leite $^{1(\mathrm{PQ})}$, Paulo S. Pizani ${ }^{2(\mathrm{PQ})}$<br>emmanuelle.orhan@liec.ufscar.br<br>${ }^{1}$ Laboratório Interdisciplinar de Eletroquímica e Cerâmica (LIEC), Departamento de Química, Rod. Washington Luis, km 235, Universidade Federal de São Carlos,CP 676, 13565-905 São Carlos - SP<br>${ }^{2}$ Depto de Física, Universidade Federal de São Carlos, Cx Postal 676, 13565-905, São Carlos - SP

Palavras-chave : fotoluminescência, gap, titanosilicato
O tinanosilicato de lítio e um composto que possui em sua estrutura cristalina uma rede tridimensional de pirâmides de base quadrada de $\mathrm{TiO}_{5}$ e tetraedros de $\mathrm{SiO}_{4}$. Esta estrutura confere a este material propriedades de fotoluminescentes a temperatura ambiente. A fotoluminescência é um fenômeno que é comunamente vinculado a defeitos estruturais ou a dopantes num composto cristallino quando ocorre a baixa temperatura. A temperatura ambiente, o mecanismo seria outro: nos anos 90, autores falavam de tranferências de cargas entre atomos, depois veio a teoría que não era tranferência de cargas, mas que a estrutura do composto em si mesmo criava a fotoluminescência. A nossa interpretação é outra, pensamos que a fotoluminescência está ligada à coexistência de dois 'clusters' de diferentes cargas, causando a polarização da estrutura cristalina e auxiliando a criação de pares elétron-buracos após a excitação pelos fótons. O pó de $\mathrm{Li}_{2} \mathrm{TiOSiO}_{4}$ foi sintetizado por intermédio do método dos precursores poliméricos. O composto sintetizado apresentou fases adicionais ( $\mathrm{SiO}_{4}$ amorfo, $\mathrm{TiO}_{2}$ rutilo). As medidas de fotoluminescência mostram este fenômeno tanto na fase amorfa como na fase cristalina. No caso dos titanatos peroviskita $\mathrm{ABO}_{3}$ ( $\mathrm{A}=\mathrm{Sr}, \mathrm{Ba}$ ), que foram estudados num outro trabalho nosso, a fotoluminescência desaparece logo depois da cristalização do composto. Atribui-se esse fato à alta densidade de defeitos da estrutura amorfa pela criação de clusters penta associados a hexa-coordenados. Esta associação pode gerar novos estados localizados dentro do 'gap' do material cristalino.

Aqui pretende-se investigar os efeitos de deformações na estrutura cristalina de $\mathrm{Li}_{2} \mathrm{TiOSiO}_{4}$ com o objetivo de dar mais subsídios para explicar a fotoluminescência na fase cristalina e amorfa deste composto. Para os cálculos utilizou-se os pacotes VASP e Crystal98. O modelo usado para representar a fase amorfa é uma leve deformação da fase cristalina por intermediario de um deslocamento de $0.5 \AA$ de um atomo de oxigênio, formando assim clusters $\left[\mathrm{TiO}_{6}\right]$ a partir dos clusters de $\left[\mathrm{TiO}_{5}\right]$. O programa VASP serviu para a optimização da estrutura cristalina. Os Pseudo Potentials Ultra Soft foram fornecidos pelo grupo do VASP. No Crystal98, os cálculos foram realizados utilizando-se a teoria da funcional da densidade com a funcional de troca-correlação B3LYP: As bases empregadas para Li e Si foram as de Mike Towler, para Ti e O são respectivamente 86 411(d41)G e $6-31 \mathrm{G}^{*}$, descrevendo todos os elétrons.

Uma análise das densidades de estados e das estruturas de bandas obtidas mostra que a banda de valência sempre é composta dos estados $2 p$ dos oxigênios e a banda de condução dos estados 3d dos titânios. O gap calculado para o modelo amorfo é menor que o gap do cristalino, de acordo com as observações experimentais. Novos estados localizados são criados acima da banda de valência do composto antes da deformação. A transferência de cargas ocorre não de um átomo a um outro, mas do cluster [ $\mathrm{SiO}_{4}$ ] para o cluster [ $\mathrm{TiO}_{6}$ ], no caso do modelo amorfo e do cluster [ $\mathrm{SiO}_{4}$ ] para o cluster $\left[\mathrm{TiO}_{5}\right]$ do composto cristalino.

Podemos concluir, então, que para esse tipo de fotoluminescência à temperatura ambiente ocorrer, é preciso a coexistência de dois 'clusters' de diferentes cargas, causando a polarização da estrutura e auxiliando a criação de pares elétron-buracos após a excitação pelos fótons. O decaimento dos elétrons na banda de valência ocorre por etapas na banda de condução (decaimento não radiativo), antes de atravessar o gap (decaimento radiativo) e de chegar, ou nos novos estados localizados, ou nos estados deslocalizados iniciais. No composto de $\mathrm{Li}_{2} \mathrm{TiOSiO}_{4}$, a coexistência de dois átomos diferentes, Tie Si, implica dois tipos de 'clusters' com cargas diferentes, tanto na fase amorfa quanto na fase cristalina, por esse motivo a fotoluminescência sempre é detectada. (FAPESP-CEPID, CNPq, FINEP,CAPES).

# INTERPRETAÇÃO AB INITIO DA FOTOLUMINESCÊNCIA EM FHLMES FHNOS AMOPEOS DE TITANATOS DE ESTRONCIO E DE BÁRIO 

Emmanuelle Orhan ${ }^{1(P Q)}$ Carlos D. Pinheiro ${ }^{1(P Q)}$, Maria Fernanda C. Gurgel ${ }^{1(P G)}$, Marcos A. dos Santos ${ }^{i(\mathrm{PG})}$, Fenelon M. Pontes ${ }^{1(\mathrm{PQ})}$, Elson Longo ${ }^{1(\mathrm{PQ})}$, José A. Varela ${ }^{1(\mathrm{PQ})}$, Paulo S. Pizani ${ }^{2(\mathrm{PQ})}$ emmanuelle.orhan@liec.ufscar.br<br>${ }^{1}$ Laboratório Interdisciplinar de Eletroquímica e Cerâmica (LIEC), Departamento de Química, Rod. Washington Luis, km 235, Universidade Federal de São Carlos,CP 676, 13565-905 São Carlos - SP<br>${ }^{2}$ Depto de Física, Universidade Federal de São Carlos, Caixa Postal 676, 13565-905, São Carlos

Palavras-chave: fotoluminescência, gap, titanatos
Neste trabalho está sendo discutida a natureza da fotoluminescência no visível à temperatura ambiente em filmes finos amorfos de titanato de estrôncio, titanato de bário e titanato de bário/estrôncio na luz de um estudo experimental e teórico. Ate hoje, a maioria dos trabalhos relativos à fotoluminescência relatam que seja um fenômeno observado a baixa temperatura em compostos cristalinos que apresentam defeitos estruturais ou que contém dopantes. A explicação desse fenômeno evoluiu ao longo do tempo: nos anos 90 , autores falavam de transferências de cargas entre átomos, depois veio a teoria que não era transferência de cargas, mas que a estrutura do composto em si mesmo criava a fotoluminescência.

Neste trabalho propõe-se um estudo teórico utilizando métodos quânticos periódicos para interpretar as propriedades de fotoluminescência de materiais do tipo pirovisquita tais como: $\mathrm{BaTiO}_{3}$ (BT), $\mathrm{SrTiO}_{3}$ (ST) e $\mathrm{Ba}_{0.5} \mathrm{Sr}_{0.5} \mathrm{O}_{3}$ (BST). Estes materiais estão sendo investigados em nosso Laboratório tanto sob a forma de filmes finos, quanto sob a forma de pós. Eles foram sendo sintetizados pelo método Pechini, e antes do pó ou do filme cristalizar, apresentam uma forte fotoluminescência à temperatura ambiente que desaparece logo depois da cristalização. Essa fotoluminescência vem da combinação de um processo de decaimento não radiativo com um processo de decaimento radiativo e a energia de excitação é maior que a energia de emissão. Os compostos cristalinos só apresentam fotoluminescência a baixas temperaturas, num outro mecanismo (fotoluminescência excitônica). O estudo eletro-ótico desses titanatos revela uma diminuição do valor da energia de gap do material quando na fase amorfa. A diminuição da energia de gap foi atribuída a alta densidade de defeitos da estrutura assimétrica, revelando uma forte dependência entre propriedades ópticas e assimetria do material. Aqui pretende-se investigar os efeitos de deformações na estrutura cristalina com o objetivo de dar mais subsídios para explicar a fotoluminescência na fase amorfa destes materiais.

Para os cálculos utilizou-se o pacote Crystal98 com supercélula $1 \times 1 \times 2$. O modelo usado para representar a fase amorfa é uma leve deformação da fase cristalina por intermediário de um deslocamento de $0.5 \AA$ de um átomo de titânio, formando assim um cluster [TiO ${ }_{5}$ ] ligado a o clássico $\left[\mathrm{TiO}_{6}\right.$ ] da pirovisquita cristalina. Os cálculos foram realizados utilizando-se a teoria da funcional da densidade com a funcional de troca-correlacão B3LYP: O conjunto de base empregado (976$41(\mathrm{~d} 51) 31 \mathrm{G}, 976-63(\mathrm{~d} 31) 31 \mathrm{G}^{*}, 86-411(\mathrm{~d} 41) \mathrm{G}, 6-31 \mathrm{G}^{*}$ para o $\mathrm{Sr}, \mathrm{Ba}, \mathrm{Ti}$ e O , respectivamente) descreve todos os elétrons. Uma análise das densidades de estados e das estruturas de bandas obtidas mostra que a banda de valência sempre é composta dos estados $2 p$ dos oxigênios e a banda de condução dos estados 3d dos titânios. Os gaps dos compostos amorfos são menores que os dos cristalinos, de acordo com as observações experimentais. Novos estados localizados são criados acima da banda de valência do composto antes da deformação. A transferência de cargas ocorre não de um átomo a um outro, mas do cluster [ $\mathrm{TiO}_{6}$ ] para o cluster [ $\mathrm{TiO}_{5}$ ].

Nossa conclusão é que para esse tipo de fotoluminescência à temperatura ambiente ocorrer, é preciso a coexistência de dois clusters de diferentes cargas, causando a polarização da estrutura e auxiliando a criação de pares elétron-buracos depois da excitação pelos fótons. O decaimento dos elétrons na banda de valência ocorre com etapas na banda de condução (decaimento não radiativo) antes de atravessar o gap (decaimento radiativo) e de chegar, ou nos novos estados localizados, ou nos estados deslocalizados iniciais. E por isso que o comprimento de onda da emissão é maior que o da excitação. (FAPESP-CEPID, CNPq, FINEP,CAPES).

# THEORETICAL AND EXPERTMENTAL LUHNHESCENCE QUANTUM YIELDS OF COORDINATION COMPOUNDS OF TRIVALENT EUROPIUM 

Wagner M. Faustino ${ }^{1}(P G)$, Severino A. Junior ${ }^{1}(P Q)$, Larry C. Thompson ${ }^{2}(P Q)$, Gilberto F. de Sá ${ }^{1}(\mathrm{PQ})$, Oscar L. Malta ${ }^{1}$ (PQ), and Alfredo M. Simas ${ }^{1}$ (PQ). simas@ufpe.br<br>${ }^{2}$ Depto de Química Fundamental, CCEN, UFPE, Cidade Universitária, 50670-901 Rècife, PE, Brazil.<br>${ }^{\text {b }}$ Chemistry Department, University of Minnesota, Duluth, Minnesota, 55812, USA.

Keywords: sparkle, luminescence, europium.
Recently, there has been a resurgence of interest in the use of luminescence from lanthanide ions, particularly $\mathrm{Eu}^{3+}$ and $\mathrm{Tb}^{3+}$, for a variety of uses, both in structural studies as well as for practical applications, such as in lighting, biological systems, materials and sensors. One class of compounds that generally brightly luminesce are the adducts of the tris- $\beta$ diketonates of europium and terbium, which have been studied sporadically since the 1960s. These compounds can be prepared with various $\beta$-diketones ( $\mathrm{R}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{R}$ '; where R and $\mathrm{R}^{\prime}$ can be a wide variety of groups) and adduct molecules that are Lewis bases. These are usually neutral molecules, generally mono- or bi-dentate, and include pyridine, pyridine- N oxide, triphenylphosphine oxide, bipyridine, 1,10-phenanthroline, bipyridine-N', N'-dioxide, etc. The resulting adducts have coordination numbers 7,8 or 9 , possess solubility in some organic solvents, and are highly luminescent.

We present an appraisal of a semiempirical methodology recently introduced by us for the theoretical calculation of luminescence quantum yields. Six coordination compounds of Eu ${ }^{3+}$ were considered, possessing as ligands either benzoylacetonate or benzoyltrifluoroacetonate, together with either water, 2,2' bipyridine or 1,10 -phenanthroline. Their geometries were calculated using the SMLC/AM1 method and, for three of them, compared to their X-ray structures. The Ligand-Eu ${ }^{3+}$ energy transfer rates were calculated in terms of a model of intramolecular energy transfer processes in lanthanide coordination compounds earlier developed by our group.

The luminescence quantum yields of the complexes were calculated by numerically solving a system of rate equations for each compound, and by comparing them with the luminescence quantum yields determined spectroscopically. Finally, we show that the theoretical quantum yields, $q_{\text {theoretical }}$, correlate linearly with the experimental ones, $q_{\text {experimental }}\left(r^{2}\right.$ $=0.96$ ), within their error bars, and with high statistical significance ( $F_{1,4}=96.1, p>0.999$ ).


Such linear correlation indicates that our semiempirical theoretical methodology can indeed be useful for the a priori design of highly luminescent lanthanide coordination compounds. (CNPq, PRONEX, Instituto do Milênio de Materiais Complexos, RENAMI, CENAPAD/SP).

## P084

# RM1, A NEW SEMIEMPIRICAL MOLECULAR ORBITAL METHOD: PARAMETERS FOR C, H, N, O, P AND S 

Gerd Bruno Rocha (PQ) and Alfredo M. Simas (PQ)

gbr@ufpe.br
Departamento de Química Fundamental, UFPE, 50670-901, Recife, PE, Brazil. Keywords: AM1, semiempirical methods, biochemistry.

A new semiempirical molecular orbital method, RM1 (Recife Model 1), is introduced. RM1 is very similar to AM1, with one more parameter per atom. The training set used consisted of 680 molecules, representative of organic and biochemistry, containing C , H, N, O, P and S atoms. The parameterization consisted of non-linear optimizations through which we attempted to arrive to the best possible minimum in the hypersurface of 125 dimensions, which still made chemical sense. RM1 is $41 \%, 26 \%$ and $16 \%$ more accurate in the prediction of heats of formation than AM1, PM3 and PM5, respectively. Unlike PM3, RM1 describes the net charges in nitrogen compounds correctly. Moreover, phosphorus compounds are also significantly better described in RM1. For example, the average error for the heat of formation for 29 phosphorus compounds in PM5 is $20.4{\mathrm{kcal} . \mathrm{mol}^{-1} \text { whereas }}^{\text {w }}$


# ANÁLISE EXPLORATÓRIA DA METODOLOGIA DE CÁLEULODA SUPERFÍCIE DE POTENCIAL ELETROSTÁTICO DE PIRIMIDINAS 

Maíra de A. Carvalho (PG) ${ }^{1}$, João Bosco P. da Silva (PQ) ${ }^{1}$, Marcelo Z. Hernandes (PQ) ${ }^{2}$ mairacarvalho@hotmail.com<br>1 - Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50740-540 Recife - PE<br>2 - Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521 Recife - PE

Palavras-chave: pirimidinas, análise conformacional, potencial eletrostático
Recentemente, pirimidinas substituidas (Figura 1) foram sintetizadas e tiveram suas atividades anti-inflamatórias avaliadas por meio de curvas dose-resposta. Estudos preliminares de QSAR clássica, incluindo parâmetros calculados pelo método AM1, mostraram a importância de parâmetros eletrônicos como o momento de dipolo elétrico e a carga dos átomos de carbono 12 e 13 na previsão, com sucesso, de um novo composto com atividade superior nesta classe de compostos [1].

Dando continuidade ao emprego de métodos teóricos em química medicinal, este trabalho visa o estudo da Superfície de Potencial Eletrostático (SPE) para posterior desenvolvimento de uma QSAR-3D nesta série de compostos. Haja vista a dependência deste parâmetro com a geometria e função de onda utilizada, a investigação sistemática do nível de cálculo, bem como do conjunto de base representaram a etapa inicial deste trabalho.

O composto não substituído, i.e., $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$, foi selecionado como modelo para os demais da série. Cálculos de orbitais moleculares Hartree-Fock (HF) e da Teoria do Funcional da Densidade (DFT), com os funcionais B3LYP e BP86, foram realizados para as funções de base $6-31 \mathrm{G}, 6-31+\mathrm{G}^{* *}$ e $6-31++\mathrm{G}^{* *}$, através do programa Gaussian 98.

Análise conformacional prevê o anel fenila em C4

$\mathrm{R}_{1}=\mathrm{H}, p-\mathrm{Cl}, o, p-\mathrm{diCl}, p-\mathrm{F}$, $p-\mathrm{OCH}_{3}, p-\mathrm{OCH}_{2} \mathrm{CH}_{3}$
$\mathrm{R}_{2}=\mathrm{H}, \mathrm{p}-\mathrm{Cl}, o, p-\mathrm{diCl}, p-\mathrm{F}$, p- $\mathrm{OCH}_{3}, p-\mathrm{OCH}_{2} \mathrm{CH}_{3}$
Figura 1: Pirimidina Substituída. fora do plano da pirimidina. Por exemplo, a nível B3LYP/6$3++1 G^{* *}$ os ângulos diédricos C19C12C6C5 e C14C13C2N1 têm valores de 31,7 e 3,8 graus, respectivamente. Paralelamente a está análise, uma matriz contendo a distribuição de cargas atômicas Chelpg foi organizada segundo as linhas pelos diferentes valores do ângulo diedro C19C12C4C3 e nas colunas pelas cargas atômicas. Em seguida, esta matriz foi submetida a uma Análise de Componentes Principais (ACP). Os gráficos de escores e dos loadings permitem concluir que a torção do anel fenila influencia, de forma significativa, a distribuição de cargas no anel central pirimidina.
Já com relação aos demais níveis de cálculo e funçõ̃es de base, uma segunda matriz de cargas atômicas definida nas linhas pelos diferentes níveis de cálculo e funções de base e nas colunas pelas cargas atômicas, foi submetida a uma ACP. O gráfico dos escores (com $94 \%$ de variância) separa ao longo de PC1 os cálculos HF dos DFT's (ambos, B3LYP e BP86 surgindo em valores de escores muito próximos). PC2 por sua vez, separa os cálculos com função difusa daqueles sem essa função. Na verdade, este resultado mostra-se similar ao realizado por nós na molécula do indol [2]. Estes resultados sugerem que a análise da SPE para as moléculas substituídas pode, numa primeira aproximação, ser realizada sem a introdução de funções difusas no conjunto de base. Atualmente, as condições de contorno para o cálculo da SPE a nível BP86/6-31G** do composto não substituído encontram-se em fase de desenvolvimento para uma posterior aplicação nesta série. (CNPq)

1 - Emerson Peter Falcão, Tese de Doutorado, Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, 2003; 2 - Maíra de Almeida Carvalho, Livro de Resumos da $25^{\text {a }}$ Reunião Anual da SBQ, QT039, Poços de Caldas - MG

# DENSITY FUNCTIONAL STUDY OF THE BEHAVIOR COMPLEXATION OF AN ANTITUBERCULOUS COMPOUND WITH BIVALENTS CATIONS 

Teodorico C. Ramalho (PG) ${ }^{1}$, Elaine F. F. da Cunha(PG) ${ }^{2}$ and Ricardo Bicca de Alencastro (PQ) ${ }^{2^{*}}$<br>bicca@iq.ufrj.br<br>${ }^{1}$ Dept. de Química, IME, Pça. Gen. Tiburcio 80, Praia Vermelha, 22290-270 Rio de Janeiro-RJ<br>${ }^{2}$ Instituto de Química, UFRJ, llha do Fundão, CT, Bloco A, sala 605, Caixa Postal 068556, CEP - 21941-972 Rio de Janeiro-RJ

Keywords: Ethambutol, Complexation Gibbs energy and DFT
Mycobacterium tuberculosis is one of the leading causes of infectious disease in the world today. A variety of drug therapies for the treatment of tubercular infections have been developed over the past 40 years ${ }^{1}$. Current combination therapies include, but are not limited to rifampicin, fluoroquinolones, izoniazide, ethambutol and streptomicin. The action mechanism(s) responsible for resistance to ethambutol (EMB) remain unknown. The EMB effects are pleiotropic, and several hypotheses related to its mode of action have been proposed ${ }^{1}$. As initially show by Takayama and Kilburn${ }^{2}$, EMB affect primarily the biosynthesis of arabinan in the arabinogalactan (AG) and sequentially liporabinomannan (LAM) cell wall. EMB target(s) could possibly be arabinosyltransferases, which are involved in the biosynthesis of AG and LAM. There is evidence suggesting that EMB forms chelate complexes with bivalent cations similar to D-Arabinofuranosyl decaprenyl phosphate, the substrate ${ }^{3}$. Ethambutol is an arabinose analog, and from a structure-activity relationship (SAR) point of view, the ( $S, S$ )-absolute configuration, as present in EMB, was found to be essential for antibacterial activity. Compared to the parent ( $S, S$ )-stereoisomer, the corresponding ( $R, R$ )-enantiomer and the meso-isomer exhibit only 0.2 and $8.3 \%$ antibacterial activities, respectively ${ }^{4}$. The objective of this work is to understand the thermodynamics, structural and electronics differences between ( $S, S$ )-EMB and ( $R, R$ )-EMB metal complexes using theoretical methods. The Gibbs free energy calculation of complexation (Fig 1) was obtained in accordance with Eq1: $\Delta G_{(a q)}=\Delta G_{(g)}+d-(c+b+a)$.

The ligand and complexes were optimized at the DFT level (B3LYP) using the 631(d,f) basis set. The effect solvent was evaluated through of a PCM calculation using the integral equation formalism ${ }^{5}$.


Table 1.Free energy of complexation (kcal. $\mathrm{mol}^{-1}$ )

| M | Theoretical $(R, R)$ isomer | Theoretical $(S, S)$ isomer | Experimental $(S, S)$ isomer |
| :---: | :---: | :---: | :---: |
| $\mathrm{Zn}^{2+}$ | -4.52 | -6.93 | -7.53 |
| $\mathrm{Co}^{2+}$ | -6.23 | -7.26 | -7.80 |
| $\mathrm{Ni}^{2+}$ | -6.54 | -7.67 | -8.07 |
| $\mathrm{Cu}^{2+}$ | -7.63 | -8.35 | -8.88 |

Demonstrate (Table 1) that the theoretical methodology used shows good accuracy when compared with experimental data. ( $S, S$ ) complexes have lesser complexation Gibbs energy with all cations than ( $R, R$ ) complexes. This study suggests that the complexation step may explain the higher antibacterial activity of $(S, S)$ isomer. (FAPERJ, CAPES, CNPq).

1. Lety, M.A.; Nair, S.; Berche, P.; Antimicrobial Agents and Chemotherapy, 1997, 41, 2629-2633
2. Takayama, K.; Kilburn, J. O.; Antimicrobial Agents and Chemotherapy, 1989, 33, 1493-1499
3. Maddry, J. A.; Suling, W. J.; Reynolds, R. C.; $13^{\text {th }}$ Forum in Microbiology; Solving the Dilemma of Antimycobacterial Chemotherapy, 1995, 106-112
4. Hausler, H; Kawakamy, R. P.; Seven, W. B.; Bioorg. Med. Chem. Lett. 2001, 11, 1679-1681.
5. Cossi, M., Barone V. and Tomasi, J. Chem. Phys. Lett. 1998, 286, 253-262.

# ESTUDO DA ${ }^{2}$ - HIPERPOLARIZABILIDADE DE DERIVADOS DE OLIGÔMEROS DA ANILINA 

Ana E. de A. Machado(PQ), Alfredo A. de S. da Gama(PQ) aeam@ufpe.br Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50670-901, Recife, Brasil

Palavras-chave: primeira hiperpolarizabilidade( $\beta$ ), metodologia AM1/TDHF, derivados da anilina
A pesquisa teórica e experimental de novos materiais ópticos não lineares é intensa na tentativa de otimizar os coeficientes não lineares para aplicaçōes optoeletrônicas. A polianilina é um material extremamente versátil. O interesse em suas propriedades químicas, eletroquímicas, mecânicas, eletrônicas e magnéticas resultou na construção de diversos dispositivos de acordo com a literatura. Este polímero apresenta uma elevada segunda hiperpolarizabilidade ( $\gamma$ ). Resultados AM1/TDHF para trímeros modelo da anilina simularam a tendência experimental observada para a hiperpolarizabilidade $\gamma$ da polianilina. Além disso, são indicativos de que estes pequenos oligômeros podem ser usados como material de segunda ordem, já que mostram valores altos de $\beta$. Os oligômeros da anilina exibem propriedades interessantes como a solubilidade em solventes orgânicos usuais e cristalização, que não se manifestam na própria polianilina. Assim, utilizamos esta metodologia semiempírica para a modelagem de derivados substituídos para otimizar o valor da primeira hiperpolarizabilidade, tendo em vista as suas potenciais aplicações para uso em dispositivos optoeletrônicos.

Recente investigação teórica descrita na literatura mostra que os oligômeros da anilina são doadores. Assim, um grupo recepor dicianoetenila ( $R$ ) foi ligado ao sítio final de cada estrutura de oligômero da anilina, nas formas esmeraldina, leucoesmeraldina e pernigranilina. A polarização pelo grupo receptor aumentou significativamente a resposta não linear $\beta$, como também o momento de dipolo no estado fundamental e o potencial de ionização, se comparados aos oligômeros não substituídos. Este último resultado favorece a estabilidade química do material, sendo de interesse para a nanotecnologia.

A forma esmeraldina do tetrâmero substituído apresenta o melhor desempenho da resposta não linear $\beta$ entre as três formas de oligômeros investigadas, e seu valor corresponde ao dobro do oligômero não substituído. Também se verifica que esta forma apresenta o menor gap de energia Homo-Lumo, de forma que está em concordância com o modelo de dois niveis baseado na teoria de perturbação.

Para conseguir valores ainda maiores da hiperpolarizabilidade $\beta$, investigamos diferentes conformações de tetrâmeros substituídos da forma esmeraldina com um grupo fenila em um sítio terminal oposto ao sítio terminal onde se encontra o grupo receptor. O maior valor estático resultante foi de $55.10^{-30}$ esu, enquanto o valor à 1060 nm é de 373. $10^{-30}$ esu. Como esta metodologia usa conjunto de base mínimo e não contabiliza o efeito de solvente e a contribuição vibracional, espera-se que os valores correspondentes experimentais sejam superiores aos obtidos via metodologia AM1/TDHF. Prévios resultados mostraram que os oligômeros planares simulados têm melhor desempenho que os correspondentes isômeros não planares modelados. Portanto, a polarização por um eficiente grupo ligado ao final do oligômero da anilina pode compensar a ausência de planaridade destes sistemas. Este resultado pode ser importante para otimizar a $\beta$, uma vez que em solução os anéis são girados, sendo requerido o uso de um campo elétrico alto para induzir a planaridade.

Os resultados AM1/TDHF obtidos foram relevantes e da mesma ordem de magnitude que os apresentados por outras classes de materiais ópticos não lineares que são considerados interessantes como material gerador de polarizabilidade de segunda ordem, e portanto apresentam potencial de aplicação no campo da óptica não linear. Um incremento desta resposta não linear $\beta$ pode ser obtido pelo aumento do número de anéis do oligômero. Além disso, a introdução de grupos receptores mais fortes pode contribuir também, para aumentar ainda mais a magnitude de $\beta$.(CNPq).

## P088

# ANÁLISE DE COMPONENTES PRINCIPAIS PARA PREVISÃO DA HIPERPOLARIZABILIDADE $\beta$ DE DERIVADOS POLIÊNICOS DOADOR-RECEPTOR 

Ana E. de A. Machado(PQ)*, Benício de Barros Neto(PQ), Alfredo A. de S. da Gama(PQ)<br>aeam@ufpe.br<br>Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50670-901, Recife, Brasil<br>Palavras-chave: primeira hiperpolarizabilidade( $\beta$ ), regressão de componentes principais(PCR), derivados poliênicos $\mathrm{D} / \mathrm{R}$

O efeito da variação de parâmetros estruturais e eletrônicos na magnitude da $1^{\text {à }}$ hiperpolarizabilidade ( $\beta$ ) tem sido investigado nas últimas décadas. A perspectiva é alcançar o controle da resposta não linear ao nível molecular, permitindo o planejamento de sistemas de interesse para a nanotecnologia. Assim, parâmetros como o tamanho da ponte, a força do par doador ( $D$ ) e receptor (R), a diferença de energia HOMO-LUMO, o número total de elétrons- $\pi$ da molécula e o momento de dipolo no estado fundamental foram selecionados para a previsão de $\beta$ de sistemas doador-ponte-receptor, sem necessitar a priori calcular a magnitude desta hiperpolarizabilidade. Estes parâmetros foram obtidos através do hamiltoniano AM1, como implementado no código computacional MOPAC 93.00. Estas séries investigadas e reportadas na literatura por diferentes grupos exibem elevadas magnitudes experimentais de $\beta$. O sistema com maior extensão de ponte apresenta o melhor desempenho, e tem um valor estático de $835.10^{-30}$ esu.

Uma análise através dos componentes principais (PCA) foi realizada, e demonstrou que os diferentes padrões são associados para as diferentes séries de moléculas investigadas. Em adição, a análise baseada na regressão de componentes principais (PCR), a partir dos parâmetros mais correlacionados com esta resposta não linear entre os citados anteriormente, resulta numa modelagem para previsão da magnitude de $\beta$. Esta modelagem é de interesse, tanto do ponto de vista teórico como experimental, podendo evitar vários cálculos e as respectivas medidas experimentais em sistemas que não apresentam potencialidade para uma aplicação específica. Portanto, os resultados podem ser de interesse para a modelagem e seleção de novos materiais com potencial aplicações no campo da óptica não linear, tanto do ponto de vista econômico como pela rapidez da técnica. A previsão da magnitude da segunda hiperpolarizabilidade ( $\gamma$ ), a partir de métodos quimiométricos, foi realizada com sucesso pela primeira vez por este grupo de pesquisa, na investigação de moléculas D-R com pontes mistas, contendo anéis mesoiônicos inseridos em unidades poliênicas.

Foi avaliada também a metodologia Time Dependent Hartree-Fock (TDHF), calculando a resposta não linear $\beta$, por considerar as diferentes séries de moléculas D-R com pontes poliênicas. Os resultados mostram que a metodologia AM1/TDHF pode ser usada para esta classe de moléculas $D / R$, desde que ela reproduz a tendência experimental observada. Para os sistemas mais estendidos, a discrepância entre o valor teórico e experimental de $\beta$ é significativa. Também foi modelada uma série de derivados poliênicos D-R, que apresentam 4, 6 e 8 ligações duplas alternadas na ponte. Estes sistemas mostram potencial como meio não linear, já que os valores calculados da primeira hiperpolarizabilidade são altos. O sistema mais estendido tem um valor de $\beta$ (AM1/TDHF) estático de $179.10^{-30}$ esu. A molécula D/R com o melhor desempenho, caracterizada experimentalmente de acordo com a literatura, tem um valor teórico de $116.10^{-30}$ esu. Estes sistemas modelados apresentam como doador a fenilamina e como receptores 1-naftila, cianometileno e dicianometileno. Com estes valores da primeira hiperpolarizabilidade, obtidos através da química quântica, poderemos testar o poder de previsão da magnitude de $\beta$ pela modelagem baseada na regressão PCR, já que para esta série não existem os valores experimentais correspondentes.

# FRONTIERTNOLECULAR ORBITAL CALCULATIONS AND 

## ELECTROSTATIC POTENTIAL SURFACES (MEP) OF INDOLO-

 MALEIMIDO-CARBAZOLE DERIVATIVES BASED ON NATURALD. GRANULATUM ALKALOIDS WITH G2 CELL CYCLE CHECKPOINT INHIBITION ACTIVITYFlávia P. Rosselli ${ }^{1}$ (PG), Mario L. Macedo ${ }^{2}$ (PG), Roberto G. S. Berlinck ${ }^{2}$ (PQ), Albérico B. F. da Silva (PQ)<br>frosselli@iqsc.usp.br<br>1 Departamento de Química e Física Molecular (DQFM), Grupo de Química Quântica, Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP), São Carlos - SP<br>2 Depto de Química e Física Molecular (DQFM), Grupo de Química Orgânica de Produtos Naturais, Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP), São Carlos - SP<br>Palavras-chave: câncer, ascidians, PM3

Ascidians (Phylum Chrodata, Sub-Phylum Urochordata) are marine invertebrates with a chemically rich secondary metabolism. Amino acid derivatives, such as alkaloids and peptide derivatives, are the main group of ascidian natural products which very often display potent biological activities. Seven indolo-maleimido-carbazole derivatives based on granulatimide structures were synthesized and studied about their electrostatic potential surfaces (MEP) and their frontier molecular orbitals (HOMO-1, HOMO, LUMO, LUMO+1). The synthetic derivatives were optimized with the PM3 semi-empirical method, available in AMPAC 6.55 computational program and the frontier orbitals and the electrostatic potential surfaces (MEP) were built with SPARTAN 5.01 computational program, with the PM3. Five of the seven derivatives have their biological activities evaluated and were associated with their frontier molecular orbitals and MEP maps and with their molecular orbitals. However, none correlation between the frontier molecular orbitals and the activity were met. The MEP maps place the regions in the molecules which are poorest or richest in electrons. This study showed that there is a relationship between the biological activity, the planarity of the compounds and the electrostatic potential surfaces. The MEP maps demonstrated the importance of the position of the nitrogen atoms in the imidazole ring for the expression of the biological activity. The position of certain atoms would be yielding a kind of MEP, on the right side of the molecules, which would be related with the biological activity of the molecules, once that the inactives structures did not showed MEPs produced by imidazole ring on the right side. The figure bellow shows features of the MEP related with active structures and with the inactive structures. For active structures, there is a cloud on right side of the structure produced by the imidazole ring, and for the inactives, the changes in position of the nitrogen atoms of the imidazole ring yield a down cloud, instead of the right side. (FAPESP, CAPES).


# SOLVATAÇÃO DE CAFEÍNA, TEOFILINA E TEOBROMINA EM $\mathrm{CO}_{2}$ SUPERCRÍTICO POR DINÂMICA MOLECULAR 

Frank Wilson Fávero (PG), Munir S. Skaf (PQ)<br>frank@iqm.unicamp.br<br>Departamento de Físico-Química, Instituto de Química, UNICAMP.<br>Palavras-chave: fluidos supercriticos, dinâmica molecular, solvatação.

O uso de fluidos supercríticos nos processos de extração e de fracionamento de substâncias orgânicas apresenta diversas vantagens em relação aos solventes líquidos usados nos processos tradicionais. $\mathrm{O}_{2}$ devido a sua baixa temperatura crítica, baixo custo, disponibilidade e por ser ambientalmente benigno torna-se muito adequado para uso como solvente nesses processos ${ }^{1}$.

As propriedades de solvatação de compostos no estado de fluidos supercríticos (SCF) são diferentes deles como líquidos ou gás e são muito sensíveis às variações das condições termodinâmicas. Compreender os mecanismos associados aos processos de solvatação no estado supercrítico são de fundamental importância para o otimização e aprimoramento destes processos.

Inicialmente foram estudadas a solvatação da cafeína, teofilina e tëobromina em $\mathrm{CO}_{2}$ supercrítico sob diferentes condições termodinâmicas. A motivação do uso desses solutos deve-se ao fato deles serem substâncias de interesse comercial e farmacológico obtidos por extração supercrítica de grãos de café, guaraná e chá mate, que vem sendo estudados experimentalmente na Faculdade de Engenharia Química da UNICAMP.
Através de simulações por dinâmica molecular (MD), o presente trabalho visa caracterizar as energias de interação solvente-soluto, suas funções de estrutura, e o aumento da densidade local, para as diversas condições termodinâmicas.

O sistema em estudo consiste de uma molécula de soluto em $\mathrm{CO}_{2}$ supercrítico. As moléculas foram modeladas por potenciais de interação de pares 12-6 Lennard-Jones mais um termo eletrostático. Para $\circ \mathrm{CO}_{2}$ os parâmetros usados foram os potenciais EPM2 de Haris e Young ${ }^{2}$, construídos para reproduzir a curva de coexistência do fluido real. Para os solutos foram usados os potenciais do campo de força OPLSAA com as geometrias e cargas determinadas por cálculos quânticos (RHF/6-311G(d,f) cargas MK).

Foram calculadas as energias entre solvente-soluto, considerando separadamente as forças dispersivas e as forças eletrostáticas, para cada um dos sítios do soluto, permitindo um acompanhamento individual dessas variações em cada uma das condições termodinâmicas.

As funções de distribuição radial de pares, $g(r)$, também foram determinadas por sítio do soluto. Para a determinação do aumento de densidade local, em torno do soluto, fizemos uso de uma função de distribuição radial modificada, chamada de "solvation shell distribution functions", $g_{s s}(r)$. Esta função é mais útil para descrever a estrutura de solvatação global destes solutos ${ }^{3}$.(FAPESP, CNPQ).
[1] Noyori, R. Chem. Rev. 1999, 99, 353.
[2] Haris, J. G.; Yung K. H. J. Phys. Chem. 1995, 99, 12021.
[3] Song, W.; Biswas, R.; Maroncelli, M. J. Phys. Chem. A 2000, 104, 6924.

# THEORETICAL INVESTIGATION OF THE ANTIMALARIIAL ACTIVITY OF FEBRIFUGINE ANALOGUES THROUGH ELECTRONIC STRUCTURE INDEXES 

Pedro A. S. Autreto (IC) and Francisco C. Lavarda (PQ)<br>lavarda@fc.unesp.br<br>Depto de Física, Faculdade de Ciências, UNESP, C.P. 473, CEP 17015-970, Bauru, SP, Brazil ()<br>Palavras Chave: antimalarials, electronic structure, molecular modeling


#### Abstract

Quinine was for a long time the only substance employed against malaria, one of the most incident illness in tropical regions, when this disease is caused by the presence of the protozoan parasite Plasmodium falciparum in the human body. The use of quinine has decreased after the appearance of the synthetic drugs like chloroquine and mesofloquine. However, it was observed several strains of $P$. falciparum that are resistant against these and other drugs. This caused a return to the use of quinine. And today a decrease of efficiency of quinine is also observed. These facts estimulates the search for new antimalarial drugs. In this scenario, the attention turned to the plant Dichroa febrifuga, whose roots have been employed for centuries by traditional medicine in the combat of malaria in China, with no observed decrease of efficiency. Febrifugine and one isomer (isofebrifugine) were isolated as the active components. Recently, several groups synthesized these substances in laboratory. Despite the high activity of febrifugine against $P$. falciparum, its high toxicity for the liver and emetic properties prevents its use as a clinical drug. Now the search is for analogues with equivalent selectivity against $P$. falciparum and no undesirable side effects.


There has been proposed 2 new analogues that showed very good antimalarial activity. Then, 15 other derivatives of these analogues were synthesized with variable selectivity against $P$. falciparum. Our goal is to investigate the theoretical electronic structure of a group of 17 molecules (the 2 analogues and 15 new derivatives) through semi-empirical molecular orbital calculations, looking for electronic indexes that could help structure-activity relationship studies.

All the calculations, including geometry optimization and electronic structure, were carried out employing the semiempirical method Austin Model 1 (AM1) and the package MOPAC version 6 . AM1 has proven to be highly efficient to optimize the geometry of organic molecules. The calculations for all molecules were done in vacuo using Restricted HartreeFock. The biological property of interest, which we have tried to correlate with the electronic structure data is the selectivity, which is defined as the ratio between cytotoxicity against mouse mammary FM3A cells and antimalarial activity against $P$. falciparum FCR-3 strain [2]. We also present significant results regarding the correlation of the antimalarial activity and the theoretical results. We have found a rule to predict qualitatively the selectivity against the malaria parasite of the derivatives of the febrifugine and isofebrifugine analogues Df-1 and Df-2: the energy of the molecular orbital below the last occupied molecular orbital ( $\mathrm{E}_{\text {номо-1 }}$ ) must be less than -9.55 eV . We also have found a similar rule to the antimalarial activity of the same group of compounds: the difference in energy between the highest occupied molecular orbital and the level below, $\square_{H, H-1}$, must be less than 0.25 eV in order to the molecule to be highly active.

Despite its simple use to model new compounds, the physico-chemical interpretation of the electronic indexes Еномо-1 and $\square_{\text {н,н-1 }}$ is not clear. In a very simple interpretation, E $_{\text {номо-1 }}$ is related to the second ionization potential, which we think has no influence on the selectivity. Also lacking a clear physical meaning, the $\square_{H, H-1}$ index has been employed up to now successfully in several other groups of biologically active molecules. If the results do not explain the mechanism to achieve high selectivity, in order to help the design of new molecules, at least there has been suggested a clear and fast method to qualitatively predict the selectivity of new compounds in a field in which every effort is welcomed.

# ESTUDO DE PROPRIEDADES A UM ELÉTRON USANDO UM MÉTODO CI MULTI-REFERÊNCIA. 

Luiz A. C. Malbouisson(PQ)<br>Imalboui@ufba.br Instituto de Física, UFBA, Rua Barão de Geremoabo, Campus de Ondina, 40210-340, Salvador, BA. Key Words: Múltiplas soluções Hartree-Fock, CI Multi-Referência.

Em geral não é possível determinar exatamente as funções de estado de sistemas mecânicos quânticos. Métodos aproximativos são necessários para obter essas funções. Métodos aproximativos, por sua vez, podem ser, nas suas formulações, direcionados para a determinação de alguma seleção específica de observáveis. Os métodos aproximativos variacionais em particular, privilegiam a variável dinâmica energia no cálculo das funções de estado. Contudo, no estudo de estrutura eletrônica molecular existem variáveis dinâmicas que dependem da distribuição de carga e que não são grandezas variacionais como, por exemplo, os momentos multipolares elétricos. Observáveis não-variacionais não exibem o comportamento monotônico decrescente da energia com a ampliação do domínio de busca dos extremos do funcional, ao contrário, apresentam um comportamento irregular. Isso significa que no escopo dos métodos aproximativos variacionais, melhores valores da energia não implicam necessariamente em melhores valores de observáveis não-variacionais. Isso introduz dificuldades na determinação de propriedades não-variacionais no âmbito desses métodos aproximativos. Uma forma de contornar o problema é a escolha de adequadas classes de funções para a formulação do método aproximativo variacional tal que a função de estado aproximada, forneça bons resultados dessas grandezas e da energia. Neste trabalho investigamos essa questão usando um procedimento aproximativo variacional particular, um método de interação de configurações (CI) multi-referência Hartree-Fock (MRHFCI), para calcular, no estado fundamental, a energia e propriedades elétricas. Em vez de uma única referência, o estado fundamental HF , o MRHFCI usa diversos extremos HF como referências para expandir as funções de estado.

São analisados sistemas moleculares AH e AB ( A e $B$ elementos da primeira linha ). Para cada sistema estudado, cada das referências HF usadas e suas correspondentes configurações excitadas, formam uma distinta base do mesmo espaço Cl completo com as adequadas características de simetria de ponto e spin do estado de interesse. Contudo as correspondentes configurações de cada referência HF têm distintos conteúdos de informação mecânico quântico. Este último aspecto, junto com o caráter não variacional das propriedades sugere o uso de bases 'misturadas' na formulação do problema Cl , isto é, bases MRHF formadas com configurações oriundas de diferentes extremos HF. Pode-se assim melhor extrair a informação das diversas bases monoreferência HF para o cálculo de propriedades.

O uso de bases misturadas empresta, em certo sentido, ao método MRHFCl qualidades do método auto-consistente multiconfiguracional (MCSCF), mas ainda com a linearidade da equação de condição necessária de extremos do problema variacional, que é um aspecto relevante dos métodos Cl enquanto algoritmos de cálculo.

Testes com o método MRHFCI no cálculo do estado fundamental de sistemas do tipo AH mostram resultados favoráveis à nossa abordagem. Com desvios entre $10^{-2}$ e $10^{-6}$ hartrees na energia com relação ao cálculo Cl convencional completo, usando a mesma base atômica mínima e reduzido número de configurações nas bases MRHF , obteve-se valores do momento de dipolo elétrico permanente com desvios dos resultados experimentais da mesma ordem que os obtidos em cálculos atuais com diversos métodos.

# GENERALIZED SIMULATED ANNEALING ALGORITHM APPLIED TO ELECTRONIC STRUCTURE: THE HARTREE-FOCK-GSA METHOD 

Micael Dias de Andrade ${ }^{1}$ (PG), Kleber Carlos Mundim ${ }^{2}$ (PQ), Luiz A.C. Malbouisson ${ }^{1}$ (PQ) micael@ufba.br<br>${ }^{1}$ Instituto de Física, UFBA, Rua Barão de Geremoabo, Campus de Ondina, 40210-340, Salvador, $B A$.<br>${ }^{2}$ Instituto de Química, UNB, Asa Norte, CEP 70919-970, Brasilia, DF

Key Words: Absolute Hartree-Fock Minimum, Stochastic Methods, Generalized Simulated Annealing

The global optimization problem is a subject of intense current interest. Stochastic methods have been applied successfully in the description of a variety of global extremization problems as well as have attracted significant attention due to their suitability for large scale optimization problems, especially for those in which a desired global minimum is hidden among many local minima. In the domain of the atomic and molecular aggregates, for example, the discovery of the lowest-energy biological macromolecules conformers or crystal structure for a system with a given composition is frequently a goal. A stochastic method, the Generalized Simulated Annealing (GSA), have been used with success in the prediction of new threedimensional protein structures and protein folding, fitting potential energy surface (PES) for path reaction and chemical reaction dynamics, gravimetry problems and mechanical properties in alloys.

It is important to point out that usual methodologies to treat optimization problems based on solving some non-linear condition necessary equation (first-order conditions of extremes) can not guaranty the achievement of the absolute minimum. This is in general the case of several variational electronic structure methods, in particular, the Hartree-Fock Self Consistent Field method. The HF equation admit, in principle, multiple solutions. Thus, the HF functional have several extremes, that includes, in principle, several minima, where the HF ground state is the absolute minimum. Besides, it is possible to show that the HF integraldifferential equations can be written as an infinite algebraic polynomial non-linear equations system. In the real closed-shell HF-Roothaan approximation with $m$ atomic basis functions this equation system is constituted of $m^{2}$ algebraic polynomial non-linear equations. So, the determination of the HF ground state can be a complicated algebraic geometry problem and demand the knowledge of all HF solutions that are minimal points. From above considerations is easy to verify that the resolution of this question is not a simple task.

On the other hand, the success of the GSA scheme for a large class of extremum problems aforementioned motivate us to extend the GSA procedure for the non-linear variacional electronic structure problems. We begin with the real closed-shell Hartree-Fock (HF) problem and develop a new form of the GSA algorithm that includes constraint conditions (HF-GSA).

We applying the HF-GSA method to determine several minima of the set of the $A H$, $\mathrm{AH}_{2}, \mathrm{AH}_{3}, \mathrm{AB}$ and AA molecular systems. Our applications with these systems were carried out by using minimal, double and triple-zeta bases. (CAPES).

# New Implementations in the AGOA program (version 2.0) 

Klaus R. Cavalcante (IC)*, Marcelo Z. Hernandes (PQ)<br> $\therefore$ alimutufpe hr

Palavras-Chaves: AGOA, Hydration, MEP.

Most chemistry and biochemistry occur in condensed media, in particular, aqueous solutions. Thus, the proper simulation of these processes has to take into account the solvent effects. The discrete models treat the solvent as individual molecules, which interact with the solute via a parametric potential (classical models) or an instantaneous Coulombic interaction between the electrons and the nuclei of the solute and the solvent molecules (quantum models). This model solves, at least partially, the problems with the continuum model, in particular, the proper description of specific solute-solvent interactions, like hydrogen bonds. However, the discrete models are much more computationally demanding than the continuum ones, and are highly dependent upon the positions of the solvent molecules around the solute.

The most appropriate positions are obtained from statistical mechanics simulations, that are not only very demanding, but also require the solute-solvent and the solvent-solvent interaction potentials, which are quite cumbersome to be obtained. Thus, alternative approaches have been developed for properly positioning the solvent molecules around the solutes without the need for statistical sampling techniques and/or for the explicit interaction potentials. This is the main concern of the present work, namely, to present a simple procedure to hydrate polar molecules, which has been denominated AGOA.

This AGOA' procedure takes into account that the most important interactions between the solute and the water is electrostatic, so that the positions of the water molecules are mostly defined by the solute MEP. This property is calculated with quantum chemical methods, including semi-empirical ones, like AM1 hamiltonian.

The current improvements in the second version (v2.0) of the AGOA include: i) automatic selection of the number of water molecules around solute, using the solvent accessible surface area (SASA) ; ;ii) a more flexible routine to explore numerical gradients of the MEP; iii) the implementation of a cutoff radius for solvent (water) molecule, to avoid high correlated structures of hydration and $i v$ ) implementation of all geometries in cartesian coordinates. Preliminary results including the tests for methanol and comparison of this version of the program with the previous one ( V 1.0 ) can be observed in Figure 1, showing the greater stability of the $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ configurations obtained with v 2.0 in the majority of the points.


AGOA 22.0 is available by e-mail upon request, or it can be downloaded at http://www.ufpe.br/farmacia/zaldini/agoa.htm/ after contact (za/dini@ufpe.br).
[1] Hernandes, M. Z: da Silva, J. B. P.: Longo, R.L. J. Braz, Chem. Soc., 2002, 13, 36
[2] Gaudio, A. C.; Takahata, Y.: Computers \& Chemistry., 1992. 16, 277.

# RELAÇÃO ESTRUTURA-FUNÇÃO DE FOSFOLIPASES A2. UM ESTUDO POR DINAMMICA MOLECULAR. 

Marcos R. Lourenzoni(PG), Richard J. Ward(PQ) e Léo Degrève(PQ)<br>lourenzoni@lycos.com<br>Grupo de Simulação Molecular, Departamento de Química, FFCLRP - USP - Ribeirāo Preto -SP.<br>Palavras-chave: Fosfolipases A2, Dinâmica Molecular, Estrutura-Função de proteínas

As fosfolipases A2 ( $\mathrm{PLA}_{2}$ s ) apresentam uma acentuada atividade sobre os fosfolipídios contidos em agregados micelares, lamelares, membranas e de outras interfaces. As PLA ${ }_{2}$ s são classificadas como intracelulares ou extracelulares. As intracelulares são freqüentemente associadas às membranas e são envolvidas no metabolismo dos fosfolipídios, transdução de sinal e outras funções essenciais à célula. As extracelulares são abundantes no suco pancreático de mamíferos, e em venenos de serpentes e insetos. A função primária de uma $\mathrm{PLA}_{2}$ é a atividade catalítica, que resulta na liberação do ácido araquidônico, um precursor de eicosanoides, o qual está envolvido em diversas reações inflamatórias. As PLA $_{2}$ s catalisam a hidrólise da ligação 2-acil éster de 3 -sn-fosfolipídios, liberando ácidos graxos livres e lisofosfatídios. A homologia entre as PLA $A_{2}$ do mesmo grupo não garante que suas funções sejam iguais. A PLA $A_{2}$ isolada do veneno da serpente Bothrops asper (AspMT-II) é cataliticamente inativa através da substituição, comparando com a ativa e isolada de bovino (Mp-B), de um resíduo Asp49 $\rightarrow$ Lys49. Embora a AspMT-II seja cataliticamente inativa, outras atividades inerentes às $\mathrm{PLA}_{2} \mathrm{~S}$ são mantidas, entre elas a citolítica. A enzima inativa é capaz de destruir a integridade da membrana celular por um processo, pouco entendido, independente da catalise. A Mp-B e a AspMT-II possuem um sítio catalítico formado por quatro resíduos, His48, Asp49 ou Lys49, Tyr52 e Asp99. A Asp49 e a His48 são essenciais na manutenção da atividade catalítica de Mp-B. A Tyr52 e a Asp99 são essenciais na manutenção das estruturas. Em Mp-B o cofator, um ion cálcio, está coordenado com Asp49, com átomos de oxigênio de carbonilas e moléculas de água. Uma destas moléculas de água, que faz ligação de hidrogênio (LH) com a His48, é essencial à catálise. Enquanto a estrutura de AspMT-II fol determinada por difração de raios-X, a de $\mathrm{Mp}-\mathrm{B}$ foi determinada por RMN. As estruturas experimentais foram utilizadas como estrutura inicial em simulações de dinâmica molecular que objetivaram determinar a estabilidade estrutural das proteínas. Os resultados foram analisados através de funções que relacionam energias, ângulos e distâncias entre os átomos da proteína e do solvente. Cada sistema simulado inclui uma proteína imersa em água, modelo SPC, contra-íons, para manter o sistema eletricamente neutro, e o cofator $\mathrm{Ca}^{2+}$ no caso de $\mathrm{Mp}-\mathrm{B}$. Todos os modelos de interações estão definidos no campo de força Gromos96. As simulações foram realizadas na temperatura de 298 K com tempo de integração de 2 fs . Os sistemas foram equilibrados durante $0,5 \mathrm{~ns}$ e as análises foram realizadas em um intervalo de 4 ns . Os resultados mostram que as estruturas das $\mathrm{PLA}_{2} \mathrm{~s}$ são mantidas e são similares entre si. As estruturas das duas $\mathrm{PLA}_{2}$ s são estabilizadas por muitas LHs intra e intermolecular. As energias envolvidas nestas LHs foram avaliadas. Embora a estrutura terciária seja estável durante a simulação, algumas mudanças locais foram observadas, principalmente na região do sítio catalítico e da hélice $N$-terminal de acordo com resultados de RMN. O íon $\mathrm{Ca}^{2+}$, que foi colocado próximo ao resíduo Asp49, não permaneceu no sítio catalítico, preferindo a hidratação. A ausência do cofator ocasionou pequenas modificações ao redor da Asp49 que se reorientou em direção ao solvente. No caso da AspMT-II, átomos de hidrogênio do grupo $\mathrm{NH}_{3}{ }^{+}$fazem LH com os de oxigênio de carbonilas, as mesmas que coordenam o cofator em Mp-B. A His48 em Mp-B teve dificuldades em fazer LHs com uma molécula de água e com a Asp99. No caso de AspMT-II, a LH com His48 é estável. As orientações dos resíduos Asp99 e Tyr52 não sofreram mudanças significativas o que é essencial para a estabilização da estrutura. Claramente, a Lys49 na AspMT-II consegue suprir a falta do cofator na região do sítio catalítico usando o seu grupo carregado $\mathrm{NH}_{3}{ }^{+}$para substituílo e estabilizar localmente a estrutura através de LHs intra e intermoleculares. O novo posicionamento da Asp49 na Mp-B, em direção ao solvente, e a ausência do $\mathrm{Ca}^{2+}$ são consistentes com a proposta de alguns trabalhos segundo os quais o cofator somente se aproxima da Asp49 quando há a aproximação do substrato. (FAPESP-CNPq).

# ESTUDO DA INTERAÇÃO DE PEPTÍDEOS COM INTERFACES ÁGUA-TETRACLORETO DE CARBONO E MICELA, VIA SIMULAÇÃO MOLECULAR E DICROÍSMO CIRCULAR. 

Marcos R. Lourenzoni(PG), Richard J. Ward(PQ) e Léo Degrève(PQ)<br>lourenzoni@lycos.com<br>Grupo de Simulação Molecular, Departamento de Química, FFCLRP - USP - Ribeirão Preto -SP.<br>Palavras-chave: Dinâmica Molecular, Peptídeo, Micela

A fosfolipase A2 ( $\mathrm{PLA}_{2}$ ) isolada do veneno da serpente Bothrops asper (AspMT-II) é cataliticamente inativa. Embora inativa, a AspMT-II mantém uma atividade citolitica, ou seja, ela destrói a integridade da membrana celular por um processo não catalítico que é pouco entendido. Estudos com um peptídeo sintético derivado da região 115-129 (p3Y) da AspMT-II reproduzem todas às ações citolítica e bactericida da proteína in vivo e in vitro. A ação de dano às membranas pode depender do caráter anfifílico do peptídeo uma vez que o peptídeo possui um cluster hidrofóbico. Deste modo, a substituição de três resíduos de tirosina em p3Y por três resíduos de triptofano (p3W) resultou em um acréscimo significativo na atividade danosa às membranas. Portanto, a caracterização estrutural destes peptídeos em um meio similar ao biológico é de grande importância para o entendimento da relação estrutura-atividade. As ações de p3Y e p3W com modelos de membranas foram testadas por simulações de dinâmica molecular (DM) e experimentos de dicroísmo circular (DC). A interação dos peptídeos com um modelo de membrana, representado por micelas de dodecil sulfato de sódio (SDS), foi monitorada por DC e DM. Foram também empregadas quatro simulações de DM para estudar a interação dos peptídeos com membranas modelada por uma interface água(A)-tetracloreto de carbono(C). Este estudo visa compreender qual a influência dos resíduos hidrofóbicos nas ações dos peptídeos sobre membranas. As interações entre os átomos de cada sistema simulado estão definidas no campo de força Gromos 96 com exceção da micela de SDS para a qual o campo de força descrito em J. Phys. Chem. B. 106:3788-3793, 2002 e Biophys. J. 72:2002-2013, 1997 foi utilizado. As simulações foram realizadas na temperatura de 298 K com tempo de integração de 2 fs , tempo de equilibração de $0,1 \mathrm{~ns}$. As análises foram realizadas em um intervalo de 5 ns . Titulações com SDS a 298 K em tampão fosfato, $\mathrm{pH} \approx 6,0$, e 100 mM NaCl foram acompanhadas pela técnica de DC.

Os resultados de DC mostram que as estruturas secundárias dos peptídeos são diferentes entre si e diferentes de quando estão livres em solução ou interagindo com micela. As mudanças nos espectros ocasionadas pela adição de SDS indicam uma relaxação estrutural do cluster hidrofóbico e, conseqüentemente, mudanças na estrutura secundária. Os espectros também indicam que p3Y possui menor afinidade por SDS.que p 3 W . As titulações com SDS permitiram definir a razão molar [SDS]/[p3Y ou p3W] em aproximadamente 65, informação que foi utilizada na simulação com micela. As simulações com interface A-C mostram que os peptídeos migram para a interface de modo que as energias peptídeo-A e peptídeo-C convergem para valores muito próximos. No entanto, as estruturas, mesmo que sensivelmente, variam ao redor de uma estrutura média. Estas estruturas mostram que os resíduos hidrofóbicos estão voltados para a fase Ce os hidrofilicos para a fase A em concordância com os resultados de DC. Os resultados de DM dos sistemas micela-peptídeo mostram que a aproximação de p 3 W de micela é mais rápida e agressiva que a de p 3 Y causando uma importante deformação da estrutura da micela. As estruturas de p3W e p3Y em contato com a micela são diferentes entre si e sensivelmente diferentes das obtidas por DM da interface A-C. Do mesmo modo, estas estruturas corroboram com os resultados obtidos por DC. Assim, nota-se que o cluster hidrofóbico é essencial no processo de ruptura da membrana. A região hidrofóbica interage fortemente com os constituintes de membrana desestabilizando o seu empacotamento. Algumas orientações de resíduos nos processos de aproximação dos peptídeos, como resíduos de arginina e lisina voltados para fora da micela e de triptofano para o interior, foram constantemente observadas. Este fato é de grande importância uma vez que peptídeos catiônicos bactericidas possuem sistematicamente resíduos de arginina vizinhos de triptofano. (FAPESP-CNPq).

# ESTUDO TEÓRICO DA MUTAROTAÇÃO DA GLICOSE 

Alexander Martins Silva 1 (PQ) e Clarissa Oliveira Silva 2 (PQ)<br>alex@iq.ufrj.br<br>1.Departamento de Físico-Química, Instituto de Química, Cidade Universitária, Universidade Federal do Rio de Janeiro, RJ, Brasil<br>2. Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, RJ, Brasil<br>Palavras-chave: carboidratos, glicose, mutarotação

Os carboidratos exercem um papel importante em muitos processos bioquímicos, desde o metabolismo energético, a processos de reconhecimento envolvendo glicolipídios e glicoproteínas. O estudo destes fenômenos se inicia com o conhecimento estrutural das moleculas neles envolvidas. Contudo, muitas questões fundamentais acerca da estrutura eletrônica de monossacarídeos permanecem sem uma resposta. Como exemplo, podemos citar que a razão entre os anômeros $\square$ - e $\square$ - ainda é alvo de sofisticados estudos teóricos.

Além de estudos conformacionais, a investigação experimental das reações envolvendo as unidades monossacarídicas também pode fornecer informações relevantes aos processos que normalmente envolvem estes compostos. Existem muitos dados experimentais sobre a mutarotação da glicose em água. Entretanto, seu mecanismo é ainda uma questão em discussão.

Fig. 1. A reação de mutarotação da D-glicose.
Neste trabalho apresenta-se um estudo teórico da reação de mutarotação da D-glicose em seus hemiacetais: 口-D-glicopiranose e $\square$-D-Glicopiranose. Os cálculos foram

realizados em nível B3LYP/6-31+G(d,p), tanto em fase gasosa como em solução. Os resultados mostram que tanto os mecanismos como as energias de ativação desta reação em fase gasosa e em solução são muito diferentes. Como exemplo, as energias de ativação, em fase gasosa, para as conversões da $\square$ - e $\square$-D-Glicopiranose na forma aberta da glicose são, respectivamente, 42,25 e $43,29 \mathrm{kcal} / \mathrm{mol}$. Esses valores são consideravelmente reduzidos, em cerca de $45 \%$, quando consideramos a assistência de uma molécula de água, conforme o modelo de microssolvatação. (CNPq).

# ESTUDO TEÓRICO DA REAÇÃO DE NITRAÇÃO DO BENZENO POR NITRATOS DE ACILA CATALISADA POR ZEÓLITOS 

Alexander Martins Silva(PQ) e Marco Antonio Chaer Nascimento(PQ)<br>alex@iq.ufrj.br<br>Departamento de Físico-Química, Instituto de Química, Cidade Universitária, Universidade Federal do Rio de Janeiro, RJ, Brasil<br>Palavras-chave: nitração aromática, zeólitos, cálculos DFT

A reação de nitração de compostos aromáticos é uma das mais importantes e estudadas reações químicas. A reação clássica com a mistura sulfo-nítrica vem sendo empregada desde o século XIX. Embora os compostos aromáticos sejam bastantes reativos em relação à nitração, esta reação é pouco seletiva e seus produtos ácidos, gerados ao fim da reação, representam um sério problema ambiental.

Ao longo dos últimos anos foram desenvolvidos métodos alternativos de nitração, mais brandos e, às vezes, mais eficientes do que a clássica mistura $\mathrm{HNO} 3 / \mathrm{H} 2 \mathrm{SO} 4$. Um desses métodos consiste no emprego dos nitratos de acila (RCOONO2) como agentes nitrantes das espécies aromáticas, com o auxílio de zeólitos como catalisador ácido da reação de nitração. O emprego deste sistema apresenta algumas vantagens em relação à reação clássica, como uma fácil remoção do produto do meio reacional, uma maior seletividade de reagentes e produtos e sua baixa agressividade ao meio ambiente.

Neste trabalho, é apresentado um estudo teórico da reação de nitração do benzeno por nitrato de formila catalisada por zeólito. Os cálculos foram realizados em nível B3LYP/6-31G(d,p), usando um aglomerado 5T como modelo para o sítio zeolítico protonado. Os cálculos revelam que a reação ocorre provavelmente em três etapas. A primeira, e controladora da velocidade de reação, envolve o ataque do próton, do sítio ácido do zeólito, ao nitrato de acila, com a conseqüente formação de um ion nitrônio. A energia de ativação estimada é de $19,3 \mathrm{kcal} \mathrm{mol}^{-1}$. A segunda etapa da reação envolve o ataque do íon nitrônio ao anel benzênico, e a terceira etapa provavelmente envolve a desprotonação do íon arênio, com a formação de nitrobenzeno e a reconstituição do sítio ácido. A reação é exotérmica, sendo que os produtos- nitrobenzeno e ácido fórmico- adsorvem-se mais fortemente no zeólito que os reagentes. Também é discutida a influência de um aglomerado modelo maior, como o 20 T , no mecanismo e na energia de ativação obtidos com o aglomerado 5T. (PRONEX, Instituto do Milênio de Materiais Complexos, CNPq, FAPERJ, CAPES).

# PARALELIZAÇÃO DA APLICAÇÃO FORTRANRF-GSA 

 UTILIZANDO SISTEMAS SOFTWARE DSMS.Micael Dias de Andrade ${ }^{1}$ (PG), Maria Clicia Stelling de Castro ${ }^{2}$ (PQ), Kleber Carlos Mundim ${ }^{3}$ (PQ), Luiz A. C. Malbouisson ${ }^{1}$ (PQ), Claudio Luis de Amorim² (PQ).<br>micael@ufba.br<br>${ }^{1}$ Instituto de Física, UFBA, Rua Barão de Geremoabo, Campus de Ondina, 40210-340, Salvador, $B A$.<br>${ }^{2}$ Laboratório de Computação Paralela, COPPE/UFRJ, Ilha do Fundão, Centro de Tecnologia, Bloco I-232, 22.945-970, Rio de Janeiro, RJ.<br>${ }^{3}$ Instituto de Química, UNB, Asa Norte, CEP 70919-970, Brasília, DF<br>Palavras Chave: Aplicação Paralela, Software DSM, Hartree-Fock Generalized Simulate Annealing

HF-GSA (Hartree-Fock Generalized Simulated Annealing) é um método estocástico, em desenvolvimento, de busca de mínimos do funcional Hartree-Fock, $\mathrm{E}\left(\mathbf{c}_{\mathrm{i}}\right)$. Ele é uma versão modificada do GSA para incluir condições de vínculo no método, neste caso, as condições de ortonormalidade sobre os orbitais moleculares, $\mathbf{c}_{\text {i }}$.

Neste trabalho, paralelizamos o algoritmo HF-GSA utilizando o sistema de programação TreadMarks de memória compartilhada distribuída para clusters de computadores. TreadMarks é um sistema software DSM (Distributed Shared Memory) que provê a abstração de uma única memória compartilhada sobre todas as memórias fisicamente distribuídas dos processadores do cluster. Sistemas software DSMs aproximam mais facilmente a programação paralela da programação seqüencial, a qual é mais intuitiva para os programadores. Essa característica faz com que a programação de clusters seja mais simples do que aquela que utiliza bibliotecas PVM (Parallel Virtual Machine) ou MPI (Message Passing Interface) embora com menor desempenho dependendo das características da aplicação.

Nos testes de desempenho do código FORTRAN seqüencial do HF-GSA, encontrase que o cálculo de $E\left(c_{i}\right)$ é o passo de maior custo computacional nos ciclos do procedimento iterativo, superando substancialmente todos os demais, em todas as situações relevantes. Dessa forma, no presente estágio do método HF-GSA, a estratégia inicial de implementação paralela do código está centrada no cálculo de $E\left(\mathbf{c}_{\mathbf{i}}\right)$, o qual segue o seguinte esquema. $E\left(\mathbf{c}_{\mathbf{i}}\right)$ é escrito em termos dos elementos das matrizes "energia cinética + atração nuclear", $H_{\mu v}$, e de correlação, $\mathrm{G}_{\mu v}\left(\mathbf{c}_{\mathrm{i}}\right)$. Os $\mathrm{G}_{\mu v}\left(\mathbf{c}_{\mathrm{i}}\right)$ são calculados como usualmente (armazenando as integrais com a regra $[\mathrm{ij}] \geq[\mathrm{k} \mid]$ ), porém dividindo-se o arquivo de integrais em lotes iguais para cada processador empregado. Desta maneira, cada processador calcula a contribuição de cada lote de integrais para o valor de $E\left(c_{i}\right)$.

As plataformas usadas para os primeiros testes foram: Cluster 1 - rede de 16 PCs dual-Pentium III com 650 MHz , 512 MBytes de memória RAM, 256 KBytes de cache (L2), conectada por uma rede de comunicação Fast-Ethernet com $100 \mathrm{Mbits} / \mathrm{seg}$, e sistema operacional Linux Red Hat 6.2; Cluster 2 - rede de 12 PCs dual-Atlon de 2.0 GHz de clock, 1.0 GBytes de RAM, 256 KBytes de cache (L2), conectada por uma rede de comunicação 3Com com $100 \mathrm{Mbits} / \mathrm{seg}$, e sistema operacional Linux Conectiva 9.0.

Como esperado, uma versão paralela preliminar de HF-GSA foi obtida rapidamente e os resultados indicam ganhos de desempenho relativos ao código seqüencial até um certo número de processadores, mesmo para os sistemas moleculares pequenos usados nos testes iniciais ( $A A$ e $A B, A$ e $B$ - elementos da primeira linha, bases DZV e TZV), e com redes de comunicação comerciais de baixo custo.

# SIMULAÇÃO DE DNA COM MODELO DE SOLVATAÇÃO DE BORN GENERALIZADO 

Munir Skaf (PQ), Milton Sonoda (PG)<br>msonoda@iqm.unicamp.br<br>UNICAMP, Institudo de Química, Dep. de Físico-Química<br>Palavras-chave: DNA, solvatação implícita, solvatação explícita

Estudos de ácidos nucléicos através de dinâmica molecular (DM) vivenciou considerável progresso na última década. Com a utilização de campos de força desenvolvidos recentemente e particle-mesh Ewald (PME) para o tratamento das interações eletrostáticas é possivel obter trajetórias estáveis de seqüências de DNA e RNA por tempos da ordem de nanosegundos. A maioria destas simulações envolvem a representação explícita do solvente, utilizando condições periódicas de contorno. Nesse tipo de abordagem, um grande número de moléculas de solvente deve ser utilizado para minimizar a interação entre as imagens periódicas das caixas de simulação. Mesmo para o poder computacional disponivel hoje em dia, e principalmente no estudo de macromoléculas por simulação, ainda é atraente a idéia de se tratar o solvente de uma forma implicita, utilizando um modelo contínuo.

Esses modelos implícitos fornecem uma solução numérica aproximada para a componente eletrostática da interação soluto-solvente da energia livre de solvatação $\Delta G$. Apesar de introduzir novos parâmetros ao campo de força, esse modelo é capaz de reproduzir a energia livre de solvatação dada pelo modelo de solvente contínuo de Poisson-Boltzmann (PB) para uma variedade de biomoléculas, sem a necessidade de resolver' a equação de Poisson. Um dos modelos de solvatação implícita mais utilizados na literatura é o modelo de Born Generalizado [1], utilizando a aproximação de desblindagem aos pares [2], cujos parâmetros para ácidos nucléicos fòram desenvolvidos recentemente $[3,4]$.

Embora conveniente, em termos computacionais, existem limitações na aproximação da substituição do solvente por um dielétrico contínuo. Esses modelos não levam em conta interações especificas, como as ligações de hidrogênio entre o solvente e o soluto. Nas estruturas determinadas por raio-X, evidencia-se a existência de águas ligadas aos fosfatos e nas cavidades denominadas "maior" e "menor" da estrutura do DNA. Tais moléculas do solvente possuem tempo de residência extremamente alto ( $\sim \mathrm{ms}$ ) realizando uma função estrutural [5]. Os contra-ions se associam com DNA em posições específicas da cavidade "menor", influenciando em sua estrutura e termodinâmica de uma forma dependente da seqüência de nucleotídeos [5]. Esses efeitos, além de não poderem ser observados no modelo implícito, são levados em conta de uma forma média, alterando a dinâmica do DNA, quando comparada com a dinâmica observada quando se utiliza solvatação explícita. Por exemplo, a transição A-DNA para B-DNA utilizando modelo BG foi observada em 20 ps , cerca de 20 vezes mais rápida do que a observada utilizando solvente explícito.

Com o objetivo de comparar a dinâmica do DNA utilizando modelos de solvatação implícita e explícita realizamos simulações utilizando o modelo BG. As trajetórias obtidas foram analisadas em termos de parâmetros estruturais médios que mostram que a estrutura permanece na sua forma B . Cada nucleotídeo do DNA foi dividido em 3 subunidades: espinha dorsal, desoxiribose e base nitrogenada, e o movimento de cada uma dessas subunidades foi decomposta em 3 tipos de movimento: translação de corpo rígido, rotação de corpo rígido e deformação interna. A dependência temporal da influência de um tipo de movimento de uma subunidade sobre movimentos de outra subunidade foi computada através de um coeficiente de correlação. Os resultados foram comparados com as análises realizadas para uma simulação da mesma seqüência de DNA, porém com solvente explícito. O movimento rotacional das bases também foi analisado em termos da função de correlação dos seus versores normais, relevantes aos experimentos de despolarização fluorescente[6]. (CNPq, Fapesp).
[1] Annu. Rev. Phys. Chem. Bashford D. e Case, D. A., 2000 51:129-152
[2] Chem. Phys. Lett. Hawkins G. D., Cramer, C. J. e Truhlar D. G., 1995 246:122-129
[3] J. Am. Chem. Soc. Tsui, V. e Case, D. A., 2000 122: 2489-2498
[4] Biopolimers Tsui, V e Case, D. A., 2000 56: 275-291
[5] J. Am. Chem. Soc. Young, M. A., Jayaram, B. e Beveridge, D. L. 1997 119: 59-69
[6] Biochemistry Ichiye, T e Karplus, M, 1983 22: 2884-2893

# APLICAÇÃO DO MÉTODO DE FRAÇÕES CONTINUADAS NA FOTOIONIZAÇÃO DA AMÔNIA 

Edmar Moraes do Nascimento (PQ) ${ }^{1}$, Luiz Eugênio Machado (PQ) ${ }^{2}$, Evandro Marcos Sidel Ribeiro (PQ) ${ }^{3}$, Lee Mu-Tao (PQ) ${ }^{4}$

edmar@ufba.br
${ }^{1}$ Instituto de Fisica, UFBa, 40210-340 Salvador, Ba, Brasil -
${ }^{2}$ Departamento de Física, UFSCar, 13565-905 São Carlos, SP, Brasil
${ }^{3}$ Instituto de Física de São Carlos, USP, 13560-970, São Carlos, SP, Brasil
${ }^{4}$ Departamento de Química, UFSCar, 13565-905, São Carlos, SP, Brasil
Palavras-chave: fotoionização, mcf, amônia
O método de frações continuadas (MCF) foi originalmente proposto por Horácek e Sasakawa [1] e posteriormente a sua aplicabilidade do método foi estendida por Lee et al [2] e Ribeiro et al [3], para estudos do espalhamento de elétrons por moléculas lineares e não lineares respectivamente. Neste trabalho estendemos a aplicabilidade do MCF para o estudo monocanal da fotoionização de moléculas com geometria arbitrária. Como primeira aplicação, calculamos as seções de choque parciais $(\sigma)$ e os parâmetros de assimetria $(\beta)$ na fotoionização dos orbitais de valência $3 a_{1}$ e 1 e da molécula de amônia, para energias do fóton incidente desde o limiar de excitação até 50 eV .

Para obter as funções de onda do contínuo resolvemos a equação de LippmannSchwinger:

$$
\begin{equation*}
\left|\Psi_{\vec{k}}\right\rangle=\left|u_{0}\right\rangle+G_{0}^{p} U^{(0)}\left|\Psi_{k}\right\rangle . \tag{1}
\end{equation*}
$$

Podemos definir um operador potencial "enfraquecido" $U^{(n)}$, para a $n$-ésima iteração como

$$
\begin{equation*}
U^{(n)}=U^{(n-1)}-U^{(n-1)}\left|u_{n-1}\right\rangle\left[D_{(n-1, n-1)}\right]^{-1}\left\langle u_{n-1}\right| U^{(n-1)} \tag{2}
\end{equation*}
$$

onde $D_{(i, j)}=\left\langle u_{i}\right| U^{(i)}\left|u_{j}\right\rangle$, e $\left|u_{n+1}\right\rangle=G_{0}^{P} U^{(n)}\left|u_{n}\right\rangle$. Espera-se que $U^{(n)}$, como definido em (2), torne-se mais fraco à medida que cresce o número de iterações. A matriz $K$ é então escrita como

$$
\begin{equation*}
\mathbf{K}=-k\left\{\mathbf{D}_{(0.0)}+\mathbf{K}_{1}\left[\mathbf{D}_{(0.0)}-\mathbf{K}_{1}\right]^{-1} \mathbf{D}_{(0.0)}\right\} \tag{3}
\end{equation*}
$$

onde $\boldsymbol{K}_{1}$ é calculada recursivamente por

$$
\begin{equation*}
\mathbf{K}_{n}=\mathbf{D}_{(n-1, n)}+\mathbf{D}_{(n, n)}\left[\mathbf{D}_{(n, n)}-\mathbf{K}_{n+1}\right]^{-1} \mathbf{D}_{(n, n)} \tag{4}
\end{equation*}
$$

fazendo-se $K_{n+1}=0$. A matriz $K$ convergida e as funções de onda do contínuo assim obtidas são utilizadas para calcular os coeficientes dinâmicos $I^{L}=k^{1 / 2}\left\langle\Psi_{0}\right| \vec{r}\left|\Psi_{\bar{k}}\right\rangle$ $I^{V}=k^{1 / 2} / E\left\langle\Psi_{0}\right| \vec{\nabla}\left|\Psi_{\vec{k}}\right\rangle$, dados na forma comprimento (L) e velocidade ( V ) respectivamente.

Na Figura 1 apresentamos resultados calculados para $\sigma^{\text {L.V }}$ na fotoionização do orbital $3 a_{1}$ da amônia, junto com resultados experimentais e outros resultados teóricos disponíveis na literatura. Nota-se uma boa concordância entre os resultados. O MCF demonstra ter grande precisão e uma rápida convergência. Resultados adicionais serão apresentados durante o Simpósio. (CAPES/PICD, CNPq e FAPESP).


Figura 1. Seção de choque para a fotoionização do orbital $3 a_{1}$ de $\mathrm{NH}_{3}$. Linha sólida, $\sigma^{\mathrm{L}}$; tracejado, $\sigma^{\vee}$; pontilhada, resultados teóricos de Orel e Rescigno[4]; cruz, resultados experimentais de Brion et al.[5]; triangulos, resultados experimentais de Banna et al.[6]

[^8]
## P102

# FOTOIONIZAÇÃO DE CH2 $\mathrm{F}_{2}$ NA REGIÃO DO ULTRAVIOLETA DE VÁCUO 

Edmar Moraes do Nascimento (PQ) ${ }^{1}$, Lee Mu-Tao (PQ) ${ }^{2}$, Luiz Marco Brescansin (PQ) ${ }^{3}$, Luiz Eugênio Machado (PQ) ${ }^{4}$<br>edmar@ufba.br<br>${ }^{1}$ Instituto de Física, UFBa, 40210-340 Salvador, Ba, Brasil -<br>${ }^{2}$ Departamento de Química, UFSCar, 13565-905, São Carlos, SP, Brasil<br>${ }^{3}$ Instituto de Física "Gleb Wataghin", UNICAMP, 13083-970, Campinas, SP, Brasil<br>${ }^{4}$ Departamento de Física, UFSCar, 13565-905 São Carlos, SP, Brasil<br>Palavras-chave: fotoionização, $\mathrm{CH}_{2} \mathrm{~F}_{2}$, SVIM

Apesar de a fotofísica dos fluorcarbonos ter sido bastante estudada nas últimas décadas, não se registram dados sistemáticos para as seções de choque parciais de fotoionização ( $\sigma$ ), nem tampouco para os parâmetros de assimetria ( $\beta$ ). Apresentamos aqui um estudo teórico sobre a fotoionização da camada de valência da molécula $\mathrm{CH}_{2} \mathrm{~F}_{2}$ na faixa de energia desde o limiar de excitação até 60 eV . Determinamos as funções de onda do fotoelétron e a matriz de reatância $K$ utilizando o método variacional iterativo de Schwinger (SVIM) [1], com um potencial de iteração do tipo estático-troca-correlação-polarização. A parte estático-troca é calculada exatamente, enquanto que para a parte de correlação-polarização adotamos um potencial modelo de Padial e Norcross [2].

As seções de choque diferenciais, efetuada a média sobre as orientações moleculares, são dadas por:

$$
\begin{equation*}
\frac{d \sigma^{(L, V)}}{d \Omega_{i}}=\frac{\sigma^{(L, V)}}{4 \pi}\left[1+\beta_{i}^{\left(L, V^{\prime}\right)} P_{2}(\cos \theta)\right] \tag{1}
\end{equation*}
$$

onde $\sigma^{(L, V)}$ é a seção de choque total, obtida para as formas comprimento (L) e velocidade (V) do operador momento de dipolo. Para moléculas não lineares $\sigma^{(L, V)}$ é dada por

$$
\begin{equation*}
\sigma^{(L, v)}=\frac{4 \pi^{2} E}{3 c} \sum_{r, \mu l l y}\left|I_{l /{ }^{\prime \prime \mu}}^{p(L, v)}\right|^{2} . \tag{2}
\end{equation*}
$$

Por sua vez a distribuição angular dos fótoelétrons é dada por:
onde $I_{l h v}^{p \mu^{(L, V)}}$ são as componentes dos coeficientes dinâmicos $I^{L}=k^{1 / 2}\left\langle\Psi_{0}\right| \vec{r}\left|\Psi_{\vec{k}}\right\rangle \mathrm{e}$ $I^{v}=k^{1 / 2} / E\left\langle\Psi_{0}\right| \vec{\nabla}\left|\Psi_{\vec{k}}\right\rangle$.

Na Figura 1 apresentamos resultados $\sigma^{(L, V)}$ calculados para a fotoionização do orbital $2 \mathrm{~B}_{2}$ da molécula $\mathrm{CH}_{2} \mathrm{~F}_{2}$, comparados aos resultados teóricos de Padeletti et al. [3]. Há boa concordância entre os dados apresentados e os nossos resultados revelam estruturas que uma posterior análise de autofases indica serem de natureza ressonante. Resultados adicionais serão apresentados durante o Simpósio. (CAPES/PICD, CNPq e FAPESP).

[^9]

Figura 1. Seção de choque para a fotoionização do orbital $2 \mathrm{~B}_{2}$ de $\mathrm{CH}_{2} \mathrm{~F}_{2}$. Linha sólida, $\sigma^{\mathrm{L}}$; tracejada, $\sigma^{\mathrm{V}}$; pontilhada, Padelett et al. (MSAA) [3]; traço-ponto, Padeletti et al (MS-X $\alpha$ ) [3]

# TRANSPORT COEFFICIENTS IN ROOM TEMPERATURE MOLTEN SALTS 

Hubert Stassen (PQ) ${ }^{1}$ and Jones de Andrade (PG)<br>gullit@iq.ufrgs.br<br>1: Grupo de Química Teórica, Instituto de Química - UFRGS, Av. Bento Gonçalves, 9500, 91540000 Porto Alegre - RS, e-mail:<br>2: Atomistic Simulation Group, Queens University, Belfast (UK)<br>Palavras-chave: Molecular Dynamics Simulations, Electric Conductivity, Diffusion.

We have calculated self diffusion and electric conductivity coefficients for several room temperature molten salts from molecular dynamics computer simulations employing our previously established AMBER type force fields (J. de Andrade, E.S. Böes, and H. Stassen, J. Phys. Chem. B 106 (2002), 3546 and ibid. 13344). The ionic liquids based on the 1-alkyl-3methylimidazolium cation have been treated with the alkyl-group represented by ethyl (EMI), propyl (PMI), or butyl (BMI). Two anions, the tetrachloroaluminate ( $\mathrm{AlCl}_{4}^{-}$) and the tetrafluoroborate $\left(\mathrm{BF}_{4}\right)$ ) were considered. The self diffusion constant has been obtained from the mean-squared displacement for the cations and anions whereas the corresponding GreenKubo relation has been employed in the computation of the electric conductivity.
The table resumes the computed values for the diffusion coefficient for cations ( $D_{+}$) and anions (D.) as well as the electric conductivity K for the studied ionic liquids at a temperature of 298 K and vapor-liquid coexistence:

| Ionic Liquid | $D_{+} / 10^{-6} \mathrm{~cm}^{2} \mathbf{s}^{-}$ | $\mathrm{D} . / 10^{-6} \mathrm{~cm}^{2} \mathbf{s}^{-1}$ | $\mathrm{~K} / 10^{-2} \mathrm{Scm}^{-1}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{EMIAICl}_{4}$ | 0.82 | 0.59 | 1.0 |
| PMIAICl $_{4}$ | 0.43 | 0.37 | 1.8 |
| BMIAICl $_{4}$ | 0.34 | 0.35 | 0.9 |
| EMIBF $_{4}$ | 0.15 | 0.11 | 0.8 |
| BMIBF $_{4}$ | 0.12 | 0.10 | 0.6 |

These numbers exhibit two tendencies: i) the investigated transport coefficients decrease with the number of $\mathrm{CH}_{2}$ groups in the alkyl chain of the cations, and ii) ionic liquids containing the smaller anion $\mathrm{BF}_{4}{ }^{-}$possess lower diffusion constants and electric conductivities.

The alkyl chain influence in the transport coefficients corresponds to the expected behavior that larger species present more restricted dynamical features. In contrast to this expectation, the size effect of the anions is compensated by the stronger coordination of the $\mathrm{BF}_{4}{ }^{-}$anions to the cations. Comparing radial pair distribution functions for distances between the imidazolium ring systems, only ionic liquids containing the $\mathrm{BF}_{4}$ anion present short range structures at distances below 5 A. In addition, first peak positions in the anion-anion and cationanion pair distribution functions exhibit a shift towards lower distances when the $\mathrm{AlCl}_{4}{ }^{\circ}$ is substituted by $\mathrm{BF}_{4}$ anions.

The computed electric conductivities have been separated into contributions originated at the dynamics of the cationic and the anionic species as well as the cross term between the two. Theories developed by Sundheim (B.R. Sundheim, J. Phys. Chem. 60 (1956), 1381) and Koishi et al. (T. Koishi, S. Kawase, and S. Tamaki, J. Comput. Chem. 116 (2002), 3018 and T. Koishi, Y. Arai, Y. Shirakawa, and S. Tamaki, J. Phys. Soc. Jap. 66 (1997), 3188) relating the partial electric conductivities to masses of the species have been found to be valid in the ionic liquids. [CNPq, CAPES, FAPERGS].

# ESTADOS LMCT EM COMPOSTOS COM LANTANÍDEOS USANDO O ZINDO 

Hélcio J. Batista (PQ) ${ }^{\mathrm{a}, \mathrm{b}}$ e Ricardo L. Longo (PQ) ${ }^{\mathrm{b}}$<br>${ }^{\text {a }}$ Departamento de Química - UFRPE ${ }^{\text {b }}$ Departamento de Química Fundamentai - UFPE Palavras-chave: transferência de carga, lantanídeos, relaxação orbital

Estados de transferência de carga ligante-metal (LMCT) desempenham importante papel no processo de luminescência em vários compostos de coordenação com íons lantanídeos. Normalmente atuam suprimindo a luminescência, resultado em certos casos da interação com estados excitados do composto que transferem energia para os estados emissores. Esta interação depende, portanto, da energia e da simetria do estado CT, propriedades de difícil determinação experimental. Sua estimativa mediante cálculos químicoquânticos $a b$ initio envolvem muitas complicações inerentes à estrutura eletrônica das camadas $4 f$. Uma alternativa conveniente do ponto de vista computacional são os métodos semiempíricos. O criptato $[\mathrm{Eu} \subset(2.2 .1)]^{3+} \mathrm{e}$ o ion $\mathrm{Eu}^{3+}$ aquoso foram escolhidos como sistemas modelo na aplicação de uma metodologia para a obtenção dos estados LMCT, utilizando o programa ZINDO. A função de onda SCF de camada aberta é do tipo SAHF, um caso particular do tipo ROHF para uma média de estados com mesmo spin. O nível de correlação essencial é provido por níveis CISD e CISDT ou MRCI. A correlação dinâmica é descrita indiretamente na parametrização do hamiltoniano. As funções configuração de estado (CSF) são adaptadas a spin pelo método de Rumer e após o Cl é feito um cálculo com interação spin-órbita do tipo SOCI. No cálculo de estados excitados, os orbitais foram otimizados nos estados LMCT de interesse, e as energias das transições LMCT obtidas pelo método $\Delta E(S O C I)$. Para o criptato foram estudadas três estruturas distintas, no estado gasoso, com uma molécula de água coordenada e com um ion fluoreto coordenado. Experimentalmente, as duas transições de menor energia situam-se a 40323 e $33557 \mathrm{~cm}^{-1}$. A estrutura [ $\mathrm{Eu} \subset$ (2.2.1).( $\left.\left.\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ forneceu os melhores resultados, 37800 e $32857 \mathrm{~cm}^{-1}$, respectivamente. Para o íon aquoso, duas estruturas foram analisadas: $\left[\mathrm{Eu} \subset\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{3+}$ (banda $=70985 \mathrm{~cm}^{-1}$ ) e $[\mathrm{Eu} \subset$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}(\mathrm{OH})\right]^{2+}$ (banda $=47802 \mathrm{~cm}^{-1}$ ), sendo que somente a estrutura hidrolisada forneceu um resultado próximo do valor experimental, $52632 \mathrm{~cm}^{-1}$. Estes novos resultados revelam aspectos ainda não explorados na literatura a respeito (i) do cálculo destes estados, como a necessidade de relaxação orbital (estabilização da ordem de $20000 \mathrm{~cm}^{-1}$ ) e, em certos casos, estruturas hidrolisadas representando melhor a situação em solução aquosa; bem como (ii) da simetria de spin. Neste último caso, foi possível verificar que, em quase todos os compostos analisados, o estado LMCT mais baixo em energia constitui uma mistura entre septetos ( $S=3$ ) e quintetos $(S=2)$, e não noneto puro ( $S=4$ ), como prevê a regra de Hund. (CNPq, PADCT, Pronex, FACEPE, RENAMI).

# GAUSSIAN-BASIS-SETS FOR LOW-LYING EXCITED STATES OF NEUTRAL ATOMS WITH $2 \leq Z \leq 36$ 

## Marcelo Trade Barreto (PG), Antônio Canal Neto (PG) e Francisco Elias Jorge (PQ). <br> mtbarreto@superig.com.br

Departamento de Fisica, Universidade Federal do Espírito Santo, 29060-900 Vitória, ES
Palavras-chave: Improved generator coordinate Hartree-Fock method, Gaussian basis sets, low-lying excited states.

The improved generator coordinate Hartree-Fock (IGCHF) method [1] is employed to generate triple-optimized Gaussian basis sets (TOGBSs) for low-lying excited states of neutral atoms from He to Kr. From these basis sets, excitation energies and orbital energies of the outermost atomic orbitals are calculated and compared with numerical HF (NHF) results [2,3]. For all 109 excited states studied here, the errors obtained with the TOGBSs are always smaller than 6.88 mhartree, and our excitation and orbital energies are in excellent agreement with the corresponding NHF results. Table 1 shows some results obtained in this work:

| Table 1. HF total energies (in hartree) for the ground and some excited states of some atoms. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z | $\begin{gathered} \hline \text { Ato } \\ \mathrm{m} \\ \hline \end{gathered}$ | Configuration | State | TOGBS <br> (size) | - <br> (this work) | -E (NHF) |
| 9 | F | $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5}$ | ${ }^{2} \mathrm{P}$ | 20s11p | 99.40931821 | 99.4093494 |
|  |  | [He]2s ${ }^{1} 2 p^{6}$ | ${ }^{2} \mathrm{~S}$ | 20s11p | 98.53122439 | 98.5312420 |
| 17 | Cl | $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$ | ${ }^{2} \mathrm{P}$ | 18s13p | 459.4812242 | 459.482072 |
|  |  | [ Ne$] 3 s^{1} 3 p^{6}$ | ${ }^{2} \mathrm{~S}$ | 18s13p | 458.9164450 | 458.916765 |
| 21 | Sc | $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}$ | ${ }^{2} \mathrm{D}$ | 20s13p10d | 759.7341836 | 759.735718 |
|  |  | $\left[\right.$ Ar] $4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}$ | ${ }^{4} \mathrm{~F}$ | 20s13p10d | 759.6975790 | 759.698786 |
|  |  |  | ${ }^{2} \mathrm{~S}$ | 20s13p10d | 759.5713888 | 759.572585 |
| 29 | Cu | $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$ | ${ }^{2} \mathrm{~S}$ | 20s13p10d | 1638.959169 | 1638.96374 |
|  |  | $[\operatorname{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}$ | ${ }^{2} \mathrm{D}$ | 20s13p10d | 1638.947005 | 1638.95008 |

Thus, from the results obtained here, we believe that the TOGBSs are useful for constructing basis sets for molecules containing any atom of the first-, second- or third-row of the Periodic Table. (CNPq).
[1] Jorge, F. E., de Castro, E. V. R., 1999. Chem. Phys. Lett. 302, 454.
[2] Tatewaki, H., Koga, T., Sakai, Y., Thakkar, A. J., 1994. J. Chem. Phys. 101, 4945.
[3] Tatewaki, H., Koga, T., 1994. Chem. Phys. Lett. 228, 562.

# QUANTUM CONTROLLED NOT GATE MADE OF COUPLED POLYACETYLENE CHAIN. 

Paulo Henrique Alves Guimarães (PG), Geraldo Magela e Silva (PQ).<br>pauloh @fis.unb.br<br>Institute of Physics, University of Brasilia, 70919-970 Brasília, DF, Brazil

Palavras-chave: quantum computation, conducting polymer, molecular dynamics.
The objective of our work is to study, with a pair of coupled polyacetylene chains, if it is possible to construct two qubits and implement qubit gates, especially the quantum controlled NOT gate, this is not a universal gate, but a universal gate can be constructed by a combination of the quantum controlled Not and simple unitary operations on single qubits.

We have studied a quantum gate made of coupled polyacetylene chains with impurities. We described the qubits model in terms of interacting solitons representing two qubits obtained in each of the coupled polyacetylene chains. This work was carried out through numerical calculation using an extended version of the SSH model. The time-dependent Schrödinger equation in the TimeDependent Hartree-Fock approximation and the equation of motion for the time-dependent lattice displacements form a coupled set of equations that were numerically integrated over the time in a self-consistent way.

The fundamental connection between the laws of physics and what is computable was emphasized in studies by Feynman (1982) and Deutsch (1995) when it was introduced the quantum computation ideas. Quantum computers are machines that rely on quantum phenomena, such as quantum interference and quantum entanglement, in order to perform computations. The basic ingredients for a quantum computational device are two-level elements serving as quantum bits (qubits). Two-state quantum systems are systems capable of supporting coherent superposition of states.

The study of the dynamics on a polyacetylene single chain with two solitons showed that it is possible to construct a qubit system with this polymer. In this study we start with the same Hamiltonian used by e Silva and Terai (1993), the initial dynamics study involving the solitons in polyacetylene with interchain coupling was taken by them, it is an SSH-type Hamiltonian for each chain, which are modified to include an electric field, interchain coupling terms, and impurity potentials. In our study we analyze a pair of solitons in each chain. Firstly, we prepare a stationary state, which is fully self-consistent with respect to both degrees of freedom, of the electrons and phonons, as the initial conditions of the calculations. Then, under the action of the electric field, the electronic and the lattice equations of motion are numerically integrated. The time-dependent Schrödinger equation is analytically integrated by introducing single electron eigenstates at each moment. Periodic boundary conditions are assumed for the electronic wave functions and the lattice displacements.

When we consider two coupled polyacetylene chains it is possible to consider each one with two solitons, and each soliton can be associated with an impurity. With this system it is possible to constructed two qubits because there appears four energy level in the middle of the gap, each level associated with one soliton. The initial states are separated or approached in conformity with changes in the impurity molecules bonded to the chain. The interaction between the qubits is performed by an external electric field. The system is shown in figure.


It means that we have one qubit (two levels) with one electron (associated with the neutral soliton) for each chain. In this situation we have two possible states defined by $\mid 0>$ and $\mid 1>$ for each chain. With these two coupled chains we need to interact with the two qubits and then consider if a logical gate behavior appears. After constructing the initial system, we applied an electric field and follow the dynamics of the system. The presence of the electric field changes the energy levels in the gap due to the qubits interaction. A quantum logic gate of coupled polyacetylene chains is obtained. The qubits interaction leading to the gate behavior is achieved when an electric field is applied. The

# PARES DE CADEIAS ACOPLADAS DE POLIACETILENO ESTUDO DAS FASES ESTRUTURAIS. 

Paulo Henrique Alves Guimarães (PG), Geraldo Magela e Silva (PQ).<br>pauloh@fis.unb.br<br>Instituto de Física, Universidade de Brasília, 70919-970 Brasilia, DF, Brasil.<br>Palavras-chave: polímeros condutores, interação entre cadeias, sólitons e pólarons.

A síntese de polímeros condutores com estruturas mais complexas nos incentivou a estudar a estabilidade e o aparecimento de defeitos estruturais na formação de pares de cadeias acopladas de poliacetileno.

A localização das impurezas bem como as ligações duplas e simples entre as cadeias acopladas (paralelas ou não), definem quatro tipos possíveis de acoplamento entre elas:

EEP $\rightarrow$ Cadeias acopladas em fase, com impurezas em sítios de mesma paridade.
EEO $\rightarrow$ Cadeias acopladas fora de fase, com impurezas em sítios de mesma paridade.
EOP $\rightarrow$ Cadeias acopladas em fase, com impurezas em sítios de paridade diferentes.
EOO $\rightarrow$ Cadeias acopladas fora de fase, com impurezas em sítios de paridade diferente.
Para cada uma das configurações encontrada fizemos uma varredura na intensidade das impurezas nos sítios e, como exemplo estudamos um sistema com carga $+2 e$, onde obtivemos as seis fases definidas no quadro:

| A | Um Sóliton Positivo e outro Neutro por Cadeia. |
| :---: | :--- |
|  | Um Sóliton Positivo e outro Neutro por Cadeia, no entanto os neutros provocam |
| uma redistribuicão local de cargas localizadas nos sítios com impureza. |  |
| U | Uma das Cadeias com um Sóliton Positivo e outro Negativo, e a outra Cadeia com |
| dois Sólitons Positivos. |  |
| C | Uma Cadeia Dimerizada e a outra com um Bipólaron. |
| D | Dois Pólarons em cada Cadeia. |
| E | Uma Cadeia Dimerizada e a outra com dois Sólitons Positivos. |

O número de ocupação dos elétrons nas camadas de valência define o tipo de defeito que poderá surgir. Fizemos uma varredura na intensidade e localização das impurezas, bem como uma distribuição eletrônica que caracterizassem sistemas com camada aberta e fechada e obtivemos vários diagramas de fase tais como o exemplo:


O modelo utilizado é uma modificação do proposto por Su, Schrieffer e Heeger $S S H^{1}$ e modificado por e Silva e Terai ${ }^{2}$ no qual foi introduzido no hamiltoniano um campo elétrico externo e parâmetros de impurezas nas moléculas, bem como, interação entre as cadeias. (CNPq).

[^10]
# THE EFFECT OF HEME COMPLEXATION ON THE REDUCTIVE DECOMPOSITION OF ARTEMISININ 

Alex G. Taranto (Pg) $)^{1,4}$, José Walkimar De M. Carneiro (Pq) $)^{1,2}$, Martha T. De Araujo (Pq) ${ }^{3}$<br>walk @kabir.gqt.uff.br<br>${ }^{1}$ Programa de Pós-Graduação em Química Orgânica, ${ }^{2}$ Depertamento de Química Inorgânica,<br>${ }^{3}$ Depepartamento de Físico-Química, ${ }^{1.3}$ Univiversidade Federal Fluminense. ${ }^{4}$ Departamento de Saúde, Universidade Estadual de Feira de Santana, Brazil.

Keywords: artemisinin, mechanism of action, PM3(tm).
Artemisinin (QHS) is a sesquiterpene lactone with an endoperoxide function that is essential for its antimalarial activity. Endoperoxides are supposed to act on heme leading to the reduction of the peroxide bond and production of radicals which can be responsible for killing the parasite. Previous work on artemisinin showed that radicals centered on carbon and oxygen atoms may be formed. In the present work we investigate the effect of heme complexation on the mechanism of reductive decomposition of artemisinin. The structures of artemisinin and of the heme group were first determined. After that a complex between artemisinin and heme was built, with the peroxide bond of heme interacting with the $\mathrm{Fe}^{+2}$ ion of heme. After complexation a set of intermediate structures were fully optimized. All calculations were done with the semiempirical PM3(tm) method of the TITAN package. The complex between artemisinin and heme present high stability thermodynamic ( $-57 \mathrm{kcal} / \mathrm{mol}$ ). Among the radicals calculated along the pathway for reductive decomposition of artemisinin, the secondary radical centered on carbon $\mathrm{C}_{4}$ after hydrogen migration to the original O centered radical, has higher stability than the primary radical obtained by homolytic break of the $\mathrm{C}_{3}-\mathrm{C}_{4}$ bond $(49.9 \mathrm{kcal} / \mathrm{mol}$ in favour of the secondary radical). The activation energy for hydrogen shift is lower than that for the $\mathrm{C}_{3}-\mathrm{C}_{4}$ cleavage. This suggests that the $\mathrm{C}_{4}$-centered radical formed after hydrogen migration may be the species responsible for killing the parasite, as has been indicated in previous studies. (CNPq, CAPES).

# QSAR STUDIES OF INHIBITORS OF MACROPHAGE MIGRATION INHIBITORY (MIF) 

Jocley Q. Araújo (lc) ${ }^{1}$, Alex G. Taranto (Pg) ${ }^{1,2}$, José Walkimar De M. Carneiro (Pq) ${ }^{2,3}$ taranto@uefs.br<br>${ }^{1}$ Departamento de Saúde, Universidade Estadual de Feira de Santana - UEFS, ${ }^{2}$ Programa de PósGraduação em Química Orgânica, ${ }^{3}$ Depertamento de Química Inorgânica, ${ }^{2 \cdot 3}$ Univiversidade Federal Fluminense - UFF, Brazil.

Keywords: MIF, QSAR, Inhibitors
Coumarin and Chromen-4-one analogues are promising inhibitors of Macrophage Migration Inhibitory Factor (MIF), a protein involved in the rheumatoid arthritis pathology. QSAR studies for a set of these compounds ( $n=14$ ) were undertaken and showed agreement with previous docking studies. Quantum-mechanics descriptors, H-donors sites (a) and the total dipole of the molecule (b), were able to predict MIF inhibitory activity (MIFi) with correlation coefficient ( $r^{2}$ ) of $0.85\left(r^{2}{ }_{c v}=0.75\right)$, MIFi $=0,819533^{*}$ (a) $+0,90025^{*}$ (b) $-4,8775$. These descriptors indicate that pharmacophoric groups may be composed of a hydrogen donors and a lipophylic groups. A set of coumarin compounds ( $n=5$ ), present in Brazilian flora, was submitted to the QSAR model which indicated that they may be the possible MIF inhibitory activity. (CNPq, CAPES).

# Cobra: um algoritmo Monte Carlo ideal para enovelar proteínas 

Roosevelt A. da Silva ${ }^{1}(\mathrm{PQ})\left(\right.$ rasva@terra.com.br ), Antônio Caliri ${ }^{2}(\mathrm{PQ})$ e Leo Degrève ${ }^{1}(\mathrm{PQ})$<br>${ }^{1}$ Grupo de Simulação Molecular, Depto. de Quimica, FFCLRP, USP, Av. dos Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brasil.<br>${ }^{2}$ Depto. de Fisica e Quimica, FCFRP, USP, Av. do Café S/N, 14040-903, Ribeiräo Preto, SP, Brasil.

PALAVRAS-CHAVES: simulação molecular, enovelamento de proteinas e algoritmo Monte Carlo
Quando as investigaçöes do sistema proteina-solvente envolvem mudanças conformacionais exaustiva da estrutura protéica, a investigação do espaço de fase é mais factivel pelo Método Monte Carlo (MC). Em geral, nos estudos do enovelamento de proteinas, os algoritmos tradicionalmente empregados nas simulaçōes MC são pouco eficientes quanto as amostragens do espaço de fase. O modo como as configuraçōes da cadeia sāo produzidas pode comprometer fortemente a busca da forma nativa. Uma maneira usual de gerar configuraçōes é promover pequenas perturbaçöes independentes nos ângulos diedrais da cadeia principal. Algoritmos que utilizam deste método tem sido questionados por produzir uma baixíssima aceitaçảo configuracional. A presença de movimentos coletivos simultâneos de vários grupos da cadeia é um dos principais fatores que promovem essa baixa aceitação. Movimentos desta natureza podem resultar em severos impedimentos configuracionais e ineficiência em superar barreiras energéticas. Neste trabalho é enfatizado, assim como Cahill e outros' têm sugerido, que uma simulaçảo MC ideal deve evitar a violação de alguns princípios da cinemática, como por exemplo sobreposiçōes e transposiçōes entre grupos da cadeia. E proposto um novo algoritmo MC capaz de produzir movimentos locais da cadeia, sem perturbar o restante da cadeia. Este método não limita o conjunto de configuraçōes da cadeia por reduzir seus graus de liberdade. O distanciamento entre átomos, provocado por vibraçōes de ligaçōes químicas e por vibrações angulares, é incorporado diretamente nas soluçōes geométricas. Cada configuração é produzida por meio de dois passos já bem conhecidos, porém não aplicados ainda neste contexto. O primeiro consiste em modificar aleatoriamente as posições atômicas de um conjunto de átomos ( $\mathrm{N}, \mathrm{CA}$ e C ) de alguns resíduos consecutivos. No segundo passo, as posiçōes atômicas perturbadas são corrigidas de modo a preservar restrições por meio de multiplicadores de Lagrange. O procedimento é aplicado iterativamente às posiçōes até que soluções particulares, correlacionadas com as posiçōes atômicas perturbadas, sejam determinadas dentro dos desvios permitidos.

A convergência deste algoritmo, denominado por "Cobra", foi comparada com a de outros algoritmos por meio da aplicação de uma função energia artificial, proporcional ao desvio quadrático médio. Nas simulaçōes realizadas com a proteína 16PK ( 415 resíduos), nossos resultados revelam uma convergência cerca de $10^{3}$ vezes mais rápido (em número de passos MC ) que em relação ao algoritmo trashing (movimentos não locais) e da mesma ordem em relação ao algoritmo wriggling (movimentos locais), recentemente desenvolvido (ver figura abaixo). Após 100000 passos MC, a média de todos os desvios calculados para o Cobra tem uma redução relativa de $90 \%$ e $78 \%$ em relação ao trashing e wriggling, respectivamente.

[1] Biophysical J. 82, 2665 (2002) e J. Comp. Chem. 24, 1364 (2003). (FAPESP e CNPq).

# ESTUDO-DAS PROPRHEDADES-ÓTICAS NÃO-LINEARES-DE DERIVADOS [-CONJUGADOS DE BORO-, ALUMÍNIO- E GÁLIOCATECÓIS TRIVALENTES. 

Márcia Barsottelli Procópio ${ }^{1}$ (PG) ${ }^{\star}$, Amary Cesar $^{1}$ (PQ).<br>barsot@dedalus.lcc.ufmg.br.<br>'Universidade Federal de Minas Gerais - ICEx - Departamento de Química.

Palavras-chave: catecol-(borato, aluminato, galato); sistemas $\square$-conjugados; propriedades óticas não lineares.
As propriedades óticas não lineares (ONL) de materiais moleculares, ou não, oferecem a possibilidade de se modificar as caracteríticas de um campo eletromagnético nele aplicado. De forma geral, existem três tipos de materiais capazes de produzir respostas ONL suficientemente grandes ${ }^{(1)}$ para aplicações práticas: dispositivos semi-condutores de multicamadas, estruturas macroscópicos formadas de bases moleculares e os sólidos inorgânicos tradicionais. Na segunda classe de compostos destacam-se os derivados moleculares contendo sistemas $\square$-conjugados. Estes, via de regra, sāo formados por sub-sistemas orgânicos insaturados intercalando grupos doadores e retiradores de elétrons em suas extremidades. Os materiais formados por estas últimas entidades apresentam excelentes respostas nāo lineares por possuirem grandes hiperpolarizabilidades óticas microscópicas.

O interesse aqui é o de se avaliar as respostas ONL geradas por estruturas moleculares que contém o grupo catecol $\left(-\mathrm{O}_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right)$ ligado à um átomo do grupo lili, boro, alumínio ou gálio, formando derivados neutros trivalentes. A escolha desta classe de materiais, se deve ao interesse de uso de organoboratos em ONL e o efeito da substituição do átomo leve "sp", boro, por seus análogos da mesma família mais pesados "spd", alumínio e gálio. A presença dos átomos de oxigênio próximos ao anel aromático, nos compostos escolhidos, cria uma estrutura de ressonância estendida, efeito este que auxilia a transferência de carga entre o anel aromático e o orbital virtual "po" dos átomos de boro, alumínio ou gálio. O grupo catecol atua como um grupo retirador de elétrons em um processo de transferência de cargas de um grupo doador de elétrons adicionalmente ligado ao átomo de boro.

São utilizados como modelos de grupos doadores, o fragmento alifático do trans-aminobutadieno, $\mathrm{H}_{2} \mathrm{NCH}=\mathrm{CHCH}=\mathrm{CH}$. Para estimular o caráter retirador de elétrons, ao grupo catecol é inserido a um grupo nitro ( $-\mathrm{NO}_{2}$ ) nas posiçōes orto ou meta, ver Fig.1. Foram realizados cálculos de momento de dipolo (ㅁ), polarizabilidade (ㅁ) e primeira hiperpolarizabilidade (ㄷ) através de métodos ab-initio HF/RPA, utilizando-se o programa DALTON ${ }^{[2]}$. As bases de funçōes atômicas utilizadas foram $631 \mathrm{G}^{*+(3)}$ para otimizaçăo da geometria e $\left.631++\mathrm{G}^{*+44}\right)$. Para efeitos de comparaçös, foram também realizados cálculos de hiperpolarizabilidades para o trans-(trans-1-nitro,4-amino) 1,3 -butadieno, $\square_{\mathrm{xxx}}-1242,7 \mathrm{au}$, e também, da $p$-nitroanilina, $\square_{x x}-950,7$ au ( $1 \mathrm{au}=0,863993 \times 10^{-32}$ esu). Os resultados são apresentados na tabela abaixo.

| Mol. | 1 | II | III | IV | V | VI | VII | VIII | IX | X | XI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square_{\text {xox }}$ | -70,5 | 93,8 | 250,2 | -1376,7 | -1517,8 | -1409,7 | -1723,0 | -1746,6 | -1912,5 | -2095,9 | -2083,3 |
| $\square_{\text {MV }}$ | 0,0 | 0,5 | 0,0 | 45,4 | 16,6 | 24,5 | -95,8 | -111,8 | 114,4 | 94,5 | 105,4 |
| $\square_{z 7 z}$ | 0,0 | 0,0 | 0,0 | 15,0 | 15,9 | 14,9 | 13,8 | 13,4 | 0,0 | 14,2 | 12,9 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Fig. 1 - Estrutura geral dos catecóis (Cat $=\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ ) estudados. ( $\mathrm{X}=\mathrm{B}, \mathrm{Al}, \mathrm{Ga} ; \mathrm{Y}=\mathrm{H}, \mathrm{NO}_{2} ; \mathrm{Z}=\mathrm{H},{ }_{2} \mathrm{NCH}=\mathrm{CHCH}=\mathrm{CH}(\mathrm{Bu})$ )
A unidades catecóis mais simples $\mathrm{H}-\mathrm{X}-\left(\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, apresentando uma pequena deslocalização de elétrons G conjugados fornece valores para $\square_{\text {xxi }}-70,5$ au, $+90,8$ aue $e+250,2$ au, respectivamente para $X=B$, Al e Ga. A substituição do átomo de boro por átomo de aluminio e gálio aumentou o valor de $\square_{\text {xod }}$, respectivamente, em $33 \%$ e $254 \%$. Este aumento é devido à presença nestes átomos de orbitais $d$ vazios om energia proxima do orbital $p_{0}$ que passam a contribuir efetivamente para uma maior deslocalização dos elétrons $\square$ do sistema molecular. A participação dos orbitais $d$ revertem, também, o sinal de $\square_{\mathrm{xx}}$ dos derivados de alumínio e gálio, quando comparado ao análogo borato. Com a extensão da conjugação pela adição do grupo trans-(trans-1-nitro, 4 -amino) 1,3 -butadieno substituindo o hidrogênio ligado ao àtomo de boro, $\square_{x x}$ do composto $\mathrm{H}_{2} \mathrm{NCH}=\mathrm{CHCH}=\mathrm{CH}-\mathrm{B}-\left(\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ torna-se $-1376,7$ au, e a subsequente introdução de um substituinte nitro no anel aromático altera este valor para - 1912,5 au. (CNPQ, CENAPAD-MG).
${ }^{[1]}$ D. R. Kanis, M. A. Ratner, T. J. Marks, Chem. Rev. 1994, 94, 195.
${ }^{[2]}$ T. Helgaker, H. J. Jensen, P. Joergensen, J. Olsen, K. Huud, H. Ågren, et. al.,: "DALTON, a second-order MCSCF molecular property program" 1995.
${ }^{[3]}$ J. A. Pople, J. S. Binkley, J. Chem. Phys., 1984, 80, 3265. V. Rassolov, J. A. Pople, M. Ratner, P. C. Redfern, and L. A. Curtiss, J. Comp. Chem., 2001, 22, 976.
${ }^{[4]}$ M.J. Frisch, et. al., J. Chem. Phys. 1984, 80, 3265. V. Rassolov, J. A. Pople, M. Ratner, P. C. Redfern, and L. A. Curtiss, J. Comp. Chem., 2001, 22, 976. L. A. Curtiss, P. C. Redfern, V. Rassolov, G. Kedziora, J. A Pople, 2001, 114. 9287.

## P112

# HIGHLY ACCURATE GAUSSIAN BASIS SETS FOR WATER 

Reinaldo Centoducatte (PQ)*, Eduardo P. Muniz (PQ), Francisco E. Jorge (PQ), Marcelo T. Barreto (PG).<br>reinaldo@cce.ufes.<br>Departamento de Física, Universidade Federal do Espirito Santo, 29060-900 Vitória, ES, Brasil.<br>Palavras-chaves Gaussian basis sets, molecular improved generation coordinate Hartree-Fock method, total energies.

The molecular improved generator coordinate Hartree-Fock (HF) method [1] is used to generate highly accurate Gaussian basis sets for $\mathrm{H}_{2} \mathrm{O}$. In this method the Griffin-Hill-Wheeler-HF equations are integrated numerically through a technique called integral discretization. Sequences of atom-centered Gaussian-type functions (GTFs) are employed to explore the accuracy achieved with this method. Our ground state HF total energies (EHF) are lower than the corresponding ones calculated with other basis sets $[2,3]$ of primitive GTFs reported in the literature. The difference between the HF total energy evaluated with our largest basis set and an estimate of the HF limit [4] is equal to $35 \mu \mathrm{Hartree}$. The second order correlation energy ( $\mathrm{E}_{2}$ ) is also calculated and compared with the results computed with other basis sets $[2,3]$. Table 1 shows some results obtained in this work and with other approaches.

Table 1. Comparison of the present calculations for the $\mathrm{H}_{2} \mathrm{O}$ ground state with previous work.
Energies are in hartree.

| Basis set | GTFs Num. | EHF | $\mathrm{E}_{2}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}(19 \mathrm{~s} 14 \mathrm{p} 7 \mathrm{~d} 2 \mathrm{f}) ; \mathrm{H}$ (11s7p2d) | 194 | -76.067400 | -0.33520 | [2] |
| $\mathrm{O}(20 \mathrm{~s} 10 \mathrm{p} 10 \mathrm{~d} 10 \mathrm{f10g}) ; \mathrm{H}(20 \mathrm{~s} 10 \mathrm{p} 10 \mathrm{~d} 10 \mathrm{f})$; $\mathrm{OH}(17 \mathrm{~s} 7 \mathrm{p} 7 \mathrm{~d} 7 \mathrm{f}) ; \mathrm{HH}(16 \mathrm{~s} 6 \mathrm{p} 6 \mathrm{~d} 6 \mathrm{f})$ | 1070 | -76.0674512 | -0.3568281 | [3] |
| $\mathrm{O}(24 \mathrm{~s} 14 \mathrm{p} 8 \mathrm{~d} 5 \mathrm{f} 2 \mathrm{~g}) ; \mathrm{H}(22 \mathrm{~s} 9 \mathrm{p} 5 \mathrm{~d} 2 \mathrm{f})$ | 335 | -76.0674649 | -0.3470550 | This work |
| $\mathrm{O}(30 \mathrm{~s} 15 \mathrm{p} 15 \mathrm{~d} 15 \mathrm{f}) ; \mathrm{H}(30 \mathrm{~s} 15 \mathrm{p} 15 \mathrm{~d})$; $\mathrm{OH}(26 \mathrm{~s} 11 \mathrm{p} 12 \mathrm{~d}) ; \mathrm{HH}(27 \mathrm{~s} 11 \mathrm{p} 12 \mathrm{~d})$ | 926 | -76.0674878 | -0.3533335 | [3] |
| HF limit | - | -76.0675 | - | 4] |
| $\mathrm{E}_{2}$ limit | - | - | -0.36201 | [5] |

From our HF total and second order correlation energies, we can conclude that the molecular improved generator coordinate Hartree-Fock method is able to generate highly accurate basis sets of primitive GTFs to be used in calculations of chemical and physical properties of small polyatomic molecules. (CNPq).
[1] F.E. Jorge, R.Centoducatte and E.V.R. de Castro, Theor. Chem. Acc 103_(2000) 477.
[2] S.J. Chakravorty and E.R. Davidson, J. Chem. Phys. 97 (1993) 6374.
[3] D. Moncrieff and S. Wilson, J. Phys. B 29 (1996) 6009.
[4] B. J. Rosemberg and I. Shavit, J. Chem. Phys. 63 (1975) 2162.
[5] W. Klopper, J. Chem. Phys. 102 (1995) 6168.

# PACKMOL: GERAÇAO AUTOMÁTICA DE CONFIGURAÇÕES INICIAIS COMPLEXAS PARA DINÂMICA MOLECULAR USANDO ESTRATÉGIAS DE EMPACOTAMENTO. 

José Mario Martínez ${ }^{1}$ (PQ), Leandro Martínez ${ }^{2 *}$ (PG);<br>Imartinez@iqm.unicamp.br<br>${ }^{1}$ Departamento de Matemática Aplicada, Instituto de Matemática, Estatística e Computação Científica, UNICAMP. ${ }^{2}$ Departamento de Físico Química, Instituto de Química, UNICAMP.<br>Palavras-chave: Configuração Inicial, Dinâmica Molecular, Otimização

Simulações de dinâmica molecular são uma estratégia poderosa para a compreensão, a nível molecular, de diversos sistemas químicos e bioquímicos. Existem teorias e técnicas bem estabelecidas para a análise estrutural e termodinâmica destas simulações; e diversos pacotes computacionais estão disponíveis. No entanto, a construção de configuraçõ̃es iniciais para dinâmica molecular pode ser complicada. Configurações regulares, "cristalinas", podem ser facilmente geradas e são geralmente usadas quando líquidos simples são estudados. Para misturas complexas, soluçõ̃es de polímeros e líquidos adsorvidos em sólidos (por exemplo), essa estratégia é pouco eficiente porque geralmente cria sistemas em que interações extremamente repulsivas inviabilizam a dinâmica mesmo para passos de tempo de integração muito pequenos. Estas configurações são, então, construídas de uma forma "manual": as moléculas responsáveis pelas interações repulsivas são removidas ou transladadas e o usuário alterna a manipulação das coordenadas da configuração com a minimização da energia da caixa, até que uma configuração inicial adequada é obtida. Este trabalho pode levar vários dias, ou até semanas, dependendo da complexidade do sistema.

Packmol é um programa projetado para gerar configurações iniciais de dinâmica molecular com complexidades arbitrárias de forma rápida e automática [1]. De forma resumida, a estratégia utilizada consiste em empacotar as moléculas em uma determinada região do espaço (a caixa de simulação) garantindo que nenhum átomo de moléculas diferentes esteja a uma distẩncia menor que uma tolerância desejada. Esta condição garante que não há, no início da simulação, nenhum potencial demasiadamente repulsivo que possa causar um colapso da caixa de simulação. A estratégia utilizada para o empacotamento foi a definição de uma função objetivo nula sempre que os pares de átomos de moléculas diferentes estão a uma distância maior que a tolerância desejada, $d_{t o l}$, e que cresce quadraticamente à medida que os átomos se aproximam, se estão a uma distância menor que $d_{t o o}$. Desta forma, como esta função é nula na solução do problema (isto é, se não há nenhum par de átomos mais próximo que a tolerância desejada) e positiva em qualquer outra situação, pode-se buscar as soluçõ̃es minimizando a função objetivo, sendo o reconhecimento da solução trivial. A função-objetivo, definida dessa forma, é minimizada utilizando um algoritmo de otimização bem estabelecido (BOX-QUACAN $[2,3]$ ) com algumas heuristicas adaptadas ao problema. O pacote foi programado de forma a ser compatível com os arquivos de entrada do programa Tinker e com arquivos de coordenadas genéricos (formato Molden). Diferentes tipos de moléculas podem ser colocados em diferentes regiões do espaço, assim como é possível manter moléculas em posições fixas determinadas pelo usuário. Até o presente momento, configurações iniciais com mais de 10.000 moléculas (problema de otimização com mais de 70.000 variáveis) foram geradas sem problemas. Estas configurações vêm sendo usadas pelo grupo de dinâmica molecular do Prof. Munir S. Skaf e requerem apenas, nos problemas grandes, uma otimização local dos potenciais sem nenhuma manipulação das coordenadas. As aplicações variam de proteínas solvatadas, água adsorvida em zeólitas e soluções de vários componentes a interfaces líquidas. (FAPESP, CAPES).

O programa Packmol é de uso livre e pode ser obtido na página: http://www.ime.unicamp.br/~martinez/packmol
[1] J. M. Martínez, L. Martínez. Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking. J. Comp. Chem. 24: 819-825 (2003).
[2] A. Friedlander, J. M. Martínez, S. A. Santos. "A new trust region algorithm for bound constrained minimization." Appl. Math. and Optim. 30: 235-266 (1994).

## MECANISMOS DE DISSOCIAÇÃO DO HORMÔNIO

# TIREOIDEANO DE SEU RECEPTOR TR－$\alpha 1$ OBTIDOS COM DINÂMICA MOLECULAR COM AMOSTRAGEM AMPLIADA 

Leandro Martínez ${ }^{1 *}$（PG），Milton T．Sonoda ${ }^{1}$（PG），Paul Webb ${ }^{2}$（PQ），John D．Baxter ${ }^{2}$ （PQ），

Munir S．Skaf ${ }^{1}$（PQ），Igor Polikarpov ${ }^{3}$（PQ）<br>Imartinez＠iqm．unicamp．br<br>${ }^{1}$ Departamento de Físico Química，Instituto de Química，UNICAMP．${ }^{2}$ Diabetes Center and Metabolic Research Unit，USCF．${ }^{3}$ Instituto de Física de São Carlos，USP． Palavras－Chaves：Hormônio Tireoideano，Dissociação，Dinâmica Molecular．

Os hormônios são fundamentais para a estabilidade do corpo hidrofóbico dos domínios de ligação com o ligante dos receptores nucleares hormonais．Isto sugere que rearranjos estruturais significativos devem permitir a entrada ou a saída dos ligantes，mas a natureza destes rearranjos e a dinâmica da proteína envolvidos não são conhecidos．Estas modificações têm sido deduzidas da análise e comparação das estruturas tridimensionais estáticas．Os mecanismos de associação e dissociação dos hormônios são de fundamental importância para o desenvolvimento de novos ligantes com propriedades interessantes do ponto de vista clínico．Os hormônios tireoideanos atuam em processos de diferenciação celular em organismos em desenvolvimento e，em organismos adultos，atuam na regulação da atividade cardíaca，dos níveis de colesterol e da atividade metabólica basal．Diferentes isoformas do receptor são responsáveis pela diversidade das atividades do hormônio： enquanto que a atividade cardíaca é controlada pela isoforma TR－01，o metabolismo é principalmente controlado pela isoforma TR－ロ1．O desenvolvimento de ligantes seletivos para uma das duas isoformas é de fundamental importância para o controle de distúrbios metabólicos，como a obesidade，sem que os efeitos colaterais associados à atividade cardíaca se manifestem［1］．Estruturas cristalográficas de uma molécula modelo $\square$－seletiva （GC－1）associadas ao receptor TR－प1 não foram capazes de tornar claras as razões de sua seletividade，sugerindo que a dinâmica do receptor deve ter um papel fundamental［2］．

Neste trabalho，a técnica Dinâmica Molecular com Amostragem Ampliada［3］é utilizada para identificar os possíveis caminhos de dissociação do ligante natural 3，5，3－ triiodo－L－tironina（T3）do seu receptor TR－ロ1［4］．Três caminhos diferentes são encontrados， que envolvem：（I）a abertura da hélice 12，em um mecanismo semelhante ao sugerido em［3］； （II）A separação das hélices 8 e 11 e do $\square$－loop；e（III）a abertura das hélices 2 e 3 e do grampo－口．O Caminho III envolve uma região que relativamente desordenada e que é significativamente afetada em receptores com mutações associadas à Síndrome de Resistência ao Hormônio Tireoideano，com o que se sugere que deva ser um importante caminho de dissociação in vivo．O Caminho ll é capaz de explicar a alta afinidade de agonistas e antagonistas com extensões grandes na posição $5^{\circ}$ ．Estes mecanismos，em conjunto，revelam uma flexibilidade do receptor que não tinha sido antecipada da análise das estruturas cristalográficas e que pode ser usada racionalmente para o desenho de novos ligantes．O papel de alguns aminoácidos na formação das cavidades que levam à dissociação dos ligantes é discutido，oferecendo uma base para uma futura verificação experimental．（FAPESP，CAPES）．

[^11]
# A THEORETICAL APPROACH TO INTRAMOLECULAR ENERGY TRANSFER THROUGH CHARGE TRANSFER STATE IN LANTHANIDE COMPOUNDS 

W. M. Faustino (PG) , O. L. Malta (PQ) and G. F. de Sá (PQ)<br>Wmfaustino@bol.com.br<br>Departamento de Química Fundamental, CCEN, UFPE, Cidade Universitária, 50670-901 Recife, PE, Brazil.

Keywords: charge transfer state, energy transfer, lanthanide compounds
In compounds of lanthanide ions in which the ligand species have low oxidation potentials and the lanthanide ion has a high electron affinity, the ligand-to-metal charge transfer (LMCT) state usually lies at low energies. In this case, the LMCT state coincides in energy with the metal ion and/or ligand excited states in the near UV-visible spectral region. The metal ions with high electron affinities are those that need one electron to reach the condition of half-filled or filled $4 f$ sub-shell. A typical case among the lanthanides is the trivalent europium ion (Eu ${ }^{3+}$ ) in certain coordination compounds

In these compounds the LMCT state may constitute an important channel of depopulation for either ligand or lanthanide excited states, leading to luminescence quenching. The luminescence yield is the result of a balance between transition and intramolecular energy transfer rates. This has been recently studied in a systematic way through a theoretical scheme that gathers a model of intramolecular energy transfer in coordination compounds, a sparkle model that allows the optimization of the coordination geometries and the INDO/S-CI method that describes the electronic structures of the organic parts of these compounds. However, in this scheme the effects of LMCT states have not been considered in detail.

In order to access the effects of LMCT states we develop in this work a model of lanthanide ion-to-LMCT and ligand-to-LMCT state intramolecular energy transfer processes. This has allowed a detailed theoretical study of the emission quantum yield, for typical cases of $\mathrm{Eu}^{3+}$ coordination compounds, as a function of the relative energy positions of the ligand, lanthanide ion and LMCT states. Fig 1 and Fig 2 shows, respectively, the dependence of quantum yield of luminescence and the dependence of the energy transfer rates starting to all energy levels of an typical complex as function of the energy positions of the LMCT state.


Fig 1: quantum yield as function of the energy positions of the LMCT state.


Fig 2: energy transfer rates as function of the energy positions of the LMCT state.

In conclusion, the application of the proposed model shows that the ligand-to-LMCT state energy transfer processes may constitute an important channel to luminescence quenching in lanthanide coordination compounds. (CNPq, RENAMI,IMMC).

## P116

# FIRST HYPERPOLARIZABILITY OF THE MOLECULAR EXCITED STATES: CALCULATIONS AND COMPARISON WITH EXPERIMENT 

W. M. Faustino ${ }^{1}$ (PG) and D. V. Petrov ${ }^{1}$ (PQ)<br>Wmfaustino@bol.com.br<br>${ }^{1}$ Universidade Federal de Pernambuco, Recife, Brasil.<br>${ }^{2}$ Institut de Ciències Fotòniques (ICFO) and Institució Catalana de Reserca I Estudis Avançats (ICREA), Barcelona, Spain.

Keywords: non-linear optics, first hyperpolarizability, excited states
Many applications in photonics are based on non-ressonant second and third-order optical non-linear processes, described by first $\beta\left(\omega_{3} ; \omega_{2}, \omega_{1}\right)$ and second $\gamma\left(\omega 4 ; \omega_{3}, \omega_{2}, \omega_{1}\right)$ hyperpolarizabilities, respectively. Such processes, as they involve only virtual electronic excitation, are essentially instantaneous, and avoid attenuation of optical signals. Magnitudes and signals of $\beta$ and $\gamma$ are determined by the electronic structure of the system and by the frequency of optical waves $\omega_{1}$ participating in a given non-linear process.

Usually hyperpolarizability are studied in molecules in their ground states. However, nonresonant non-linear processes can be changed if the excited states are populated. In this work we report an experimental demonstration of the dependence of hyper-Rayleigh scattering (HRS) and, hence, the first hyperpolarizability $\beta(-2 \omega ; \omega, \omega)$ in optically pumped $p$-nitroaniline (PNA) molecules on the energy and on the power of pump photons. We chose this molecule because its linear and nonlinear properties in the ground state are well studied, both experimentally and theoretically. When we sent to the sample of PNA, simultaneously, the 355 nm pump pulse and $1064 \mathrm{~nm}(1.17 \mathrm{eV}$ ) fundamental pulse ( 17 mJ ) we obtained the fluorescence and HRS signals for different pump power as shown in Fig. 1.

We propose a simple numerical procedure based on standard time-dependent- perturbation theory, in order to calculate the first hyperpolarizability of the molecules with populated excited states. This methodology was used in the calculation of $\beta(-2 \omega ; \omega, \omega)$ for $p$-nitroaniline in excited states, and a comparison with experimental data obtained by the HRS experiment is done. Our analysis shows that the first hyperpolarizability $\beta(-2 \omega ; \omega, \omega)$, as function of the populations of excited sates, may have a nonmonotonic behavior. In fact, Fig. 2 shows an example of such a behavior obtained for the fundamental photon energy of 1.17 eV .


Fig. 2: total first hyperpolarizability of the PNA. molecule versus the population of the excited state.



Fig. 1: the fluorescence (trinagles) and the HRS (circles) signals versus the pump power.

Indeed, we observe a slight decrease of the total hyperpolarizability if the population of excited state increases in qualitative agreement with the our experimental results.

In conclusion, in this work we proposed a simple numerical procedure in order to calculate the first hyperpolarizability of the molecules with populated excited states. An important result of our analysis is that the first hyperpolarizability, as function of the populations of excited sates, may have a nonmonotonic behavior. (CNPq, CENAPAD, RENAMI,IMMC).

# THEORETICAL MODELLING OF LOW BAND-GAP ORGANIC POLYMERS 

Jair Vaz Amaral ${ }^{1}(P G)$, Bernardo Laks ${ }^{2}(P Q)$, Jordan Del Nero ${ }^{1}(P Q)$<br>jairvaz@ufpa.br<br>${ }^{1}$ Departamento de Física - UFPA - CEP: 66.075-110 - Belém - PA (Brazil)<br>${ }^{2}$ Instituto de Física - UNICAMP - CEP: 13083-970 - Campinas - SP (Brazil)

Keywords: New Polymer, Low Band-Gap, Dithiophene derivatives.
Semiconducting polymers with band-gaps in the range $0.5-3.0 \mathrm{eV}$ have a number of potential advantages over their inorganic counterparts, such as ease of processing, cost of manufacture and great variety. An emerging area of application for semiconducting polymers is in light emitting diodes (PLEDs), first reported in 1990. For example, to decrease the bandgap of a polymer system, the monomer structure must be tailored in such a way as to increase the quinoid character of the extended $\pi$ conjugated system, thus decreasing its aromaticity. One suitable method of achieving this involves the introduction of electron-withdrawing groups at the $s p^{2}$ carbon bridging the 4,4 -positions of a bithienyl precursor.

Semiempirical calculations at the AM1 and PM3 levels were performed for the poly(4-dicyanomethylene-4H-cyclopenta[2,1-b:3,4b']dithiophene) (PCDM) and similar polymer (PBDT) and obtained a fully optimised geometry. The parameters used in the calculations were the defaults by MOPAC package, except for the convergence criterion, where a maximum step size of 0.05 was used instead. For both structures, a planar configuration was assumed as the starting point for the geometry optimisation calculations.

Based on the above structures, the principal transitions contributing to the optical spectra were identified by $\operatorname{INDO} / \mathrm{S}-\mathrm{Cl}$ level. This method was parameterised to give the best description of the UV-visible optical transitions, particularly in organic materials. Our results shows that both polymers show a broad, long wavelength absorption consistent with a $\pi-\pi^{*}$ transition centred at 968 nm (PCDM) and 716 nm (PBDT).

These trend is also seen clearly in Table 1 which shows the energies of the $\pi-\pi^{*}$ transitions (corresponding to the long wavelength transitions) in the monomer, dimer, trimer, tetramer and polymer. The data also confirms that by bridging two thiophene moieties with electron-withdrawing groups a significant reduction in the bandgap of the resulting polymer may be achieved compared with polymers based on the 3 -alkylthiophenes. PROINT (Programa Integrado de Apoio ao Ensino, Pesquisa e Extensão)-UFPA, CAPES (J.V.A. Fellowship).

Table 1 - Theoretically calculated energies of the $\pi-\pi^{*}$ transitions of CDM and BDT compared with those estimated from experimental UV-visible absorption spectra.

| Material | Monomer <br> Cal. <br> $(\mathrm{eV})$ | Dimer <br> Calc. <br> $(\mathrm{eV})$ | Trimer <br> Calc. <br> $(\mathrm{eV})$ | Tetramer <br> Calc. <br> $(\mathrm{eV})$ | Polymer <br> Experimental <br> $(\mathrm{eV})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CDM | 1.76 | 1.57 | 1.39 | 1.30 | 1.28 |
| BDT | 2.58 | 2.13 | 1.91 | 1.76 | 1.73 |

## P118

## INVESTIGAÇÃO DO EFEITO DE SUBSTITUINTES NO ANEL AROMÁTICO PELA ANÁLISE DA MATRIZ DE DENSIDADE.

*Thiago Messias Cardozo ${ }^{1}$ (PG), Marco Antônio Chaer Nascimento ${ }^{1}$ (PQ)<br>thiago @chaer.iq.ufrj.br<br>${ }^{1}$ Departamento de Fisico-Química, Instituto de Química, Universidade Federal do Rio de Janeiro UFRJ - Ilha do Fundão, Centro de Tecnologia, Bloco A, $4^{\circ}$ Andar, Sala 412 - Rio de Janeiro - Brasil. Palavras-Chave: aromaticidade, matriz de densidade, ressonância.

O problema da descrição dos compostos aromáticos vem desafiando os químicos a quase 150 anos. Os modelos mais populares para o entendimento das características dos compostos aromáticos, são o modelo de ressonância (oriundo do VB clássico) e o de deslocalização eletrônica (com origem no modelo MO de Hückel). Existe um terceiro modelo, proposto por Cooper et.al em que cada elétron $\pi$ do anel aromático é localizado num orbital $p_{z}$ diferente, cada um centrado em um dos núcleos dos átomos de carbono. Recentemente foi proposto por A.G.H.Barbosa e M.A.C. Nascimento que este modelo representa de fato uma ligação química de seis elétrons (modelo GVB sem aproximação PP). Um dos pontos positivos deste modelo é que a sua descrição através da mecânica quântica tem uma função de onda com a simetria permutacional do espaço $\pi$ da molécula descrita corretamente. A otimização de uma função de onda CASSCF no espaço $\pi$ seguido pela localização dos orbitais com o método de Edminston-Ruedenberg pode gerar funções de onda com características similares às descritas acima.

Neste trabalho, foram construídas matrizes de densidade para benzenos substituídos, usando metodologia similar à descrita acima, e foi verificado o efeito do substituinte no grau de recobrimento entre os orbitais.

Verificou-se que a presença de substituintes não altera os graus de recobrimento ou a ocupação dos orbitais no anel aromático em quantidade apreciável, como pode ser visto nos exemplos a seguir:
$\left[\begin{array}{llllll}1.00 & 0.62 & 0.00 & 0.28 & 0.00 & 0.62 \\ 0.62 & 1.00 & 0.62 & 0.00 & 0.28 & 0.00 \\ 0.00 & 0.62 & 1.00 & 0.62 & 0.00 & 0.28 \\ 0.28 & 0.00 & 0.62 & 1.00 & 0.62 & 0.00 \\ 0.00 & 0.28 & 0.00 & 0.62 & 1.00 & 0.62 \\ 0.62 & 0.00 & 0.28 & 0.00 & 0.62 & 1.00\end{array}\right]\left[\begin{array}{llllll}1.00 & 0.61 & 0.00 & 0.28 & 0.00 & 0.63 \\ 0.61 & 1.00 & 0.63 & 0.01 & 0.28 & 0.01 \\ 0.00 & 0.6 & 1.00 & 0.61 & 0.00 & 0.28 \\ 0.28 & 0.01 & 0.61 & 1.00 & 0.63 & 0.01 \\ 0.00 & 0.28 & 0.00 & 0.63 & 1.00 & 0.61 \\ 0.63 & 0.01 & 0.28 & 0.01 & 0.62 & 1.00\end{array}\right]\left[\begin{array}{llllllll}1.00 & 0.60 & 0.00 & 0.27 & 0.01 & 0.60 \\ 0.60 & 1.00 & 0.63 & 0.02 & 0.28 & 0.02 \\ 0.01 & 0.63 & 1.00 & 0.62 & 0.01 & 0.28 \\ 0.27 & 0.02 & 0.62 & 1.00 & 0.62 & 0.02 \\ 0.01 & 0.28 & 0.01 & 0.62 & 1.00 & 0.63 \\ 0.60 & 0.02 & 0.28 & 0.02 & 0.63 & 1.00\end{array}\right]$

Propomos que os principais efeitos do substituinte na estrutura do anel aromático são, a diminuição de simetria de grupo de ponto da molécula e um efeito de campo entre cargas ou dipolos do substituinte e os elétrons do anel aromático, que aumenta ou diminui a energia potencial destes elétrons, sem deslocamento apreciável de densidade eletrônica do anel. Esta proposta apresenta, nos sistemas estudados até o momento, bom acordo com os dados de espectroscopia de fotoelétron (UV) disponíveis na literatura. Agradecimentos (CAPES, FUJB, PRONEX, CNPQ).

# Estudo de mecanismos de Reação usando ONIOM: ataque de LDA em THF sobre diferentes sítios de precursor do adoçante Monatina. 

Ataualpa A. C. Braga ${ }^{1 *}$ (PG) (atabraga@iqm.unicamp.br), Nelson Henrique Morgon ${ }^{1}$ (PQ)

' Departamento de Fisico-Química, UNICAMP, CP 6154, Campinas S.P. CEP 13083-970
Palavras Chave: ab initio, ONIOM, estado de transiçäo
A produção do adoçante Monatina, segundo rota de sintese pesquisada pelo grupo do Prof. Dr. Fernando Coelho (DQO/UNICAMP), possui passo fundamental onde se seleciona, regioquimicamente, a abstração do hidrogênio que origina o enol intermediário menos impedido, chamado de produto cinético (veja Fig. 1). No entanto, durante a síntese, contrariando o esperado, o uso de grupos protetores (GP's), como a toluenosulfonamida $\left(\mathrm{SO}_{2} \mathrm{C}_{7} \mathrm{H}_{7}\right)$, resultou na preferência acentuada pelo produto termodinảmico. Sem a proteção sobre o nitrogênio do anel indólico foi possí-
 vel, com boa seletividade, obter-se a forma cinética, entretanto a separação dos produtos mostrou-se inviável. Primeiramente, buscou-se avaliar a influência dos GP's sobre a afinidade por prótons dos enolatos precursores dos dois tipos de adutos. Os resultados relativos (apresentados na última RASBQ), com os diferentes GP's, não apresentaram variação significativa entre as posiçōes geradoras dos produtos cinético e termodinâmico. A partir de então os esforços foram direcionados para a análise do efeito dos GP's sobre os mecanismos envolvidos na formação dos enóis. Para isto estudou-se a abstração dos hidrogênios pela açāo da base LDA (litiodiisopropilamida) em THF (tetrahidrofurano). Além dos conjuntos de base freqüentemente usados na literatura, vêm sendo testados conjuntos de funções de base obtidos pelo método da coordenada geradora (MCG), adaptados a pseudopotencial (ECP/MCG). Foram testados dois sistemas modelos (Fig. 1) para o uso do ONIOM2. A partir da análise de cálculos de afinidades por prótons, observou-se que o modelo $A$, por impedir a deslocalização eletrônica durante a abstração do hidrogênio na forma termodinâmica, nāo refletia bem a influência dos grupos protetores. Comparando cálculos MP2/6-31+G(2df,p)//HF/6-31G(d) sobre toda a molécula, com os resultados obtidos com ONIOM[MP2/6-31+G(2df,p):MP2/6-31+G(d,p))//HF/6-31G(d):HF/6-31G], observou-se que o modelo B melhora os resultados em até 8 kJ . Além disso, cálculos ONIOM 2 , empregando o modelo A , não convergiram. Foram então feitos cálculos preliminares $H F / 3-21 \mathrm{G} *$, a partir dos quais, com o modelo B , foi possível prosseguir com os estudos, obtendo-se então os primeiros estados de transição.

A Fig. 2 apresenta exemplo de estados de transição obtidas com cálculos $\mathrm{HF} / 3-21 \mathrm{G}$ * (Tabela 1), tendo H e $\mathrm{SO}_{2} \mathrm{C}_{7} \mathrm{H}_{7}$ como GP, durante a abstração do hidrogênio pelo LDA em THF, nos sítios que originam as formas cinéticas e termodinâmicas. Pelos dados preliminares pode-se concluir que, ao contrário dos resultados para afinidade por próton, a influência da toluenosolfonamida, nos estados de transição, é mais acentuada sobre o sitio termodinâmico comparado ao cinético. Pela complexidade destes sistemas envolvendo
 grandes GP's, cálculos mais precisos são bastante dispendiosos, tornando o uso do método ONIOM fundamental à conclusão destes estudos.
Tabela 1: Energias eletrônicas (ua) obtidas com cálculos $\mathrm{HF} / 3-21 \mathrm{G} *$ para sítios de ataque precursores das formas cinéticas e termodinâmicas com H e toluenosulfonamida sobre o nitrogênio do anel indoil.

| HF/3-21G* | $\mathrm{GP}=\mathrm{H}$ |  | $\mathrm{GP}=\mathrm{SO}_{2} \mathrm{C}_{7} \mathrm{H}_{7}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Complexo | Cinético | Termodinâmico | Cinético | Termodinâmico |
| Reagentes | $-1299,5793$ | $-1299,5753$ | $-2111,1905$ | $-2111,1888$ |
| Transição | $-1299,5731$ | $-1299,5713$ | $-2111,1853$ | $-2111,1865$ |
| Produtos | $-1299,6309$ | $-1299,6394$ | $-2111,2443$ | $-2111,2662$ |

# PATH INTEGRAL MOLECULAR DYNAMICS OF EXCESS ELECTRONS IN SUPERCRITICAL AMMONIA 

Daniel Laria ${ }^{1}$ (PG), Javier Rodriguez ${ }^{1}$ (PQ), Munir S. Skaf ${ }^{2}$ (PQ)<br>laria@cna.gov.ar<br>${ }^{1}$ Comision Nacional de Energia Atomica y Universidad de Buenos Aires, Argentina.<br>${ }^{2}$ Departamento de Físico-Química, Instituto de Química, UNICAMP.

Key-Words: solvated electrons, supercritical ammonia, path integral MD.
Chemical reactivity in supercritical polar environments represents the subject of a wealth of ongoing research work due to its important technological applications. The main reasons for this interest reside in the profound changes that take place in many physicochemical properties of these systems, compared to what is normally perceived at more conventional conditions. At supercritical temperatures, large displacements in chemical equilibrium and solvation-induced modifications in the reaction rates by several orders of magnitude are not uncommon, a fact that reveals the importance of the reactant complex-solvent coupling as a key factor determining the channels that drive the dynamics of the reactive processes.

Microscopic aspects of polar solvation may be examined by a wide variety of molecular solutes. Excess electrons provide an excellent example of very sensible probes to gain direct experimental information about the changes that operate in the structure of a solvent to host a negatively charged solute. Given the inherently quantum nature of the electron, its solvation normally exhibit well differentiated characteristics from what is normally encountered in cases of simpler, classical, anionic solutes. Most notably, is the existence of the electronic localization phenomenon, reflected in the dramatic drop that appears in the electronic drift mobility. From a microscopic point of view, the transition from delocalized to localized states is usually described in terms of the spatial confinement of the electronic density within a solvent cavity, whose average shape fluctuations can normally be inferred from the analysis of the position and lineshape of the electron absorption band. Moreover, time resolved spectroscopy experiments open new venues for acquiring detailed information on the relevant timescales involved in the solvation dynamics as well.

The subject of the present work deals with equilibrium and dynamical aspects of the electronic states in supercritical ammonia (SCA). Electron solvation in SCA has received considerable attention in recent times. Experimental results for the electron mobility in the temperature range close to $\mathrm{T} \sim 450 \mathrm{~K}$ suggest a transition from delocalized to localized states in the density range of approximately 0.02 times the normal liquid density. Interestingly, in this thermal regime the drift mobility also exhibits a non-monotonic density dependence, with a minimum located slightly below the critical density. These changes contrast sharply with the apparently much weaker sensitivity of the position of the main absorption peak in a wide density interval of supercritical states.

Here we present path integral and plane-waves adiabatic MD simulations studies of a quantum excess electron solvated in supercritical ammonia covering a wide range of densities from diluted vapor-like ambients to the triple point density along the 450 K isotherm. The PIMD analysis of the equilibrium correlation length for the electron-polymer locates the transition from localized to quasi-free electronic states around $1 / 4$ of ammonia's triple point density. Overall, solvated electron size is larger in supercritical ammonia than in supercritical water at similar reduced thermodynamic states because of the stronger polarity of water. Analysis of the wavefunction for the bound states shows a ground $s$-like state and three, quasi-degenerate excited states with $p$-like characteristics. For low density ambients the energy gap between the two lowest lying states is comparable to the nuclear thermal energy fluctuations, suggesting that non-adiabatic effects may be relevant to the dynamical features of the electronic states. The ground state absorption spectrum computed at different solvent densities exhibits an asymmetric lineshape consistent with experimental observations. However, the maximum of the computed spectrum presents considerably stronger redshifts with decreasing density than the experimental data. (VITAE/ANTORCHAS, FAPESP, CNPq).

# DINÂMICA MOLECULAR COM CAMINHO INDUZIDO DA DISSOCIAÇÃO DO HORMÔNIO TIREOIDEANO DE SEU RECEPTOR：DETALHES MOLECULARES 

Leandro Martínez ${ }^{1 *}$（PG），Munir S．Skaf ${ }^{1}$（PQ），Igor Polikarpov ${ }^{2}$（PQ） Imartinez＠iqm．unicamp．br<br>${ }^{1}$ Depto de Físico Química，Instituto de Química，UNICAMP．${ }^{2}$ Instituto de Física de São Carlos，USP． Palavras－chave：Hormônio Tireoideano，Dissociação，Dinâmica Molecular．

Os hormônios tireoideanos atuam em processos de diferenciação celular em organismos em desenvolvimento e，em organismos adultos，atuam na regulação da atividade cardíaca，dos níveis de colesterol e da atividade metabólica basal．Diferentes isoformas do receptor são responsáveis pela diversidade das atividades do hormônio：enquanto que a atividade cardíaca é controlada pela isoforma TR－ロ1，o metabolismo é principalmente controlado pela isoforma TR－ロ1．O desenvolvimento de ligantes seletivos para uma das duas isoformas é de fundamental importância para o controle de distúrbios metabólicos，como a obesidade，sem que os efeitos colaterais associados à atividade cardíaca se manifestem［1］．Estruturas cristalográficas de uma molécula modelo $\square$－seletiva （GC－1）associadas ao receptor TR－ロ1 não foram capazes de tornar claras as razões de sua seletividade，sugerindo que a dinâmica do receptor deve ter um papel fundamental［2］．Os caminhos de dissociação do Hormônio Tireoideano de seu receptor TR－■1 foram previamente estudados com Dinâmica Molecular com Amostragem Ampliada［3 e resumo neste mesmo congresso］．Esta técnica permitiu a obtenção da forma geral destes mecanismos e suas implicações biológicas．A técnica DMAA não é capaz，no entanto，de fornecer informações precisas sobre as interações intermoleculares em cada mecanismo observado porque sua aplicação envolve uma aproximação nos potenciais de interação entre o ligante e a proteína．Para complementar este trabalho，a técnica de Dinâmica Molecular com Caminho Induzido［4］foi utilizada para estudar detalhadamente cada um dos mecanismos obtidos com DMAA．A direção da dissociação em cada um dos caminhos estudados deve ser previamente assumida e foi tomada como a direção de dissociação em cada um dos três mecanismos do estudo anterior com DMAA．O ligante é induzido a se dissociar por um cada um destes mecanismos pela aplicação de uma força externa．No entanto，os potenciais de interação entre o hormônio e a proteína não são aproximados，de forma que as interações intermoleculares podem ser estudadas com detalhes．

O perfil da força externa em função do tempo de simulação permite determinar quais são as principais barreiras para a dissociação em cada um dos mecanismos．As forças máximas nas duas principais barreiras de cada caminho estão apresentadas na tabela abaixo．Como pode ser observado，o Caminho III apresenta barreiras significativamente menores．O estudo das interaçōes entre o hormônio e o ambiente（proteína＋água）mostrou que isto se deve a gradativa substituição das interações hidrofilicas que o hormônio faz com a proteína por interações com moléculas de água．Isto se deve a que，no Caminho III，a extremidade polar do hormônio sai em direção à solução aquosa，enquanto que nos Caminhos I e ll esta extremidade deve atravessar a cavidade hidrofóbica de ligação antes da total dissociação do hormônio．Este resultado mostra que o Caminho III deve ser o caminho preferencial para a dissociação．

|  | Força máxima por barreira $/ \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-1}$ |  |
| :---: | :---: | :---: |
| Caminho | Barreira 1 | Barreira 2 |
| I | 21,5 | 16,2 |
| II | 22,3 | 16,7 |
| III | 13,3 | 11,6 |

Todas as interações entre o hormônio e os diferentes aminoácidos da proteína foram estudadas， revelando que diversos aminoácidos importantes，e inclusive o aminoácido S277 que é responsável pela seletividade do ligante GC－1，estăo envolvidos nos mecanismos．Este trabalho deve permitir um estudo detalhado por mutações sítio－dirigidas destes caminhos e，ainda，orientar novas metodologias para o desenvolvimento de ligantes com propriedades farmacológicas desejadas．（FAPESP，CAPES）．
［1］P．Webb et al．，＂Design of Thyroid Hormone Receptor Antagonists from First Principles．＂J．Steroid Biochem．Mol．Biol． 83：59（2003）．
［2］R．L．Wagner et al．，＂Hormone Selectivity in Thyroid Hormone Receptors．＂Molec．End．15：398（2001）．
［3］L．Martínez，M．T．Sonoda，P．Webb，J．D．Baxter，M．S．Skaf，I．Polikarpov，＂Molecular Dynamics Suggest Likely Pathways for T3 Dissociation from Thyroid Hormone Receptors．＂Submetido para publicação．
［4］D．Kosztin，S．Izrailev，K．Schulten，＂Unbiding of Retinoic Acid from its Receptor Studied by Steered Molecular Dynamics．＂ Biophys．J．76：188（1999）．

# MAPEAMENTO ESTRUTURAL E PROPRIEDADES DINÂMICAS DE CÁTIONS TROCÁVEIS EM ZEÓLITA NaK DESITRATADA 

Lucimara R. Martins ${ }^{1}$ (PG), Munir S. Skaf ${ }^{1}$ (PQ)<br>lucimara@iqm.unicamp.br<br>${ }^{1}$ Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas<br>Palavras-chave: cations trocaveis, zeolita NaX , simulação por Dinâmica Molecular

A caracterização das localizações dos cátions, suas propriedades e suas respectivas mobilidades no interior de estruturas zeolíticas são de suma importância no contexto das propriedades catalíticas de zeolitas. A fim de se obter tal caracterização, são empregadas inúmeras técnicas experimentais tais como difração de raios-X, espectroscopia Raman e infravermelho longínquo. Entretanto, existe uma gama de situações reias onde as técnicas experimentais não fornecem resultados suficientemente conclusivos a respeito das posições catiônicas e de suas propriedades dinâmicas. Através de simulações de dinâmica molecular geramos um mapeamento das posições catiônicas de equilíbrio em relação à estrutura zeolítica e estudamos as propriedades dinâmicas dos diferentes tipos de cátions.

Foram feitas simulações de dinâmica molecular, no ensemble NVE, utilizando a estrutura experimental (raios-X) da zeolita faujasita NaX desidratada. A caixa de simulação é composta por 4 celas unitárias ( $\mathrm{Si} / \mathrm{Al}=1.0$ ) com 96 cátions ocupando inicialmente os sítios cristalográficos de tipo I e II.

A partir do perfil de densidades dos cátions ao redor dos sítios cristalográficos, definimos critérios para classificar os cátions em função de sua posição em relação à estrutura zeolítica. Desta forma, foi possível comparar a ocupação dos sítios na simulação com a ocupação dos sítios cristalográficos experimentais, comparar a distância entre os diferentes tipos de cátions e os diferentes tipos de oxigênios da estrutura com valores experimentais, determinar coeficientes de difusão e tempo característico de residência para o cada tipo de cátion.

Cátions em sítios cristalográficos do tipo III (interior da cavidade $\alpha$ ) possuem alta mobilidade e não estão tão presos à estrutura zeolítica quanto cátions nos demais sítios. Estes apresentam menores coeficientes de difusão e as respectivas funções de correlação de velocidades apresentam oscilações características de íons presos em uma determinada região. As transformadas de Fourier dessas funções auxiliam na determinação das bandas no espectro IV. Com a intenção de verificar o efeito da correlação entre os movimentos de diferentes cátions, também foi calculada a função de correlação da corrente iônica. No espectro de condutividade, as bandas aparecem deslocadas para frequências mais baixas sendo maior o deslocamento da banda relacionada com os cátions do tipo III. Devido a maior mobilidade desses cátions, seus movimentos estão mais correlacionados com os movimentos dos cátions ao redor. (FAPESP).

# ELASTIC SCATTERING OF LOW-ENERGY ELECTRONS BY $\mathrm{CF}_{3} \mathrm{CL}, \mathrm{CF}_{2} \mathrm{CL}_{2}$, AND $\mathrm{CFCL}_{3}$. 

Márcio H. F. Bettega ${ }^{1}(\mathrm{PQ})$, Alexandra P. P. Natalense ${ }^{2}(\mathrm{PQ})$, Marco A. P. Lima ${ }^{2}$ (PQ), Luiz G. Ferreira ${ }^{2}$ (PQ), Takahiro Tanaka ${ }^{3}$ (PQ), Hyuck Cho ${ }^{4}$ (PQ), Masashi Kitajima ${ }^{3}$ (PQ), and Hiroshi Tanaka ${ }^{3}$ (PQ)<br>bettega@fisica.ufpr.br<br>${ }^{1}$ Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Paraná, Brazil; ${ }^{2}$ Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Caixa Postal 6165,13083-970, Campinas, São Paulo, Brazil; ${ }^{3}$ Department of Physics, Sophia University, Chyoicho 7-1, Chiyoda-ku, Tokyo 102-8854, Japan;,'Department of Physics, Chungnam National University, Taejon 305-764, Korea.<br>Palavras-chave: Halomethanes, elastic scattering, Schwinger multichannel method.

Electron collisions with halomethanes have been subject of several studies. Some of these studies deal with the negative ion formation by electron attachment. This type of process, which in electron-molecule collision is related with shape-resonance, can lead to molecular dissociation through different paths, resulting in neutral and charged fragments. In the present work we report elastic integral, momentum transfer, and differential cross sections for electron collisions with $\mathrm{CF}_{3} \mathrm{Cl}, \mathrm{CF}_{2} \mathrm{Cl}_{2}$, and $\mathrm{CFCl}_{3}$ molecules. The scattering cross sections were computed using the used the Schwinger multichannel method with pseudopotentials at the static-exchange approximation. The cross sections for the entire family of molecules were obtained using a 6s5p2d Cartesian Gaussian basis for the carbon and halogen atoms. In general the permanent dipole moment of these molecules are well described with the present Cartesian Gaussian basis sets and their values are relatively small. As a result no completion of the scattering amplitude with first Born term was necessary, even at the higher energies. To illustrate, we compare in the figure below results of our recent calculations of elastic differential cross sections for $\mathrm{CF}_{3} \mathrm{Cl}, \mathrm{CF}_{2} \mathrm{Cl}_{2}$, and $\mathrm{CFCl}_{3}$ at 20 eV obtained in Curitiba and Campinas with the experimental data obtained in Tokyo and Taejon. In general, we found very good agreement between theory and experiment. For the other molecules we also found good agreement with experiment and other calculations. At the conference we will present a comparative study of the cross sections for these molecules and will discuss the halogenation effect. (CNPq,CAPES, FAPESP, FUNPAR, Fundação Araucária, CENAPAD-SP.)


## P124

## Estrutura, modos vibracionais e interaçōes intermoleculares no ácido 2-propil fosfônico em água.

Robson Pacheco Pereira*1.2 (PG), Ana Maria Rocco ${ }^{2}(\mathrm{PQ})$, Maria Isabel Felisberti ${ }^{3}$ (PQ) e Carlos Eduardo Bielschowsky' (PQ) - rpacheco@iq.ufrj.br

1- Grupo de Espectroscopia Teórica, 2 - Grupo de Materiais Condutores, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 3-Instituto de Química, UNICAMP, Campinas, SP

Palavras-chave: ácido fosfônico, camada de hidratação, descrição ab initio
Formaçāo de dimeros, agregados moleculares e estruturas supramoleculares sāo conseqüências diretas de interaçōes intermoleculares do tipo dipolo-dipolo, ion-dipolo e pi. A descrição destas interaçōes permite uma compreensão da estrutura de sistemas como proteínas, clusters e complexos pi, dentre outros.

No presente trabalho, estudamos um sistema modelo formado pelo ácido 2propil fosfônico, como um protótipo para a descrição de sistemas macromoleculares envolvendo ácidos da mesma natureza. Os sistemas modelo foram construidos a partir do ácido 2 -propil fostônico em formação de dimero e em sistemas interagentes via ligação hidrogênio com moléculas de água. Adicionalmente, foi investigado o efeito de um meio dielétrico, simulando a água, utilizando o método do continuo polarizável (PCM) considerando a formação de uma esfera de hidratação ( $n \mathrm{H}_{2} \mathrm{O}$ ). Foram realizados cálculos DFT com bases 6-31G e 6-31G(d,p) de otimização de geometria e freqüencias vibracionais nos diferentes sistemas modelo propostos.

Duas diferentes conformaçōes foram obtidas para os dimeros: uma envolvendo três e outra duas ligaçōes hidrogênio, com ambas as bases utilizadas. A camada de hidratação descrita pelo modelo empregado é formada com três moléculas de água e para moléculas adicionais, uma segunda esfera de hidratação é a conformação mais estável. Na Tabela 1 encontram-se alguns parâmetros geométricos obtidos para os modelos estudados.

Tabela 1. Parâmetros geométricos obtidos para os modelos estudados no nivel B3LYP/6-31G

|  | $d(P=O)(A)$ | $\mathrm{d}(\mathrm{P}-\mathrm{O})(\mathrm{A})$ | $\mathrm{d}(\mathrm{O}-\mathrm{H})(\mathrm{A})$ | $<(\mathrm{O}-\mathrm{P}=\mathrm{O}$ ) (") | < (O-P-O) (") | $\mathrm{d}\left(\mathrm{POH} \ldots \mathrm{OH}_{2}\right)(\mathrm{A})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PAVF, | 1.49209 | 1.63226 | 0.96879 | 113.370 | 104.522 | -- |
| PAVF,-2a | 1.62145 | 1.69694 | $\begin{gathered} 1.10776(\mathrm{hb}) \\ 0.98114 \end{gathered}$ | .. | - | -- |
| $\mathrm{PAVF}_{1}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}$ | 1.61816 | $\begin{gathered} 1.70377\left(\mathrm{OH}_{2}\right) \\ 1.72737 \end{gathered}$ | $\begin{gathered} 1.02147\left(\mathrm{OH}_{2}\right) \\ 0.97928 \\ \hline \end{gathered}$ | $\begin{gathered} 111.199\left(\mathrm{OH}_{2}\right) \\ 112.967 \\ \hline \end{gathered}$ | 107.169 | 1.62434 |
| PAVF, $\left(\mathrm{H}_{2} \mathrm{O}\right)$ \% | 1.62650 | $\begin{gathered} 1.68913\left(\mathrm{OH}_{2}\right) \\ 1.72916 \end{gathered}$ | $\begin{gathered} 1.03270\left(\mathrm{OH}_{2}\right) \\ 0.99011 \end{gathered}$ | $\begin{gathered} 114.142\left(\mathrm{OH}_{2}\right) \\ 108.822 \end{gathered}$ | 107.437 | 1.55500 |
| $\mathrm{PAVF}_{1}\left(\mathrm{H}_{3} \mathrm{O}\right)_{3}$ | 1.63759 | $\begin{gathered} 1.68488\left(\mathrm{OH}_{2}\right) \\ 1.72316 \end{gathered}$ | $\begin{gathered} 1.03508\left(\mathrm{OH}_{2}\right) \\ 0.99183 \end{gathered}$ | $\begin{gathered} 112.558\left(\mathrm{OH}_{2}\right) \\ 107.358 \end{gathered}$ | 107.899 | 1.54043 |

# Espectro vibracional do oligo(oxido de etileno): descrição teórico-experimental 

Robson Pacheco Pereira*1.2 (PG), Ana Maria Rocco ${ }^{2}$ (PQ) e Carlos Eduardo Bielschowsky' (PQ) - rpacheco@iq.ufr.br

1-Grupo de Espectroscopia Teórica, 2 - Grupo de Materiais Condutores, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ
Palavras-chave: espectro vibracional, descrição ab initio, PEO
Desde o trabalho pioneiro de Wright (1975) e Armand (1978), o poli(óxido de etileno) (PEO) tem sido estudado como sistema modelo para matrizes de eletrólitos sólidos. A conformação das cadeias do polímero é um aspecto de extrema importância tanto para a complexação dos cátions no eletrólito como também para as prorpiedades de transporte no sólido. Dentre as diferentes técnicas espectroscópicas utilizadas na descrição de sistemas poliméricos, a espectroscopia vibracional no infravermelho fornece informaçōes acerca da estrutura local que permitem construir modelos moleculares empíricos, os quais são acessiveis também por meio de cálculos teóricos.

No presente trabalho, são estudados oligômeros de óxido de etileno em conformaçōes helicoidal e planar na intenção de descrever o espectro vibracional total do PEO, separando a contribuição da fração cristalina daquela não-cristalina do sólido. Para tanto, foram realizados cálculos baseados na teoria do funcional da densidade e de mecânica molecular.

O monitoramento de parâmetros geométricos e dos modos vibracionais nos oligômeros, em comparação ao espectro vibracional experimental do PEO, permitiu estabelcer um critério de convergência com o número de unidades ( $n$ ) descritas no sistema modelo. Esta convergência é alcançada em $n=6$, como demonstram os espectros vibracionais calculados em nivel DFT com uma base 6-31G(d,p) e ainda por cálculos de mecânica molecular. A soma ponderada das contribuiçōes dos espectros calculados para as estruturas em hélice e planar, representando respectivamente a fração cristalina e não-cristalina do sólido, apresenta uma boa concordância com o espectro vibracional experimental do PEO. Na Tabela 1 encontramse a freqüencia e a intensidade de alguns modos vibracionais calculados.

Tabela 1. Freqüência e intensidade de alguns modos vibracionais do PEO (experimental) e dos modelos estudados (hélice e linear)

| PEO-Expermimental |  | $(\mathrm{EO})_{6}\left(\mathrm{CH}_{3}\right)_{2}$ - hélice |  | $(\mathrm{EO})_{6}\left(\mathrm{CH}_{3}\right)_{2}$ - linear |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Freqüência | Intensidade (normalizada) | Freqüência | Intensidade (normalizada) | Freqüência | Intensidade (normalizada) |
| 2885,99 | 0,47039 | 2972,89 | 2,91929 | 3029.75 | 8,59788 |
| 1280,04 | 0,2247 | 1397,26 | 1,40210 | 1323,15 | 2,11252 |
| 1240,02 | 0,14899 | 1379,04 | 6,28691 | 1312,69 | 2,23556 |
| 1146,97 | 0,32433 | 1182,64 | 2,40916 | 1182,00 | 4,37576 |
| 1107,92 | 1,0 | 1159,42 | 13,01419 | 1178,83 | 28,90666 |
| 1061,16 | 0,24779 | 1151,71 | 4,64984 | 1160,89 | 2,21497 |
| 842,753 | 0,20858 | 981,84 | 2,49386 | 1000,52 | 2,65075 |

# Ab Initio ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ Chemical Shifts Using Locally Dense Basis Sets 

Sidney Ramos de Santana* (PG), Ricardo Luiz Longo (PQ) e-mail: sidney@dqf.ufpe.br

Pós-Graduação em Ciência de Materiais - CCEN - UFPE
Av. Prof. Luiz Freire s/n-Recife - PE - 50740
Keywords: ab initio, chemical shift calculations, locally dense basis sets
A Locally Dense Basis Sets (LDBS) approach has been employed in ab initio calculations of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shifts. This approach enables the calculations for large molecules since it drastically decreases the computational demand, but still maintains the precision.

This approach uses the AhlrichsTZVP base sets for the atom of interest - singly dense (SD) - and its first neighbors - locally dense (LD) - with the remaining atoms being described by the smaller basis sets: 3-21G and 6-311G. The NMR chemical shifts have been calculated with the B3LYP, MP2 and RHF methods with the various combinations between SD, LD, 3-21G and 6-311G, leading to 15 different approaches. The molecular structures were obtained with the MP2/6-311G(d,p) method. All these approaches have been tested for a database of 31 molecules yielding 58 and 39 values for ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shifts, respectively. A chemometric analysis of these results has been performed, were the errors with respect to the experimental data and the computational demand have been considered in the analysis.

The MP2/LD321G approach was the most accurate for ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$, yielding an average error of -0.39 ppm and RMS of 3.93 ppm for
 ${ }^{13} \mathrm{C}$ and 0.02 ppm and RMS 0.33 ppm for ${ }^{1} \mathrm{H}$ with respect to the experiment. In addition, an average increase of the computational performance of 3.7 and 9.8 times was obtained for the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shift calculations. Regarding the comparison with the results obtained with the AhlrichTZVP base sets for all atoms in the molecules, an average difference of -1.13 ppm and -0.11 ppm was obtained with the MP2/LD321G approach. For the less precise but still accurate MP2/SD321G approach these increases in the computational performance were 14 and 21 times for ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shift calculations. If the computational performance is main concern, then the chemometric analysis can be use, and as indicated in the figure, there can be computational gains of more than 40 times with a loss of accuracy smaller than $1 \%$.

In addition, the LDBS approach has been used in the assignment of the NMR spectrum of an isotopic diastereoisomer mixture, for example to 3,3 -dimethyl-4-phenilbutan-2-ol, where all the approximations have shown
 the same trend, namely, the chemical shift of the enriched ${ }^{13} \mathrm{C}$ in enantiomers 3 b is 3.5 ppm larger than in $3 a$. It should be mentioned that an increase in the computational performance of 17 times for the RHF/LD321G approach has been obtained.

# CÁLCULO DAS FUNÇÕES DE GREENE TRANSFERÊNCIA DE ELÉTRONS NOS SISTEMAS PIRAZINA•HX E 

 XH•PIRAZINA.-HX X=F, CL, NC, CN E CCHMário R. da Silva Jr. ${ }^{1}$ (PG) ${ }^{\star}$, João Bosco P. da Silva ${ }^{1}$ (PQ), Mozart N. Ramos ${ }^{1}$ (PQ) e Alfredo Arnóbio S. da Gama (PQ).<br>mario@dqf.ufpe.br<br>${ }^{1}$ Laboratório de Química Computacional, Departamento de Quimica Fundamental - UFPE - Recife (PE) - 50740-250<br>Palavras-chave: Pirazina, Transferência de elétrons, Funções de Green

O estudo da transferência de elétrons (TE) em sistemas aromáticos formando ligações de hidrogênio (ligações-H) tem sido amplamente estudado devido a sua importância em sistemas biológicos, tais como no DNA e nas proteínas.

A T.E. é freqüentemente avaliada pelo somatório de cargas $(\Delta q)$ em uma das espécies envolvidas na ligação-H. Alternativamente, o elemento de matriz da Funções de Green, $G_{D A}$, relacionado com a probabilidade de transferência eletrônica num sistema doadorreceptor, mostrou-se correlacionar com $\Delta q$ para o caso de sistemas lineares: $\mathrm{C}_{x} \mathrm{NH} \cdots \mathrm{NC}_{x} \mathrm{H}, \mathrm{X}$ $=1 \mathrm{e} 3$.

Em vista de ampliar esta avaliação incluindo ligações-H envolvendo nitrogênio aromáticos como aceitadores de ligações-H, neste trabalho foram estudados os sistemas (ver Figura 1): Pirazina $\cdots$ HX (I) e XH…Pirazina $\cdots$ HX (II), sendo $X=F, C I, N C, C N e C C H$. Além destes, fez-se também necessário o estudo particular do sistema Pirazina… HF, variando-se a distância intermolecular, para uma melhor caracterização do processo de TE. Para todos os casos, foram realizados cálculos ab-initio a nível MP2 com o conjunto de base $6-31++\mathrm{G}^{* *}$. Para quantificar-se $\Delta q$, utilizaram-se 2 partições de carga: as cargas obtidas dos tensores polares atômicos (TPA) e as cargas NBO. Em todos os casos, correlacionou-se a quantidade de carga transferida com o respectivo $G_{D A}$.

Os resultados apresentaram-se satisfatórios, obtendo-se, para os sistemas I e II, uma correlação linear de $98,2 \%$ do elemento de matriz com as cargas TPA. Observou-se também que para o sistema envolvendo HCl , observa-se um desvio da linearidade. Contudo, sabemos que este fato é deficiência da função de base utilizada. Para o sistema Pirazina… $H F, \Delta q$ e $G_{D A}$ possuem ambos um decaimento exponencial, cujas taxas de decaimento mostram-se bem similares. (CAPES, CNPq).


I


II

Figura 1: Sistemas estudados neste trabalho.

## P128

# A INTERAÇÃO DE MODELOS DE ANEL C DE FLAVONÓIDES E CUMARINAS COM A ÁGUA 

Renato L. T. Parreira (PG), Josiana G. Araújo (IC), Sérgio E. Galembeck* (PQ)<br>segalemb@usp.br<br>Laboratório de Modelagem Molecular, Departamento de Química, FFCLRP, Universiḍade de São<br>Paulo - Avenida dos Bandeirantes 3900, Ribeirão Preto, 14040-901, SP, Brasil. 'E-mail:

Palavras-chave: flavonóides, cumarinas, ligações de hidrogênio
Os flavonóides, amplamente distribuídos no reino vegetal, são uma classe de compostos fenólicos de baixo peso molecular que apresentam diversas funções biológicas, além de exercer um importante papel na interação entre plantas e o meio ambiente. Flavonóides não só protegem a planta dos efeitos nocivos da radiação ultravioleta (UV) como também são fundamentais no processo de reprodução sexual, na indicação visual de flores e frutos, nas interações plantabactéria, planta-micróbio e planta-parasita. ${ }^{1}$ Estes compostos apresentam capacidade antioxidante, atividade antiinflamatória, efeito vasodilatador, ação antialérgica, anticarcinogênica e antiviral, entre outras. Assim como os flavonóides, as cumarinas são compostos naturais de grande importância na fisiologia vegetal. O estudo da farmacologia e da toxicologia destes compostos tem despertado amplo interesse. ${ }^{2}$ Nesse trabalho, as ligações de hidrogênio formadas entre os modelos de anel C de flavonóides e cumarinas com a água (figura 1) foram caracterizadas utilizando parâmetros geométricos, energéticos e eletrônicos.

Figura 1: Complexos mais estáveis com uma molécula de água: (a) 2H-pyran-2-one; (b) pyrilium; (c) 4H-pyran-4-one; (d) 2,3-dihydro-4H-pyran-4-one; (e) 3,4-dihydro-2H-pyran.


Os cálculos foram efetuados no nível B3LYP/6-31+G(d,p). As energias foram corrigidas com a energia do ponto zero (ZPE). A análise energética para os dímeros e trímeros foram realizadas com a utilização do método de Xantheas para interações de $n$-corpos O efeito do erro de superposição de bases (BSSE) foi considerado através do emprego do método de "counterpoise" (CP). A função de onda foi analisada pelos métodos NBO (Natural Bond Orbitals), incluindo NPA (Natural Population Analysis), NSA (Natural Steric Analysis) e NRT (Natural Resonance Theory). Esses cálcullos foram efetuados com o uso do programa NBO 5.0 interfaciado com o programa GAUSSIAN 98. A Tabela 1 apresenta os valores das energias de ligação para os complexos mais estáveis formados entre os modelos de anel C da cumarina, (a), e dos flavonóides, (b)-(e), com uma molécula de água. Observa-se a maior estabilidade para o complexo (b) e a menor para o (e). Os complexos (a), (c) e (d) apresentam energias de ligação e sítios de solvatação semelhantes. (FAPESP, LCCA, CNPq, CAPES).

Tabela 1: Energias de ligação para os complexos mais estáveis com uma molécula de água.

| Complexo | Energia de ligação (kcal/mol) |
| :---: | :---: |
| (a) | $-10,21$ |
| (b) | $-14,69$ |
| (c) | $-11,60$ |
| (d) | $-10,68$ |
| (e) | $-7,44$ |

[^12]
# ANEW QUANTUM DEFINITIONFOR THE CLASSICAL CONCEPT OF MOLECULAR STRUCTURE 

José R. Mohallem (PQ)<br>rachid@fisica.ufmg.br<br>Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG, Brasil.<br>Palavras-chave: molecular structure, symmetry breaking, isotopic effect.

The classical concept of Molecular Structure (ME), say atoms kept together by bonds in a well-defined geometrical arrangement, is perhaps the most basic concept of chemistry and molecular physics. However, ME and quantum mechanics are not easy to reconcile [1]. In fact, in the 70's and 80's, Wooley claimed that ME is just an outcome of the semi-classical BornOppenheimer (BO) approximation [2]. Although this position was not supported by the whole quantum chemical community, no one has been able, so far, to present an alternative definition of ME, retrieved from pure molecular quantum mechanics. Paradoxically, it became a common belief that preserving the ME concept implies to preserve the BO approximation. This situation is sometimes referred to as the molecular structure dilemma.

Presently, ME means molecular geometry, which is commonly identified with a rigid nuclear frame addressed by a set of minima of potential energy surfaces. This picture has a formal counterpart in the obedience, by the electronic wave-function, of some symmetry properties associated with this nuclear frame, namely the point group symmetries of a molecule. This legacy of the electronic wave-function can be the key to the solution of the above dilemma: as long as the total wave-function can be obtained as an electronic factor times a nuclear factor (the adiabatic separation, which is, in principle, exact [3]), the electronic wavefunction must carry the signature of the nuclear arrangements. In the BO approximation, this signature is identified with the parametrization of the electronic wave-function with fixed nuclear coordinates, and the minimum energy nuclear configuration is identified as the molecular geometry.

Here, it is proposed that this signature is a definition of ME even though the nuclei are not fixed, and must manifest as symmetry properties of the electronic distribution. This definition of ME becomes formal and operational, since symmetry properties can always be checked out.

Resorting to a variational adiabatic approach, this proposal is checked beyond the BO approximation. Some illustrative examples are presented for isotopic varieties of $\mathrm{H} 2+, \mathrm{H} 2$ and $\mathrm{H} 2 \mathrm{O}[4,5,6]$. It is shown that just including finite nuclear mass corrections for the homo-isotopic species has no effect on molecular symmetries. On the other hand, isotopic substitution of a H atom by a D (deuterium) atom, for example, has the effect of reducing the molecular symmetry, but in a way that the remaining symmetries are still well defined and conserved in correlation diagrams, and the non-crossing rule is obeyed. (CNPq)

1. P. Claverrie and S. Diner, Isr. J. Chem. 19 (1980) 54.
2. R. G. Wooley, Adv. Phys. 25 (1976) 27; Chem. Phys. Lett. 125 (1986) 200, and references therein.
3. G. Hunter, Int. J. Quantum Chem. IX (1975) 237.
4. C. P. Gonçalves and J. R. Mohallem, Chem. Phys. Lett. 367 (2003) 533.
5. C. P. Gonçalves and J. R. Mohallem, Theor. Chem. Acc., In press.
6. C. P. Gonçalves and J. R. Mohallem, Chem. Phys. Lett., submitted.

# TOPOLOGY OF THE POSITRONIUM ATOM IN HPs 

<br>tathiana@fisica.ufmg.br<br>Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG, Brasil.<br>Palavras-chave: Atoms-in-molecules, positronium hydride, positronium

Bader's atoms-in-molecules (AIM) theory [1] is a modern tool for investigation of molecular structure (ME). It has been devised for applications to typical molecules and is thus based on the Born-Oppenheimer (BO) approximation. This becomes, however, a point where the theory shows some weakness $[2,3]$, since the total BO wave-function (and density) vanishes at the zeros of excited vibrational states. It seems that a cure to this undesirable feature is to incorporate the nuclear motion to the AIM theory [3]. This can obviously be done just in an approach that goes beyond the BO approximation but still has an adiabatic nature, so that the very concept of ME is preserved. Such an approach has been developed in our group [4-6], with the introduction of a finite nuclear mass correction (FNMC) to the potential energy surfaces. Now we apply the AIM theory with FNMC to the study of the topological properties of the positronium hydride, HPs. The two-electron wavefunction is a linear combination of two physically plausible valence bond structures: a covalent and an ionic structure (centered on the proton). The atomic orbitals are 1s Slater functions with variable exponents. We obtain both the electron density and its gradient in analytical forms. Our main goal is to discuss the existence of the topological Ps atom, as a light isotope of the hydrogen atom. In fact, the first results show a typical heteronuclear bonding between H and Ps , that is, the Ps atom is well characterized in the plots of gradient line fields, for any proton-positron distance. This heteronuclear behavior is, however, due to kinetical effects, since the charges of the nuclear centers (proton and positron) is the same. These results yields a further outcome of our calculations, that is, the effects of nuclear motion could be incorporated to the AIM theory, with no destruction of the typical patterns of gradient line fields. (CNPq).

1. Bader RFW, Atoms in Molecules, a quantum theory, Claredon, Oxford (1995).
2. Cassam-Chenaï P, Jayatilaka D, Theor. Chem. Acc. 105 (2001) 213.
3. Mohallem JR, Theor.Chem. Acc. 107 (2002) 372.
4. Mohallem JR, J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 3805.
5. J. R. Mohallem, F. Rolim, C. P. Gonçalves, Mol. Phys. 99 (2001) 87.
6. C. P. Gonçalves, J. R. Mohallem, Theor. Chem. Acc., in press

# ISOTOPE- A NEW PROGRAM THAT INCLUDES FINITE NUCLEAR MASS CORRECTIONS IN ELECTRONIC 

## CALCULATIONS

Cristina P. Goncalves (PQ), Flavia Rolim (PG), José R. Mohallem (PQ)<br>crispg@fisica.ufmg.br<br>Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG, Brasil.<br>Palavras-chave: Isotope effect, adiabatic approximation, electronic properties.

In a previous work, we have upgraded a SCF-HF (Self-Consistent-Field Hartree-Fock) routine to include a finite nuclear mass correction (FNMC), developed in our laboratory [1,2,3]. The new routine handle with isotopomers without calculating any nuclear kinetic energy matrix element. It presents no extra computatuional cost, being thus able to general applications. Tests on $\mathrm{H}_{2}, \mathrm{LiH}, \mathrm{HF}, \mathrm{F}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ isotopomers indicated the equivalence of our correction to the standard diagonal adiabatic correction [4]. A further original aplication to $\mathrm{C}_{2} \mathrm{H}_{6}$ illustrated the usefulness of the method for polyatomic molecules. The resulting molecular orbitals carry the nuclear mass signature, exemplified with Koopmans' ionization potentials.

However, the HF wavefunction is not enough accurate for calculating small effects or properties due to the isotope effect. For that, it becomes necessary to extend the method to include electronic correlation. The extension of the previous approach to configurationinteraction $(\mathrm{Cl})$ theory became straightforward, that is, the mass-dependent occupied and virtual MOs are used for generating the determinantal basis for Cl calculations. Any other method built on a HF basis, like many body perturbation theory (MBPT) becomes feasible as well. In any case, both the adiabatic electronic energies and the MOs are affected, carrying the isotope signature, that is, isotope symetry breaking becomes an information contained in the wavefunction [5]. We upgraded the Gamess package [6] to include FNMC, renaming this program as ISOTOPE. To exemplify the applicability of the method, we investigated the phenomena of isotope symmetry breaking. Mulliken populational analysis illustrates this phenomena, from $D_{\infty h}$ to $C_{\infty v}$ in HD ( $H$ is hydrogen and $D$ is deuterium) and from $C_{2 v}$ to $C_{1}$ in HDO. For the ground state, in HD, we obtained 1.1423 for the population on the D atom and 0.8577 on the H atom at $\mathrm{R}=1.40 \mathrm{au}$. For the HDO ground state, Mulliken population is 0.7838 on the D atom and 0,7779 on the H atom. We have also obtained the isotope shift of the states of HD converging to the $\mathrm{n}=2$ separated atom level exactly. This effects has only recently been addressed in laboratory [7].

Presently, we are interested in calibrating the ISOTOPE program to general calculations of potential energy surfaces. For this, we calculate the effects of nuclear motion on the barrier to linearity of water isotopomers and compare our results with recent accurate calculations [8]. After that, we will make the program available to the quantum chemistry community. (CNPq, CAPES, FAPEMIG)
[1] J. R. Mohallem, J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 3805.
[2] J. R. Mohallem, F. Rolim and C. P. Gonçalves, Mol. Phys. 99 (2001) 87.
[3] C. P. Gonçalves and J. R. Mohallem, Theor. Chem. Acc., in press.
[4] N. C. Handy and A. M. Lee, Chem. Phys. Lett. 252, 425 (1996).
[5] C.P.Gonçalves and J. R. Mohallem, Chem. Phys. Lett, submited.
[6] M. W. Schimdt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, J. Comp. Chem. 14, 1347 (1993).
[7] A. D. Lange, E. Reinhold e W. Ubachs, Int. Rev. Phys. Chem. 21, 257 (2002)
[8] G. Tarczay, A.G. Csàszàr, W. Klopper, V. Szalay , W.D. Allen and Shaeffer III, J. Chem. Phys. 114, 2875 (2001).

## P132

# ELECTRONIC STATES AS BASIS FOR THE INVESTIGATION OF POSITRON AND POSITRONIUM COMPLEXES: STUDY OF THE BARRIER TO LINEARITY OF HPsO. 

Flávia Rolim (PG), Cristina P. Gonçalves (PQ), José R. Mohallem (PQ)<br>flavia@fisica.ufmg.br Laboratório de Átomos e Moléculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG, Brasil.<br>Palavras-chave: Positron complexes, exotic molecules, finite nuclear mass.

The study of positron and positronium complexes cannot be done with usual quantum chemistry approaches based on the Born-Oppenheimer approximation. Instead, one has to consider two fundamental features that make these systems different from typical molecules: the small mass of the (positive) positron, and the nonadiabatic couplings. We are interested in dealing with these species as molecular systems, in which the positron plays the role of a delocalized nucleus and the nonadiabatic effects are described by coupling the electronic states. To make it possible, we have been working on the inclusion of these two effects in standard quantum chemistry methods. This resulted in an upgraded version of a SCF-$\mathrm{HF}-\mathrm{Cl}$ routine, developed in our laboratory [1]-[3], which includes the finite nuclear mass correction (FNMC).

In previous calculations with this model, for simple positron complexes like $\mathrm{Ps}_{2}$ and HPs, we have shown that the electronic ground state is well separated from the other states, so that the main source of nonadiabatic effects is not the coupling with other states, being instead a reduced mass effect [4], [5]. This feature allows us to treat the complexes in an adiabatic approximation. Although this approach is not accurate for energy calculations, it gives reliable information about the positronic density, that is, the preferable positron sites in a complex. In this work, we have been applying our methodology to molecules with more than two centers by substituting one or more hydrogen atoms by positronium atoms. To be confident with our results, we have use a mass scaling procedure, varying the parameter $\lambda=M / m$ (mass of the $X$ nucleus divided by the electronic mass), which makes possible the study of systems in a range of mass that continuously extends from T (Tritium) atom to the Ps (Positronium) atom. The output of the calculation is what we have been calling the positronic molecule "geometry".

We report interesting preliminary results for a model $\mathrm{Ps}_{2} \mathrm{O}$ molecule that shows a linear configuration, with a breaking of the barrier to linearity, and a change of the point group symmetry, relatively to the $\mathrm{H}_{2} \mathrm{O}$ molecule. Qualitatively, we interpret this result as describing the positron delocalization, but with strong correlation between the movements of the two positronium atoms. For the more reliable HPsO complex, we observed, however, a finite barrier to linearity, with a minimum angle of $119^{\circ}$ (Cs symmetry). This seems to advance a precession of the Ps atom around the OH axis, nearer the O atom.

It is important to note that this is a kind of information needed by experimentalists working in the area of Chemistry of Positron and Positronium, that cannot be obtained by other theoretical methods.
[1] J. R. Mohallem, J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 3805.
[2] J. R. Mohallem, F. Rolim and C. P. Gonçalves, Mol. Phys. 99 (2001) 87.
[3] C. P. Gonçalves and J. R. Mohallem, Theor. Chem. Acc., in press.
[4] R. E. Moss, Mol. Phys. 89 (1996) 195.
[5] F. Rolim, J. P. Braga and J. R. Mohallem, Chem. Phys. Lett. 332 (2000) 139.

# Using Density Matrices to Define Segmented Contracted Relativistic Basis Sets 

André Severo Pereira Gomes (severo@iqm. unicamp.br) (PG), Rogério Custodio (PQ) Instituto de Química - Universidade Estadual de Campinas<br>Caixa Postal 6150, Campinas, SP 13083-970

Keywords: Contraction, Relativistic Basis Sets, Density Matrix
Due to the high computational demands of relativistic ab initio methods, care should be taken not only in choosing suitable primitive sets, but also using the adequate contraction scheme for the problem at hand. The use of segmented contraction does bring some benefits in the case of relativistic calculations: first, it reduces the computational effort on the integral calculation due to the smaller number of members in the contracted set. Second, as the exponents of relativistic basis sets are usually shifted to the inner region, it is usually possible to group a large number of primitives in the description of the innermost spinors of a given symmetry, such as the $1 \mathrm{~s}+$ or the $2 p+/ 2 p$-, without significant increases on the total energy of the atom. A problem when using the segmented contraction, however, is that for heavier elements, there is a significant contribution of the same primitive for various spinors, which limits the amount of contraction on the region between the innermost and the valence spinors. Besides that, the definition of exponent groupings can be a very tedious matter, as one usually has to carry out several experiments to verify the influence of the groupings on the atomic energies and arrive at the optimal contraction.

It is possible to improve the usability of the segmented contraction by using some information contained on the first-order density matrices. The representation of the electronic density in terms of the primitive basis set is given by

$$
\begin{equation*}
\rho(\mathrm{x})=\sum_{\gamma=1}^{\Gamma}\left\{\sum_{\mu=1}^{M_{L}(\gamma)} \sum_{\nu=1}^{M_{L}(\gamma)} D_{\mu,}^{L L(\gamma)} \chi_{\mu}^{L /(\gamma)} \chi_{\nu}^{L(\gamma)}+\sum_{\mu=1}^{M_{S}(\gamma)} \sum_{\nu=1}^{M_{S}(\gamma)} D_{\mu,}^{S S(\gamma)} \lambda_{\mu}^{S(\gamma)} \chi_{\nu}^{S(\gamma)}\right\}, \tag{1}
\end{equation*}
$$

where $M_{I,}(\gamma), M_{S}(\gamma)$ represent the number of basis functions for the large and small components on irrep $\gamma$, respectively, and $D_{\mu, \nu}^{L L /(\gamma)}, D_{\mu, \nu}^{S S(\gamma)}$ are the elements of the LL and SS blocks of the density matrices on the irrep $\gamma$, given by

$$
\begin{equation*}
D_{\mu \nu}^{L L(\gamma)} \doteq \sum_{k=1}^{O(\gamma)} c_{\mu k}^{L(\gamma)} c_{\mu k}^{L(\gamma)} \quad \text { and } \quad D_{\mu \nu}^{S S(\gamma)}=\sum_{k=1}^{O(\gamma)} c_{\mu k}^{S(\gamma)} c_{\nu k}^{S(\gamma)} \tag{2}
\end{equation*}
$$

If we plot $D_{\mu \nu}^{L L /(\gamma)}$ or $D_{\mu \nu}^{S S(\gamma)}$ as a function of the $\log$ of the exponents of primitives $\chi_{\mu}^{L /(\gamma)}$ and $\chi_{1,}^{L}(\gamma)$, we are able to visualize the contribution of these primitives to the total density. Moreover, if we consider the individual elements of the sums in (2) and plot the contribution of each spinor to the element of the corresponding block of the density matrix individually, it is also possible to visualize the range of exponents, and thus which primitives, make significant contributions to the description of one or more spinors, as well as the relative importance of each primitive to the representation of the density for the spinors. This information can then used to predict which groupings of primitives will be favourable and which will be unfavourable due to the superposition of different spinors.
In order to assess the validity of such predictions, we carried out several contraction test on the halogen atoms, comparing them with what would be expected from the analysis above. We have found that it is indeed possible to define nearly optimal groupings of exponents by visual inspection of the previously mentioned graphs alone, as in the contraction of a 25 s 20 p 15 d set developed by us for lodine. We predicted relatively stable contractions up to [18s13p7d] (a [18s13p7d] set showed a $11 \%$ increase in the error for the total atomic energy w.r.t. to the uncontracted set, while this error for a [19s14p8d] set was of about 3\%), whereas more contracted sets in the inner region of the spinors were predicted to be highly destabilized (the [17s13p7d] set shows an error for the total atomic energy higher than $100 \%$ w.r.t. to that of the uncontracted set) due to the large superposition of the innermost spinors of each symmetry. A visual analysis, however, is inherently imprecise, and we are now seeking a quantitative criterion to choose the optimal contraction.
(FAPESP, CNPq, CAPES)

## P134

# Systematic Sequences of Relativistic Basis Sets for d-and f-Block Elements 

André Severo Pereira Gomes (severo@iqm.unicamp.br) (PG), Rogério Custodio (PQ)<br>Instituto de Quimica - Universidade Estadual de Campinas<br>Caixa Postal 6150, Campinas, SP 13083-970

## Keywords: Geometric Basis Sets, Relativistic Calculations, Optimization

The field of relativistic quantum chemistry has been rapidly evolving over the last three decades, stimulated by advances in computer technology and by the growing interest in heavy element chemistry. In this period there have been many advances in the development of computer codes and theoretical methods, although the development of basis sets for $l$ - and $f$-block compatible with use in molecular calculations has not seen corresponding developments until recently ${ }^{1}$

While it is crucial to have relatively small sets of good quality available, one should also be concerned with how the complete basis set limit will be approached, particularly if "chemical accuracy" is sought, as this knowledge may be of use, for instance, in devising extrapolation schemes Such information is best obtained in a framework where the basis set can be systematically enlarged, and where it is possible to verify if these enlargements are also translated into systematic improvement of energies and other properties.

A proven scheme to enlarge basis sets in a systematic way relies on the use of geometric series as generators for the exponents. While most of the geometric basis sets developed so far have been based on the even-tempered or on the well-tempered sequences, the basis sets developed here are defined by a polinomial expression ${ }^{2}$ for $\log \zeta_{, l}$ (where $\zeta_{, 1}$ is the $i$-th exponent of a set with angular momentum $/$ ),

$$
\begin{equation*}
\log _{h_{1}}=p_{0.1}+p_{1,1}(1-1)+p_{2.1}(i-1)^{2}+p_{3,1}(i-1)^{4} . \tag{1}
\end{equation*}
$$

with $i=1 \ldots \ldots N_{i}$ and $N_{i}$ being the number of exponents of a given orbital angular momentum This formula is closely related to one proposed by Klobukowski ${ }^{3}$,

$$
\begin{equation*}
\log \zeta_{i, 1}=p_{0,1}+p_{1,1}(i-1)+p_{2,1}(i-1)^{2}+p_{3,1}(i-1)^{3}+p_{1,1}(i-1)^{1} . \tag{2}
\end{equation*}
$$

but has the advantage of yielding essentially the same results as the latter while having one less parameter per angular symmetry to be optimized.

The parameters $\left\{m_{1, l}\right\}$ are obtained by minimizing the average of configurations energy of the $d^{\prime \prime+1} s^{1}$ and $d^{\prime \prime} s^{2}$ configurations for the transition metals and $f^{\prime \prime-1} d^{1}$ and $f^{\prime \prime}$ configurations for the lanthanides and actinides with the simplex method of Nelder and Mead. A gaussian distribution was used to model a finite nucleus in all calculations. Using this procedure, we have been able to obtain basis sets with total atomic energies of accuracy ranging from $10^{-2}$ to $10^{-3}$ millihartrees for the individual configurations.

In atomic calculations these sequences of basis sets show a smooth convergence to the corresponding reference values of energies (both total and spinor energies), $\left\langle r^{-1}\right\rangle$ and $\langle r\rangle$ and, more importantly, the rates of convergence of these tend to be very similar througout the periods. Our results also indicate that the use of simplex optimization and expressions such as (1) is a costeffective alternative to fully optimizing expoents for relativistic basis sets, due to the relative ease with which relatively large sequences of basis sets can be generated and as the errors on the total energies so far have been of the same order of magnitude to those of fully optimized sets similar in size and optimization constraints employed.
(FAPESP, CNPq, CAPES)

[^13]
# THEORETICAL MODELLING FOR THE FRENCH PARADOX: ELECTRONIC STRUCTURE OF RESVERATROL DERIVATIVES 

Sheila Cristina dos Santos Costa (PG), Jordan Del Nero (PQ)<br>scsantc@ufpa.br<br>Departamento de Física - UFPA - CEP: 66.075-110 - Belém - PA (Brazil)

Keywords: Resveratrol derivatives, Theoretical absorption spectra, French Paradox.
Interest in the properties of the resveratrol molecule has been spurred by the need of explaining the so-called French Paradox. This corresponds to the controversy about epidemiological data indicating that in France there is a lower morbidity through cardiovascular and coronary diseases than in other developed countries in spite even though the French consume a diet of fairly high content in fat. An invoked explanation for the paradox is that a higher than the world average consume of red wine in France could have a particular protective effect due to the presence of resveratrol in the skin of certain types of grapes. For the resveratrol is attributed the antioxidative activity has been linked to the preventive treatment of heart diseases and human cancer.

In this work the geometry of the structures of new resveratrol derivatives were completely optimized using the Parametric Method 3 with configuration interaction (PM3/CI). All the $\mathrm{PM} 3 / \mathrm{Cl}$ calculations were carried out with the MOPAC program and for the ab initio calculations we have used the Gaussian 94 package and the corresponding geometries were optimized with the standard RHF/6-31G* basis set. Once determined the optimized geometries, both at the semiempirical and ab initio levels, the corresponding absorption spectrum was calculated using the INDO/S-CI (Intermediate Neglect of Differential Overlap / Spectroscopic Configuration Interaction) included into the ZINDO program, with parameters chosen to give the best description of the UV-visible optical transitions. Approximately 200 configurations were investigated for each molecule, including single and double excitations.

Ours results show an investigation of the electronic properties of stilbenoid molecules (new resveratrol derivatives) and the relation with the cholesterol molecule. We present a comparative study of the geometry and theoretical spectrum of resveratrol to the related compounds associated to new resveratrol, also derivatives of stilbene molecules.

The geometries at the neutral and polaron ground state were optimized at the semiempirical and ab initio (RHF/6-31G*) levels. The study of the charge distribution and charge polarization processes in organic molecules is a key step for the identification of the possible form-function relationships. The antioxidative activity of resveratrol would be amenable to suitable chemical modifications by appropriate change of the density of charge in specific sites. The qualitative information gathered in this work about the electronic structure and absorption spectrum of these molecules give us better directions for further theoretical and experimental investigations in progress. PROINT (Programa Integrado de Apoio ao Ensino; Pesquisa e Extensão)-UFPA.

# CÁLCULOS HF-SCF PARA SISTEMAS QUARKS-ELÉTRON 

Joacy Vicente Ferreira (PG) e Antonio Carlos Pavão (PQ)<br>joacy@dqf.ufpe.br<br>Departamento de Química Fundamental, UFPE, 50.670-901, Recife, PE<br>Palavras-chave: quarks, cálculos de orbitais moleculares

Considerando o quark d ( $-1 / 3 e$ ) como constituído por um quark $u(+2 / 3 e)$ mais um elétron ( $d=u+e$ ), o próton (uud) e o nêutron (udd) podem ser modelados por sistemas do tipo uuu $+e$ e uuu $+2 e$, respectivamente. São sistemas similares às moléculas $\mathrm{H}_{3}{ }^{++}$e $\mathrm{H}_{3}{ }^{+}$, diferindo nas cargas nucleares (inteiras nas moléculas-íon e fracionárias ( $+2 / 3 e$ ) nos sistemas quark-elétron) e nas dimensões (Angstrom e Fermi, respectivamente). Implícita nesta descrição está a aproximação Born-Oppenheimer, que é muito drástica neste caso mas que será aqui assumida para que possamos verificar a validade dos modelos propostos através de cálculos de orbitais moleculares, evitando assim tratamentos mais sofisticados com teoria de muitos corpos. Usando a relação ? $=1 / r^{2}$, construímos um conjunto de funções-base gaussianas apropriado para descrever interações a distâncias da ordem de Fermi. O expoente $?=0,6944 \times 10^{10}$ foi o que conduziu aos melhores resultados e a curvas de energia potencial surpreendentemente bem comportadas para o nêutron e o próton, como mostram as figuras abaixo.

O mínimo na curva de energia potencial do nêutron corresponde a uma distância $(0,50 \mathrm{fm})$ próxima do valor experimental do raio de distribuição de carga desta partícula ( 0,34


fm ) e a uma energia eletrônica ( $-2,93 \mathrm{MeV}$ ) em boa concordância com a energia de ligação para o nêutron obtida pelo balanço de massas $(-2,98 \mathrm{MeV})$. Este expoente também descreveu bem o próton, resultando em um mínimo na curva de energia potencial ( $0,80 \mathrm{fm}$ ) bastante próximo do valor experimental do raio de distribuição de carga ( $0,87 \mathrm{fm}$ ), e a uma boa concordância entre a energia eletrônica total calculada ( $-1,23 \mathrm{MeV}$ ) e a energia obtida pelo balanço de massas ( $-1,49 \mathrm{MeV}$ ). Além destes resultados foi possível calcular a diferença de massa nêtron-próton ( $1,8 \mathrm{MeV}$ ), obtendo-se um valor muito próximo do experimental ( 1,3 MeV ). Os cálculos foram realizados sem incluir correções relativísticas e as energias cinéticas foram corrigidas usando o teorema virial. (CAPES, CNPq).

# ESTUDO TEÓRICO DA AFINIDADE PROTÔNICA DE IMIIDAZOLIDINAS 

Silvânia Maria de Oliveira ${ }^{1}(\mathrm{PG})$, João Bosco P. da Silva ${ }^{1}$ (PQ), Maria do Carmo A. de Lima ${ }^{2}$ (PQ), Suely L. Galdino ${ }^{2}$ (PQ), Ivan da R. Pitta ${ }^{2}$ (PQ), Marcelo Z. Hernandez (PQ) ${ }^{3}$.<br>silvaniaoliveira@hotmail.com<br>${ }^{1}$ Laboratório de Química Computacional, Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-540, Recife -PE.<br>${ }^{2}$ Laboratório de Planejamento e Síntese de Fármacos, Departamento de Antibióticos, Universidade Federal de Pernambuco, 50670-901, Recife -PE<br>${ }^{3}$ Laboratório de Química Teórica Medicinal, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, 50740-521 Recife - PE.<br>Palavras-chave: afinidade protônica, ab initio, imidazolidinas.

A partir da hidantoína ou imidazolidina-2-4-diona (I), origina-se uma série de compostos biologicamente ativos 2,4-dicetotetra-hidroimidazóis. Desde a sua descoberta, por Bayer em 1861, o sistema anelar hidantoínico tem sido alvo de vários estudos visando o desenvolvimento de fármacos com atividades: anticonvulsivante, esquistossomicida e tuberculostática, entre outras. Vários derivados imidazolidínicos são obtidos por reações de alquilação na posição N3 por tratamento com haletos de alquila em solução alcalina (em solventes próticos ou apróticos). Ainda, alquilações na posição N1 podem ocorrer em compostos substituídos em N3 (Figura 1). Por outro lado, imidazolidinas que possuem o grupo metileno livre (na posição 5) sofrem reações de condensação com aldeídos aromáticos.

Com a finalidade de estudar a influência dos grupos carbonila ( X ou $\mathrm{Y}=0$ ) e tiocarbonila ( X ou $Y=S$ ) nas posições 2 e 4 sobre a reatividade deste núcleo, avaliamos a estabilidade relativa dos ânions (com relaçẵo às espécies neutras) obtidos pela saída dos prótons $\mathrm{H} 7, \mathrm{H} 9$ e H 11 , ligados aos nitrogênios 1 e 3 e ao carbono 5 do anel heterocíclico, respectivamente. Neste sentido, foram realizados cálculos ab initio RHF/6-311++ $\mathrm{G}^{* *}$ das afinidades protônicas destes três ânions para quatro sistemas imidazolidínicos, a saber: imidazolidina-2-4-diona (I), 2-tioxo-imidazolidin-4-ona (II), 4-tioxo-imidazolidin-2-ona (III), imidazolidina-2-4-ditiona (IV) (Figura 1), através do programa GAUSSIAN 98. De acordo com os resultados obtidos para os sistemas I, II e III, os ânions obtidos a partir da saída do hidrogênio 9 (d) são os mais estáveis. Estes resultados estão de acordo com valores de pKa e de deslocamentos químicos ( ${ }^{1} \mathrm{H}$ ) dos compostos I e II relatados na literatura. Para o composto que apresenta os dois grupos tiocarbonila nas posições 2 e 4 do anel (IV), o ânion proveniente da ausência do H11 (b) é mais estável que os outros dois (c e d); além disso, o valor da afinidade protônica calculada para os ânions deste sistema é menor do que para os compostos I, II e III, o que corrobora com as informações da literatura que apontam este composto como o mais ácido dentre os que foram aqui investigados. (CAPES, CNPq).

(a)

(b)

(c)

(d)

Figura 1: (a) Estrutura geral dos sistemas I: $X=O$ e $Y=O$, II: $X=S$ e $Y=O$, III: $X=O$ e $Y=S$, IV: $X=S$ e $Y=S$. (b) Ânion obtido pela retirada do hidrogênio. 11 (posição 5). (c) Ânion obtido pela retirada do hidrogênio 7 (posição 1). (d) Ânion obtido pela retirada do hidrogênio 9 (posição 3).

# RELAÇÃO ESTRUTURA-FUNÇÃO DO FATOR DE CRESCIMENTO DE FIBROBLASTOS BÁSICO (bFGF) E DE SEU MUTANTE (M6B-bFGF). 

Gustavo H. Brancaleoni (PG), Léo Degrève (PQ).<br>qustavobrancaleoni@yahoo.com.br Grupo de Simulação Molecular, Departamento de Química<br>Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo, 14040-901, Ribeirão Preto - SP, Brasil<br>Palavras-chave: fator de crescimento, dinâmica molecular, estrutura.

O fator de crescimento de fibroblastos básico (bFGF) é membro de uma família de proteínas reguladoras da função, da proliferação e da diferenciação celular. Uma das atividades biológicas de maior interesse do bFGF é a angiogênica: durante a reparação, inflamação ou crescimento dos tecidos, fatores angiogênicos (incluindo o bFGF) são liberados para induzir a formação de uma rede capilar por onde os tecidos vão receber suprimento sanguíneo. Tal função está intimamente ligada com o crescimento de tumores pois se estes não fossem irrigados por capilares, não teriam nutrientes para crescer e se espalhar pelo organismo. O bFGF é um peptídeo de 155 aminoácidos cuja estrutura terciária apresenta 12 folhas- $\beta$ antiparalelas. Não há nenhuma ponte dissulfeto presente nesta molécula.

Um dos métodos para identificação dos fatores que determinam a atividade biológica de proteínas é o método das mutações. Úm mutante do bFGF, que desperta grande interesse, é o M6B-bFGF no qual quatro resíduos carregados (Arg118, Lys-119, Lys-128 e Arg129) foram substituídos por resíduos neutros de glutamina. Estudos experimentais mostraram que o M6BbFGF apresenta a mesma capacidade de ligação ao receptor que o bFGF embora com perda quase total da atividade angiogênica. O objetivo do presente trabalho é estudar e comparar propriedades dinâmicas, estruturais e energéticas do bFGF e de seu mutante M6B-bFGF em meio aquoso, visando um melhor entendimento dos fatores relacionados com as suas diferentes atividades biológicas. Os dados foram fornecidos por simulações de dinâmica molecular aplicadas aos sistemas de interesse. Os sistemas de trabalho foram constituídos por uma molécula de soluto (bFGF ou M6B-bFGF modelados pelo campo de forca GROMOS96) e moléculas de água SPC/E a uma concentração de $51.3 \mathrm{~mol} / \mathrm{L}$ em pH fisiológico. Esses sistemas foram submetidos a simulações NVT de dinâmica molecular a 298K durante 3ns após um período de equilibração.

O comportamento do bFGF e do M6B-bFGF em solução aquosa foi analisado a partir das trajetórias atômicas. A análise da estabilidade estrutural foi conduzida usando o desvio quadrático médio (dqm) dos átomos da cadeia principal em relação a estrutura obtida por difração de raios-X. Os dqm de ambos os peptídeos são bastante altos ( ao redor de 3 e $4 \AA$ para bFGF e M6B-bFGF respectivamente ). Os altos valores dos dqm's são devidos aos fatos dos peptídeos apresentarem somente folhas $\beta$ e de existir uma região sem estrutura de 26 aminoácidos na ponta $N$-terminal. Os resultados mostram que o mutante M6B-bFGF sofre mudanças significativas em relação à estrutura experimental. Já o dqm por resíduo mostra que algumas regiões do mutante (M6B-bFGF) possuem maior flexibilidade que as regiões correspondentes no bFGF. A região N -terminal do mutante (resíduos 1-26) não apresenta nenhum aminoácido de baixo dqm enquanto que no bFGF a região dos aminoácidos de 8 a 14 é bastante estável. Na região a partir do aminoácido 132 o mutante é bem menos estável que o bFGF, particularmente entre os resíduos 133 a 142. Uma vez que já foi mostrado que a região N-terminal não influencia na atividade angiogênica, a região dos aminoácidos 133 a 142 pode ser importante para esta atividade biológica. (Fapesp - CNPq).

# ESTUDO-DE-DINÂMHCA HOLECULAR DO FATOR DE CRESCIMENTO DE FIBROBLASTOS BÁSICO 

Gustavo H. Brancaleoni (PG), Léo Degrève (PQ).<br>qustavobrancaleoni@yahoo.com.br<br>Grupo de Simulação Molecular, Departamento de Química<br>Faculdade de Filosofia Ciências e Letras de Ribeirão Preto<br>Universidade de São Paulo, 14040-901, Ribeirão Preto - SP, Brasil<br>Palavras-chave: fator de crescimento, dinâmica molecular, estrutura.

As células dos organismos eucarióticos superiores se reproduzem para manter o equilíbrio do organismo através do ciclo de divisão celular que é monitorado por um sistemacontrole intracelular. O sistema-controle recebe sinais do meio extracelular que the permitem induzir, ou não, a divisão celular. Alguns desses sinais são proteínas chamadas fatores de crescimento. Um dos fatores de crescimento importantes é o fator de crescimento de fibroblastos básico, bFGF, que atua no controle de vários processos desde a fase embrionária até o final da vida dos organismos eucarióticos. O descontrole desse fator pode gerar células anormais que podem evoluir para tumores ou outras patologias. O objetivo desse estudo é relacionar, e entender a partir de simulações por dinâmica molecular, quais são os fatores energéticos e estruturais, tais como ligaçõ̃es de hidrogênio intra e intermoleculares, que são responsáveis pela manutenção das estruturas e exposição ao meio dos resíduos do bFGF responsáveis pela atividade do peptídeo. Um segundo objetivo é analisar a possível influência da extremidade $N$-terminal (resíduos 1-26) na estrutura local da proteína.

Os sistemas submetidos 'as simulações foram constituídos por uma molécula da proteína (cuja estrutura terciária foi determinada por difração de raios-X, com identificações 1BFF e 1BLA, no banco de dados Protein Data Bank) e de moléculas de água SPC/E à 298 K em pH fisiológico. Esse sistema foi submetido a simulação de dinâmica molecular no ensemble NVT. A proteína e as moléculas de água foram modeladas pelo campo de forca GROMOS96. As ligações de hidrogênio intermoleculares foram monitoradas durante toda a simulação usando critérios geométricos e energéticos. A análise da estabilidade conformacional, foi feita através do desvio quadrático médio (dqm) que é definido como a desvio quadrático médio entre as posições dos átomos de duas estruturas da mesma macromolécula sendo uma a estrutura experimental. Quanto às ligações de hidrogênio intramoleculares, os critérios utilizados foram: (a) máximo da função de distribuição radial a uma distância doador - receptor máxima de 2.50 Å e (b) uma fração de ocorrência maior que $10 \%$.

A estrutura secundária do bFGF, obtida através de simulação de dinâmica molecular em solução aquosa, possui doze folhas- $\beta$ antiparalelas conectadas por pequenas voltas. O primeiro passo na caracterização da estrutura do bFGF por dinâmica molecular foi a identificação e o monitoramento das ligações de hidrogênio intramoleculares detectadas durante a simulação e suas respectivas porcentagens de ocorrência. De acordo com estes resultados, foram detectadas várias ligações de hidrogênio que estabilizam as folhas- $\beta$ antiparalelas bem como toda a estrutura desta proteína.

A estabilização estrutural promovida pelas ligações de hidrogênio intramoleculares é complementada pelas interações com solvente, ou a quase falta destas interações, porque o núcleo do bFGF é praticamente inacessível ao solvente enquanto que a região externa desta proteína globular está em contato imediato com o solvente. A descrição detalhada das ligações de hidrogênio intra e intermoleculares presentes na estrutura do bFGF permitiu obter informações suficientes para entender a estruturação global da proteína tais como a estabilização das 12 folhas- $\beta$ e as suas inter-relações que levam a estabilização global do bFGF. (Fapesp, CNPq).

# ESTUDO TEÓRICO DE REAÇÕES CATALISADAS POR ZEOLITAS SUBSTITUIDAS COM GALIO 

Márcio Soares Pereira (PG), Marco Antonio Chaer Nascimento (PQ)<br>chaer@iq.ufrj.br

Departamento de Físico-Quimica - Instituto de Química da UFRJ - CT, bloco A, sala 412 - Cidade Universitária - 21949-900 Rio de Janeiro, RJ - BRASIL

Palavras-chave: desidrogenação, zeólita, gálio,
A atividade catalítica de zeólitas está intimamente relacionada à presença em sua estrutura de sítios ácidos de Brönsted que podem ser explorados quanto a sua acidez ou basicidade. Portanto os processos catalíticos quase sempre envolvem o caráter ácido ou básico da estrutura zeolítica. Algumas modificações nas estruturas zeolíticas podem ser feitas, como a inclusão de espécies metálicas, como gálio e ferro, que modificam sua capacidade catalítica tanto em nível de atividade quanto de seletividade.

Algumas Zeólitas modificadas com gálio têm sido usadas em processos de aromatização de parafinas leves (processo CYCLAR), resultando num aumento tanto de atividade quanto de seletividade. O papel do gálio nessas seqüências de reações ainda é obscuro, no entanto. Com isso fica claro o interesse de se estudar reações catalisadas por zeólitas, e zeólitas modificadas.

No processo de aromatização, uma das primeiras etapas envolve a desidrogenação dos reagentes. Assim sendo, estão sendo estudadas as reações de desidrogenação de etano, propano e isobutano usando como modelo de zeólita clusters com 5 e 20 átomos tetraédricos (aglomerados do tipo T5 e T20), com gálio não-estrutural (trocado) sob a forma de dihidreto de gálio $\left(\mathrm{GaH}_{2}\right)^{+}$. Os mecanismos das reações estudadas foram investigados em nível de cálculo DFT (B3LYP) usando a base 6-31G**.

Os resultados preliminares mostram estruturas de estados de transição para a reação de desidrogenação de etano, propano e isobutano através de um mecanismo concertado, em uma única etapa, onde há a formação simultânea da olefina e de hidrogênio molecular. As energias de ativação aparente para essas reações estão dadas a seguir: (CAPES, CNPq, Finep, PRONEX, FUJB, Instituto do Milênio de Materiais Complexos).

| Energias de Ativação em $\mathrm{kcal} / \mathrm{mol}$ |  |
| :--- | :---: |
| Etano | 66,7 |
| Propano | 65,8 |
| Isobutano | 66,0 |

# AVALIAÇÃO DE FUNÇÕES ATÖMICAS HARTREE-FOCK PRESCINDINDO DA APROXIMAÇÃO FROZEN-CORE 

André O Silva (PG), Osmar S Silva Jr (PQ) aosilva@fisica.ufs.br<br>Departamento de Fisica, Universidade Federal de Sergipe<br>PALAVRAS CHAVE: método de Hartree-Fock, frozen-core, colisōes elétron-átomo

Na teoria de colisões elétron-átomo, métodos tipo strong-coupling como o convergent close coupling (Bray and Stelbovics 1992) e o método da matriz $R$ com pseudo-estados (Bartschat et al 1996) têm fornecido bons resultados de seções de choque diferenciais (SCD's) para espalhamentos por átomos de um ou dois elétrons na camada de valência. Nestes métodos faz-se uma descrição precisa do alvo, incluindo explicitamente efeitos como polarização e correlação eletrônica. Para o estudo teórico do espalhamento, portanto, parece ser necessária boa descrição do átomo-alvo. Para tanto, costuma-se partir de métodos aproximados como o de Hartree-Fock. Rotinas computacionais mais antigas que implementam tal método, como a MCHF77 de Froese Fisher (1978), necessitam ser usadas sob a aproximação adicional frozen-core ou de caroço congelado, que tem sido muito empregada e extremamente útil. Entretanto, mais recentemente, novas implementações como a rotina ATSP (Froese Fischer et al. 1996) permitem-nos obter funções de onda prescindindo da aproximação frozen-core. Notamos que na literatura da área de colisões estas novas funções de onda ainda não foram avaliadas. Funções atômicas obtidas através das duas rotinas computacionais citadas diferem significativamente, o que nos motivou a fazer uma análise comparativa dessas funções para avaliar qual delas melhor descreve o processo de colisão. Neste trabalho, realizamos cálculos de seções de choques diferenciais, totais, e collision strenghts para o espalhamento elétron-hélio, na faixa de energias intermediárias. As SCD's, em particular, tornaram-se muito importantes a partir da década de 1970 pela disponibilidade de dados experimentais para o espalhamento de elétrons por vários átomos, e diversas energias. Elas fornecem a possibilidade de um melhor entendimento da colisão, além de permitirem uma avaliação mais fina dos métodos teóricos. Para o tratamento do espalhamento elétronátomo, utilizamos as aproximações de Born em primeira ordem (FBA), de muitos corpos em primeira ordem e a aproximação de muitos corpos unitarizada (Silva Jr 1999, Silva Jr e da Paixão 1994), cada uma delas empregando os dois tipos de funções de onda atômicas, com frozen-core e sem frozen-core. Analisamos os espalhamentos provocando transições desde 0 estado fundamental até estados excitados do nivel dois do hélio. Notamos que as funções atômicas prescindindo do frozen-core fornecem melhores seçôes de choque diferenciais. Como exemplo de resultado, mostramos na figura ao lado a SCD na aproximação FBA para a energia 40 eV . O resultado do modelo sem frozen-core (linhas cheias) aproxima-se mais dos dados experimentais (circulos) que o modelo com frozen-core (linhas pontilhadas).


## Referências:

Bray I and Stelbovics A T 1992 Phys. Rev. A 466995
Bartschat K et al 1996 J. Phys. B. 292875
Froese Fisher C 1978 Comput. Phys. Commun. 14145
Froese Fisher et al. 1997 Computational Atomic Structure (Bristol: IOP Publishing)
Silva Jr O S 1999 J. Molec. Structure: Theochem 49245
Silva Jr O S, da Paixão F J 1994 J. Phys. B 27 L265
(Capes)

# HIDRATAÇÃO DO AMINOÁCIDO SERINA 

Leonardo Frasatto(IC), Gustavo H. Brancaieoni (PG), Miarcos R. Lourenzoni (PG), Léo Degrève (PQ). frasatto@uol.com.br Grupo de Simulação Molecular, Departamento de Química -Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, 14040-901, Ribeirão Preto - SP, Brasil

Palavras-chave: aminoácido, dinâmica molecular, solvatação.

Os aminoácidos são as unidades estruturais básicas que constituem as proteínas. Eles são formados por um grupo amina, uma carboxila, um átomo de hidrogênio e um grupo lateral ligados a um carbono assimétrico. Em pH fisiológico, os aminoácidos possuem o grupo amina na forma protonada ( $-\mathrm{NH}^{+}$) e o grupo carboxila na forma dissociada ( -COO ). Vinte tipos de cadeias laterais, variando em tamanho, forma, carga, capacidade de formação de pontes de hidrogênio e reatividade química, são comumente encontrados em proteínas. Esse alfabeto das proteínas é usado para criar as complicadas estruturas tridimensionais que possibilitam que as proteínas realizem tantos processos biológicos. A cadeia lateral do aminoácido serina, figura 1, é polar porque contêm um radical hidroxila. Quando têm-se a formação de dobras na estrutura terciária de uma proteína alguns aminoácidos específicos tais como a prolina, a treonina, a serina e a glicina são localizados.

Neste trabalho, serão apresentadas as estruturas de solvatação do aminoácido serina, obtidas por estudos via simulação por dinâmica molecular. As condições experimentais utilizadas foram: no ensemble NVT, concentração de água $47,5 \mathrm{~mol} / \mathrm{L}$, uma molécula de soluto, volume do sistema igual a $2,7.10^{-26} \mathrm{~m}^{3}$ e temperatura de 298 K . O modelo de água é o SPC. O soluto é descrito pelo campo de força GROMOS96. O sistema foi submetido a uma simulação com tempo de integração de 2,0 fs e um tempo total de simulação de 4 ns . As análises foram feitas utilizando funções de distribuição radial e angular. A estrutura de solvatação dos grupos $-\mathrm{NH}^{+}$e dos grupos -COO são bem definidas. As distâncias entre os oxigênios do grupo $-\mathrm{COO}^{-}$e os oxigênios das águas e a distância entre o nitrogênio do grupo $\mathrm{NH}^{+}$com os oxigênios das moléculas de água estão próximas dos valores obtidos experimentalmente. A influência da solvatação do grupo lateral é somente nítida na segunda camada de solvatação dos terminais Ne e. Os perfis de energia de pares entre os átomos da serina e os átomos das moléculas de água, mostram que somente os átomos $\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{O} 1$ e O2 assim como os átomos OG e HG do grupo lateral tem energia intermolecular média menor que as energias observadas na água homogênea. Somente estes átomos podem formar ligações de hidrogênio sendo que a conseqüência é que este aminoácido é solúvel em água. Entretanto o número de ligações de hidrogênio intermoleculares é menor que o número de moléculas de solvatação de sorte que somente fatores geométricos não garantem por si só a formação de ligações de hidrogênio. Portanto este estudo por simulação permitiu definir a solvatação do aminoácido serina em meio aquoso. (FAPESP, CNPq).


# DINÂMICA E SOLVATAÇÃO DO M6B-bFGF. 

Leonardo Frasatto(IC), Gustavo H. Brancaleoni (PG), Léo Degrève (PQ). frasatto@uol.com.br<br>Grupo de Simulação Molecular, Departamento de Química<br>Faculdade de Filosofia Ciências e Letras de Ribeirão Preto<br>Universidade de São Paulo, 14040-901, Ribeirão Preto - SP, Brasil<br>Palavras-chave: mutante, dinâmica molecular, estrutura.

Este trabalho tem como objetivo caracterizar as propriedades dinâmicas, estruturais e energéticas do M6B-bFGF. Essa proteína é um mutante do fator de crescimento de fibroblastos básico (bFGF) no qual quatro resíduos básicos ( Arg-118, Lys -119, Lys-128 e Arg-129) foram substituídos por resíduos neutros de glutamina (Gln). Esses resíduos pertencem a uma região básica do bFGF (115-129), região que está envolvida na fixação do bFGF no seu receptor concomitantemente com a fixação no bFGF de uma molécula de heparina. Estudos experimentais mostraram que, embora, este mutante apresente a mesma capacidade de interação com o seu receptor, as mutações modificaram outras propriedades biológicas (atividade mitogênica, atividade angiogênica).

Os estudos foram desenvolvidos a partir de resultados obtidos através de simulações utilizando o método da dinâmica molecular. Parte-se de uma configuração determinada experimentalmente por difração de raios-X. Coloca-se uma molécula no centro de uma caixa cúbica contendo moléculas de água, no modelo SPC/E, à concentração de $51,1 \mathrm{M}$. As simulações de dinâmica molecular foram desenvolvidas no ensemble NVT a 298 K , usando condições periódicas e convenção de imagem mínima. Um raio de corte em 1 nm foi aplicado juntamente com um campo de reação generalizado de Poisson-Boltzmann para levar em conta as interações eletrostáticas de longo alcance. As equações de movimento foram integradas utilizando o algoritmo de Verlet e intervalos de tempo de integração de 2.0 fs para um tempo total de simulação de 2.0 ns . A simulação foi desenvolvida utilizando o campo de força GROMOS96. O algorítmo SHAKE foi usado para restringir os comprimentos de ligação. As trajetórias foram gravadas, para análise subseqüente, a cada 0.02 ps .

As estruturas de solvatação foram caracterizadas pelas funções de distribuição radial entre os átomos do soluto e os átomos de hidrogênio e oxigênio das moléculas do solvente e as distribuições de energias átomos do soluto-moléculas de água. O desvio quadrático médio foi utilizado para analisar a estabilidade conformacional.

A comparação entre as estruturas obtidas e a estrutura de partida assegura que elas são representativas podendo servir de base para os estudos propostos. Os motivos da estabilização estrutural do M6B-bFGF ficam claros a partir da análise detalhada das ligações de hidrogênio intra e intermoleculares encontradas. A maioria dos 155 aminoácidos do M6BbFGF participa da formação das folhas- $\beta$. O número de aminoácidos destas folhas varia de 4 a 8, porém, os números de LH das quais estas folhas participam variam de 3 a 12 resultando em números médios de LH por aminoácido nas folhas variando de 0.4 até 1.6. Portanto a extensão das folhas é parecida mas o número de LH e o número médio de LH por aminoácido indicam que a folha- $\beta 12$ deve ser a menos estabilizada, as folhas 2,8 e 9 as mais estabilizadas e as restantes possuem estabilização intermediária. Portanto este estudo por simulação permite identificar fatores que definem a estrutura do M6B-bFGF em meio aquoso. (Fapesp-CNPq).

# COMPARATIVE STUDY FOR ELASTIC PROCESSES IN CCO AND CNA PADICALS BY ELECTRON IMPACT 

Eduardo Veiteinheimer ${ }^{1 *}(P G)$, Sérgio E. Michelin ${ }^{1}(P Q)$, Adriane S. Falck ${ }^{1}(P G)$, Elisângela A. y Castro ${ }^{1}(\mathrm{PG})$, Oséias Pessoa ${ }^{1}(\mathrm{PG})$, Humberto L. Oliveira ${ }^{1}(\mathrm{PG})$, Milton M. Fujimoto ${ }^{2}(P G)$, Manoel V. Jorge ${ }^{1}(P G)$, Luiz S. Soares ${ }^{1}(P G)$ and Lee Mu-Tao ${ }^{3}(P Q)$ veitenhe@server.fsc.ufsc.br<br>${ }^{1}$ Departamento de Física, UFSC, 88040-900 Florianópolis, SC, Brazil<br>${ }^{3}$ Departamento de Química, UFSCar, 13565-905, São Carlos, SP, Brazil<br>${ }^{2}$ Departamento de Física, UFPR, 81531-990 Paraná, PR, Brazil<br>Keywords: differential and integral cross sections, free radicals, Schwinger variational iterative method.

Electron-molecule collisions play an important role in a number of physical and chemical processes such as lasers, gas discharges and plasmas. In particular, interest in electron collisions with highly reactive radicals such as CNN and CCO has grown recently, in view of their important role in developing plasma device. The ketenylidene (CCO) free radical is implicated as an intermediate in a variety of chemical reactions, in astrophysics and in hydrocarbon combustion and the cyanonitrene (CNN) free radical is a potentially important combustion intermediate. Therefore, various cross sections of e-CNN and CCO collisions are expected to be important for understanding of the chemistry in planetary atmospheres, discharge plasmas and hydrocarbon combustion. Unfortunately, experimental determination of such cross sections for $e^{-r}$ radical collisions is difficult. The our knowledge, there are no measurements of other types of cross sections (elastic and inelastic, differential, and integral, grand total, etc) for electron scattering by molecular radicals. Recently, eradical collisions have been the subject of an increasing number of theoretical investigations, Lee et al (2002) has reported some interesting results for electron scattering by several $\mathrm{CH}_{x} \mathrm{NH}_{x}$ and OH radicals in the intermediate and high energy ranges.

In this work we present a theoretical study on electron scattering by CNN and CCO radical in a wide incident energy range. Specifically, calculated elastic differential, integral and momentum transfer cross sections (DCS, ICS, and MTCS) as well as TCS and TICS for electron impact energies from 1 to 500 eV are presented. Moreover, although the present study is unable to directly provide electron-impact total ionization cross sections(TICS) for CNN and CCO, the difference between the calculated TCS and ICS would provide an estimate of the TACS, which accounts for all inelastic contributions including both excitation and ionization processes. The present study made a use of a complex optical potential to represent the electron-radical interaction dynamics, while a combination of the Schwinger variational iterative method (SVIM) (Lucchese et al 1982) and the distorted-wave approximation (DWA) (Fliflet and McKoy 1980) is used to solve the scattering equations. This procedure has already been successfully applied to treat electron scattering by a number of molecules (Michelin et al 2000) and thus it is expected that it can also be applied for e-radical collisions.

Since the details of the basic theory used has already been presented elsewhere, see references, we will provide the expression for the rotationally unresolved DCS for elastic e-radical scattering are calculated through a summation of all rotationally resolved DCS.

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{6}\left[2\left(\frac{d \sigma}{d \Omega}\right)^{2}+4\left(\frac{d \sigma}{d \Omega}\right)^{4}\right] \tag{1}
\end{equation*}
$$

where $\left(\frac{d \sigma}{d \Omega}\right)^{2}$ and $\left(\frac{d \sigma}{d \Omega}\right)^{4}$ are the multiplet-specific DCS for the total ( $e^{-}+$CNN or CCO) spin $\mathrm{S}=2$ (duplet) and $\mathrm{S}=4$ (quartet) couplings respectively.

# CÁLCULO DASSEÇÕES DE CHOQUE PARAEXCITACAZO 

 ELETRÔNICA DE CAMADAS INTERNAS DA MOLÉCULA DE COEduardo Veiteinheimer ${ }^{1 *}(P G)$, Sérgio E. Michelin ${ }^{1}(P Q)$, Adriane S. Falck ${ }^{1}(P G)$, Elisângela A. y Castro ${ }^{1}(\mathrm{PG})$, Oséias Pessoa ${ }^{1}(\mathrm{PG})$, Humberto L. Oliveira ${ }^{1}(\mathrm{PG})$, Milton M. Fujimoto ${ }^{2}(P G)$. Manoel V. Jorge ${ }^{1}(P G)$, Luiz S. Soares ${ }^{1}(P G)$ e Lee Mu-Tao ${ }^{3}(P Q)$<br>veitenhe@server.fsc.ufsc.br<br>${ }^{1}$ Departamento de Física, UFSC, 88040-900 Florianópolis, SC, Brazil<br>${ }^{3}$ Departamento de Química, UFSCar, 13565-905, São Carlos, SP, Brazil<br>${ }^{2}$ Departamento de Física, UFPR, 81531-990 Paraná, PR, Brazil<br>Palavras-chave: seção de choque diferencial e integral, excitação de camadas internas, Método variacional de Schwinger iterativo.

Processos de excitação de camadas internas, envolvendo a remoção ou promoção de elétrons de camadas $\sigma(1 \mathrm{~s})$ fortemente ligadas aos átomos mais internos da molécula, tem recebido considerável atenção nos últimos anos. Como resultado deste alto grau de localização, as formas e energias associadas com as excitações de elétrons a partir destes orbitais, não variam significativamente quando migramos dos estados gasosos para o estado sólido. Desta forma, a excitação e ionização de moléculas a partir de estados eletrônicos internos, tem desempenhado um papel importante no desenvolvimento de equipamentos para caracterizar amostras, sólidas ou gasosas.

A despeito do aumento do interesse experimental neste campo de pesquisa (Kukk e col. 2000), poucos estudos teóricos envolvendo tais processos podem ser encontrados na literatura. Os poucos cálculos encontrados, são limitados exclusivamente à nível da primeira aproximação de Born (PAB) (Miranda e col. 1994).

Embora a PAB forneça bons resultados no cálculo da força de oscilador generalizado (FOG) na faixa de altas energias do elétron incidente, seus resultados começam a divergir quando esta energia se aproxima do valor do primeiro limiar de excitação.

Em contraste, a despeito dos recentes desenvolvimentos de diversas teorias solidamente embasadas nos métodos multicanais ab-initio, para tratar processos elásticos e inelásticos, não encontramos aplicações destas teorias em excitações de camadas internas.

Combinada com vários métodos teóricos, a aproximação das ondas distorcidas (MOD) (Fliflet e McKoy 1980) tem recebido considerável atenção nos últimos anos. O MOD e a teoria de muitos corpos em primeira aproximação, que é essencialmente similar ao MOD, tem obtido êxito no cálculo das seções de choque de excitação eletrônica e dos parâmetros de coerência e correlação, quando aplicados a alvos atômicos na região de médias a altas energias do elétron incidente. Tem sido demonstrado, em trabalhos mais recentes (Lee e col. 1990), que o MOD, em geral, produz resultados similares aos obtidos usando o método de Schwinger multicanal (SMC) com poucos canais acoplados.

Nosso grupo tem aplicado o MOD para calcular as seções de choque integrais (ICS) para a excitação de elétrons presos às camadas internas ligadas aos átomos de carbono presentes em algumas moléculas lineares, e em seguida, calculamos as razões $\mathrm{R}(3: 1$ ) entre as ICS que conduzem aos estados finais singleto e tripleto (Michelin e col. 2003). Assim, dentro deste tipo de trabalho, aplicamos o MOD para calcular as seções de choque de excitação de elétrons presos aos átomos de oxigènio da molécula de CO e em seguida calculamos as $\mathbf{R ( 3 : 1 )}$. Estes resultados serão mostrados no presente encontro.

# MODELAGEM MOLECULAR DE COMPOSTOS BENZILIDENOIMIDAZOLIDÍNICOS 

Marcus V. P. dos Santos ${ }^{1}$ (IC), Mario R. S. Júnior ${ }^{1}$ (PG), Maria T. C. Lima ${ }^{2}$ (PG), Silvânia M. de Oliveira ${ }^{2}(\mathrm{PG})$, João Bosco P. da Silva ${ }^{1}$ (PQ), Suely L. Galdino ${ }^{2}$ (PQ), Maria do C. A. de Lima ${ }^{2}$ (PQ) e Ivan da R. Pitta ${ }^{2}$ (PQ)<br>bossanova90@yahoo.com<br>'Laboratório de Química Computacional, Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco. Recife (PE) - 50740-540<br>${ }^{2}$ Laboratório de Planejamento e Síntese de Fármacos, Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco. Recife (PE) - 50670-901

Palavras-chave: análise conformacional, imidazolidinas, ab initio.
O núcleo imidazolidínico apresenta diversas atividades biológicas, tendo como principais: antimicrobiana, antidiabética, antiparasitária e antineoplásica. Diante da importância farmacológica dessa classe de compostos, derivados contendo este núcleo foram sintetizados nos nossos laboratórios. Com o intuito de obter informações sobre a estrutura tridimensional dos compostos 3 -benzil-5-benzilideno-imidazolidina-2,4-diona (I), 3-benzil-5-benzilideno-2-tioxo-imidazolidin-4-ona (II) e 5-benzilideno-3-(2-oxo-2-fenil-etil)-2-tioxo-imidazolidin-4-ona (III) (Figura 1) foram desenvolvidos estudos configuracionais e conformacionais, através dos programas HYPERCHEM 7.0 e GAUSSIAN 98 para os compostos não substituídos. Os cálculos foram realizados a nível $a b$ initio, pelo método RHF, com o conjunto de bases 3$21 \mathrm{G}^{* *}$. Além das análises configuracionais e conformacionais, os seguintes descritores foram calculados: a energia do orbital HOMO, o momento de dipolo elétrico ( $\square$ ) e a energia total ( $\mathrm{E}_{\mathrm{T}}$ ).

Os resultados RHF mostraram que o isômero configuracional $Z$ é o mais estável, para os três compostos estudados. Após a determinação da configuração mais estável, foi realizada uma análise conformacional com variação sistemática de $30^{\circ}$ para o diedro (N1C2C3C4), em cada uma das moléculas estudadas. As alturas das barreiras de energia obtida para os
 53,7 e $30,6 \mathrm{~kJ}^{2} \mathrm{~mol}^{-1}$, respectivamente. Dentre as conformações estudadas, observou-se que para os sistemas (I) e (II) houve pouca variação no momento de dipolo elétrico (no máximo 0,3 e 0,5 Debye, respectivamente), enquanto no sistema (III) notou-se uma variação de até 5,0 Debye. No estudo da energia do orbital HOMO, também foi observada uma pequena variação entre os valores máximo e mínimo. A introdução do enxofre no anel heterociclico, átomo com maior densidade eletrônica que o oxigênio, cria uma assimetria neste anel, levando a valores distintos de barreiras de energia, em particular, provocando um aumento naquela associada à rotação do grupo fenila na direção do átomo de enxofre nos compostos (II e III) quando comparado ao composto (I). (PIBIC/CNPq, CAPES, CNPq).

(I)

(II)

(III)

Figura 1 - Conformações de menor $\mathrm{E}_{\uparrow}$ para o isômero configuracional $Z$ dos compostos não substituídos.

# DESEMPENHO CONHPUTACIONAL DO PROGRATHA GAUSSIAN 98 EM DIVERSAS PLATAFORMAS 

Marcus Vinícius Pereira dos Santos ${ }^{1}$ (IC), Sidney Ramos Santana ${ }^{2}$ (PG).<br>bossanova90@yahoo.com<br>${ }^{1}$ Laboratório de Química Computacional - Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-540, Recife - PE.<br>${ }^{2}$ Laboratório de Química Computacional - Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife - PE.

Palavras-chave: análise de componentes principais, benchmarking, gaussian 98
Benchmarking visa o desenvolvimento de estudos que comparem o desempenho com a concorrência, objetivando atingir uma posição de liderança em qualidade. Sob a ótica da Química Computacional, onde o tempo de CPU é uma variável latente, descreveremos neste trabalho um Benchmarking realizado com o programa Gaussian 98 (G98), que dispõe em seu conteúdo 431 inputs (exemplos de arquivos de entrada), utilizados como teste (arquivos test ${ }^{*}$.com) deste programa em diversas plataformas como: SUN, COMPAQ ALPHA, SGI, INTEL e AMD. Visando responder aos seguintes questionamentos: a) Dado um conjunto de computadores é possível saber qual deles possui a maior relação custo/desempenho na realização de um cálculo numérico? b) Existem métodos de cálculos Químico-Quânticos que sejam recomendados para um determinado computador? c) Quais componentes de um computador contribuem decisivamente para o aumento de seu desempenho? Aplicando à técnica estatística multivariada ANÁLISE DE COMPONENTES PRINCIPAIS (PCA) para este conjunto de dados - 431 tempos de cálculo (JOB CPU TIME dos arquivos de output do G98) com auxílio do programa The Unscrambler, tendo como pré-processamento os dados centrados na média. Como resultado desta PCA foi identificado que de 431 testes apenas quatro (test447, test445, test322, test397 em ordem crescente de contribuição) são os responsáveis pelos maiores loadings (pesos) em PC1(Figura 1). Os resultados mostram que para esse conjunto de dados, a computação paralela (dois processadores) é vital para se almejar um bom desempenho, principalmente para cálculos realizados pelos métodos Químico-Quânticos Hartree-Fock e B3LYP. Comparando os tempos dos quatro testes com maior peso em PC1 para supercomputadores versus computadores pessoais (PC's ) numa computação serial, Compaq Alpha GS160 e Silicon Graphics Origin 3000 se equivalem a Intel Pentium $4 / 1.7 \mathrm{GHz}$ (MAMBO) e AMD Athlon MP 1700+(BLUES), respectivamente(Figura 2). Devido a um baixo custo financeiro e desempenho computacional equivalente aos supercomputadores, os PC's são a melhor opção para computação numérica em laboratórios de química computacional. A combinação do compilador ifc (Intel Fortran Compiler) com a biblioteca ATLAS (Automatically Tuned Linear Algebra Software), ambos gratuitos, se mostraram um dos agentes mais eficazes para melhoria de desempenho dos PC's. (FINEP, PADCT, PRONEX, CAPES).


Figura 1. -Gráfico dos loadings para 11 computadores (objetos) com um conjunto de 431 testes (variáveis) do arquivo de input do G98.


Figura 2. Comparativo(Supercomputadores versus PC's) entre os test322, test445, test447, test397 do G98.

# A STUDY OF 4-(E)-AMINO-3-[(E)-4-NITROPHENYLAZO]-3-PENTEN-2-ONE AND OTHER RELATED AZOENAMINONES IN CRYSTALLINE STATE 

Márcia M. C. Ferreira (PQ), ${ }^{1}$ Rudolf Kiralj (PQ), ${ }^{1}$ Ivo Vencato (PQ). ${ }^{2}$<br>marcia@iqm.unicamp.br<br>${ }^{1}$ Instituto de Química - UNICAMP, Campinas SP, 13084-971 Brazil. ${ }^{2}$ Instituto de Física - UFG, Goiânia GO, 74001-970, Brazil.<br>Palavras-chave: ab initio, molecular and crystal structure, chemometrics

Azoenaminones are compounds with potential nonlinear optical properties [1]. They exist as azoenamine/hidrazimino tautomeric mixtures in solution (Scheme). There are only a few structural analyses of 4-nitrophenylazoenaminones and related compounds [2-4], which do not provide a clear picture of tautomeric composition of these compounds in crystalline state.

This is the reason to study more profoundly the nature of 4nitrophenylazoenaminones, and particularly of 4 -( $E$ )-amino-3-[(E)-4-nitrophenylazo]-3-penten-2one by ab initio (B3LYP 6-31G**) methods in free and complexed state, by making structural comparison of related crystal structures retrieved from the Cambridge Structural Database, and by chemometric analysis on molecular and crystal structure parameters for the compared phenylazoenaminones.

The title and other similar compounds in free state represent planar heteroaromatic systems where tautomerism is coupled with intrinsic $\pi$-electron delocalization (inside the nitrobenzene and azoenamine fragments, and between them and the keto group) and intramolecular hydrogen bonds (Scheme). Based on calculated and experimental bond lengths and bond orders, the compounds do not show the same tautomeric character in crystalline state. N-N bond length seems to be a reliable parameter for monitoring the $\pi$-electron delocalization and aromaticity change due to electron withdrawal/donation by substituents on phenyl and/or enamine fragment. Intermolecular hydrogen bonds, dipole-dipole and other intermolecular interactions in crystal affect molecular geometry, particularly planarity, and are partially responsible for crystal packing. Some electronic and steric molecular properties exhibit qualitative or quantitative relationship with crystal packing properties like crystal density, coordination number, average atomic volume, and ability to form hydrogen bond networks or $\pi . . . \pi$ stacks. Molecular structure of an azoenaminone in crystal is mainly located close to a delocalized tautomer, what does not always provide reliable experimental determination of its tautomeric composition in solid state. (FAPESP and CNPq).


Scheme. Tautomeric/resonance forms of the title compound in crystalline state
[1] L. J. O. Figueiredo, C. Kascheres, J. Org. Chem. 62 (1997) 1164.
[2] B. L. Rodrigues et al., Acta Cryst. C52 (1996) 705.
[3] V. Kettmann et al., Acta Cryst. C57 (2001) 737.
[4] P. Šimunek et al., J. Mol. Struct. 642 (2002) 41.

## THEORETHCAL STUDY ON SOAEE P-LACTAMAS AS

# SUBSTRATES OF THE BACTERIAL MULTIDRUG RESISTANCE ACRB PUMP 

Rudolf Kiralj (PQ), Márcia M. C. Ferreira (PQ)<br>marcia@iqm.unicamp.br<br>Instituto de Química - UNICAMP, Campinas SP, 13084-971 Brazil.<br>Palavras-chave: $\beta$-lactam conformation, molecular mechanics, chemometrics

AcrB pump is a constitutive part of the most important multidrug efflux system of gram-negative bacteria, which excretes a variety of compounds from bacterial cytoplasm and periplasm directly to the cell exterior [1]. प-Lactam antibiotics, the most widely used antibacterial drugs, are also substrates of this pump system. This fact seriously increases the problems in the treatment of infectous diseases.

Montecarlo conformational search was performed for 16 -lactams (penicillins and cephalosporins, Scheme) and their geometry was optimized at semi-empirical PM3 and molecular mechanics MMFF94 level. Various geometric, electronic, hydrogen bond, topological and lipophilicity molecular descriptors were calculated. Chemometric analysis through Partial Least Squares (PLS) regression models was performed for prediction of a-lactam efflux rates (minimal inhibitor concentration, MIC) caused by three distinct Salmonella typhimurium strains [1]. Docking of selected drugs to the pore recognition site (PRS) of the AcrB crystal structure from Escherichi coli [2] at MMFF94 level was also performed.

It has been already confirmed that lipophilicity and charges in 口-lactam molecules are important in their excretion by all bacterial strains, and that these drugs were classified as good, moderately good to poor, and bad AcrB substrates [3]. In this work, parsimonius PLS models were obtained ( $Q^{2}>0.67, R^{2}>0.79$ ). Several molecular descriptors were selected: lipophilicity (two log of octanol/water partitition coefficients in linear and quadratic form; surface fraction of hydrophobic carbon atoms), electronic (number fraction of heteroatoms; second order hyperpolarizability; average atomic number in $R$ and $R_{1}$ substituents) and hydrogen bond (average number of hydrogen bonds) descriptors. Both the experimental and predicted activities pointed out that liphophilic and amphiphilic drugs are better AcrB substrates than hydrophilic molecules. Steric (size/shape) molecular descriptors did not exibit significant correlation with biological activities, what agrees with the docking studies where the pore channel chains suffered mostly minor conformational changes. Small but visible and regular changes occur in relative position of the highly polar residues at the PRS. The conformational changes during the docking are remarkably visible in docked drugs, due to hydrophobichydrophobic, polar-polar and hydrogen bond interactions between the drugs and the PRS. Thus, the conformational changes in the side chains $R$ and $R_{1}$, and also in the -lactam ring provoke variations in electronic properties, and enable the drug binding to the PRS via hydrogen bonds and polar-polar interactions. It can be concluded that electronic structure of the drugs, directly and indirectly, rather than their molecular geometry, determines the drug - AcrB pump interactions. (FAPESP).



Scheme. Penicillins and cephalosporins
[1] H. Nikaido et al., J. Bacteriol. 180 (1998) 4686.
[2] S. Murakami et al., Nature 419 (2002) 914.
[3] M. M. C. Ferreira, Kiralj, R., J. Bacteriol., submitted.

# QSAR AND CONFORMATIONAL STUDY OF $1 H$-INDOLE-3ACETIC ACIDS WITH AUXIN ACTIVITY 

Márcia M. C. Ferreira (PQ), Rudolf Kirali (PQ)<br>rudolf @iqm.unicamp.br<br>Instituto de Química - UNICAMP, Campinas SP, 13084-971 Brazil.<br>Palavras-chave: QSAR, auxins, chemometrics

$1 H$-Indole-3-acetic acid (IAA, Scheme) and its derivatives are among the most important plant-growth regulation hormones from auxin class. Their Quantitative StructureActivity Relationships (QSAR) are not straitforward, mainly due to the lack of 3D structure of a receptor which has been determined just recently for a complex of auxin ABP1 (auxin binding protein 1) with 1-naphthalenic acid (NAA, Scheme), and intrinsic auxin properties. IAA consists of planar heteroaromatic indole ring, and the side chain acetate group which can adopt a few distinct orientations with respect to the ring. Usually IAA auxins are limited to derivatives with small substituents at five substitution positions at the indole ring.

This work deals with QSAR and conformational properties of 22 IAAs, $11 / 15$ of which has measured straight-growth promoting activities on Avena Sativa L. coleoptiles [1]: the optimal coleoptile elongation $L$, the half-optimum concentration $c$, and the optimal concentration $m$, all relative to IAA. Conformers close to IAA in crystalline state were selected for geometry optimization at $a b$ initio B3LYP 6-31G** and MMFF94 level, and various topological, electrotopological, steric, electronic and lipophilicity molecular descriptors were calculated. Selected descriptors were then analyzed by means of Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA). Partial Least Squares (PLS), Principal Component (PCR) and Multiple Linear (MLR) regression models were built and validated for estimation/prediction of the biological activities $\log L, \log c$ and $\log m$. Twenty-two ABP1 - auxin complexes built from ABP1 - NAA complex crystal structure [2], and their geometries optimized by MMFF94.

The regression models were based on 11 (alkylated) and 15 (alkylated and fluorinated) IAAs in the training set. In general, PLS and PCR models are similar, while MLR models are worse. Predicted activities agree reasonable with expectations and current knowledge on IAA auxin activity. Molecular graphics on ABP1-NAAIIAA complexes give more mechanistic insight into ABP1 - auxin binding, which is specially related to -logc. HCA and PCA analyses show discrimination of the auxins with respect to their activity and molecular characteristics. Conformation of an IAA molecule regarding to the $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ side chain plays a very important rule in IAA behavior. Remarkable differences in torsion angles T1 (C2-C3-C8C9) and T2 (C3-C8-C9-O10) can be observed for IAA in free state, in its crystal and some crystals of molecular complexes including IAA, and in modeled ABP1 - IAA complex. Besides, due to complexation of $\mathrm{Zn}^{2+}$ ion from ABP1 with IAAs, T1 and T2 show systematic changes with respect to free or crystalline state of these IAAs. T1 and T2 are related to biological activities and molecular properties at qualitative and even quantitative level. (FAPESP).


Scheme. $1 H$-indole-3-acetic acid and 1-naphthalenic acid
[2] E.-J. Woo et al., EMBO J. 21 (2002) 2877.

# RELATHONSHHPSBETMEEES-GPYSTAL, MOLECULAR, PHYSICO-CHEMIICAL AND BIOLOGICAL PROPERTIES OF ALKYLATED $1 H$ INDOLE-3-ACETIC ACIDS 

Rudolf Kirali (PQ), Márcia M. C. Ferreira (PQ)<br>rudolf@iqm.unicamp.br<br>Instituto de Química - UNICAMP, Campinas SP, 13084-971 Brazil.<br>Palavras-chave: alkylated 1H-indole-3-acetic acids, molecular mechanics, PLS

1 H-Indole-3-acetic acid (IAA, Scheme) and its alkylated derivatives are known as important plant-growth regulation hormones from auxin class. In general, relationships between structure and activity for IAA derivatives have never been straightforward for a long time, mainly due to the lack of a 3D structure of an auxin receptor, intrinsic auxin properties, and existence of heterogeneous measurements of auxin biological properties (plant-growth promoting activity). Usually IAA auxins are limited to derivatives with small substituents at five substitution positions at the indole ring ( $2,4,5,6$ and 7 ).

This work deals with IAA and its 10 alkylated derivatives: $2-\mathrm{Me}-, 4-\mathrm{Me}-, 5-\mathrm{Me}-, 6-\mathrm{Me}-$, 7-Me-, 4-Et-, 5-Et-, 6-Et-, 5-Pr- and 5-Bu-IAA [1]. The following IAAs properties were studied: a) crystal packing parameters based on crystal structures retrieved from the Cambridge Structural Database (unit cell volume per molecule, crystal density, average atomic volume, packing coefficients, number of hydrogen bonds, total number of intermolecular interactions, coordination number); b) molecular properties calculated for the IAAs based on molecular formula (relative molecular mass, \%carbon \& hydrogen) and based on geometry obtained from crystal structures or optimized by molecular mechanics MMFF94 (with Montecarlo conformational search) or ab initio B3LYP 6-31G** (ovality, molecular volume, Conolly surface area and volume, torsion angles T1: C2-C3-C8-C9 and T2: C3-C8-C9-O10); c) experimental physico-chemical properties [1] (octanol-water partition coefficient in logarithmic form, average proton NMR shift for indole ring); d) biological activity on Avena Sativa L. coleoptiles [1] (logarithm of auxin molar concentration measured at the half-maximum coleoptile elongation). T1 and T2 and Zn -O bond lengths from auxin binding protein 1 (ABP1) [2] - IAA complexes optimized at MMFF94 level were also used. Correlations including all the properties were studied, and partial least regression models (PLS) were built to predict dependent variables (crystal density, average atomic volume, packing coefficient, unit cell volume per molecule, physico-chemical and biological properties) on independent ones (all other descriptors).

Conformational properties expressed as T1 and T2 of IAAs in vacuum, crystal and complex with ABP1 show significant variations, and also differences in correlations with dependent variables and in significance in PLS models. Besides, there are notable differences in using different optimization schemes after the conformational search. Correlation analysis showed important linear and non-linear correlations between properties of the same kind or different kinds (crystal, molecular, physico-chemical, biological). Parsimonius PLS regression models ( $Q>0.70, R>0.85$ ) were built for most of the dependent variables. As alkylated IAAs make a homogeneous set of auxins, the established relationships are reasonable. (FAPESP).


Scheme. 1 H -indole-3-acetic acid
[1] B. Nigović et al., Acta Cryst. B56 (2000) 94.
[2] E.-J. Woo et al., EMBO J. 21 (2002) 2877.

## P152

# PERDA DE ENERGIA DE ÍONS ATÔMICOS CARREGADOS AO PENETRAR EM SÓLIDOS 

Itamar Borges Jr. ${ }^{1}$ (PQ) e Gustavo de Medeiros Azevedo ${ }^{2}$ (PQ)<br>${ }^{1}$ Instituto Militar de Engenharia<br>${ }^{2}$ Laboratório Nacional de Luz Síncroton<br>Palavras-chave: Perda de Energia em sólidos, Simulação, DFT

Feixes de íons atômicos produzidos em aceleradores são rotineiramente usados tanto para modificar a composição e as características dos materiais junto à superfície (implantação iônica) como em diversas técnicas de análise química e estrutural de materiais (RBS, ERDA, PIXE, PIGE, SIMS, MEIS). De particular interesse prático, além do aspecto fundamental, é o estudo da implantação iônica em cristais de silício, processo empregado em várias etapas de produção na indústria microeletrônica. A interação de um íon com um alvo sólido ou gasoso pode ser entendida como uma sucessão de colisõ̃es com átomos isolados do alvo, que pode ter estrutura cristalina ou ser amorfo. Esta aproximação é denominada aproximação de colisão binária. Neste trabalho estudamos teoricamente a penetração de ions de fósforo em silício cristalino, sistema considerado potencialmente viável para o desenvolvimento de um computador quântico. Calculamos o potencial de interação através da teoria do funcional densidade (DFT) usando o funcional B3LYP e a base de funções gaussianas $6-311+\mathrm{G}(2 \mathrm{~d})$. Simulamos o processo de penetração do fósforo no Si cristalino, obtendo os perfis da profundidade (concentração x profundidade) dos íns de fósforo, através da resolução das equações de Newton para a trajetória dos íons no cristal segundo a aproximação binária. Utilizamos dois potenciais para descrever interação $\mathrm{P}-\mathrm{Si}$, a saber, o potencial DFT e um potencial blindado repulsivo simples conhecido como ZBL (Ziegler, Biersak e Littmark), que é o potencial usualmente utilizado na predição dos alcances de íons implantados em sólidos. Na figura apresentamos os resultados para P a 2 Kev penetrando em condição de canalização, i. e., paralelo a uma direção principal de simetria ( $<100>$ ) do Si . Os resultados calculados apresentam o perfil típico de uma implantação em condição de canalização, e estão em bom acordo com os dados experimentais, os últimos não mostrados. Percebe-se na figura que o potencial DFT, mais acurado que o potencial ZBL, apresenta um alcance menor que aquele obtido com o potencial ZBL. Estes resultados indicam que potencial ZBL tende a subestimar a energia de interação do sistema $\mathrm{P}-\mathrm{Si}$, resultando em alcances calculados maiores que os observados experimentalmente. Esta discrepância pode ter implicações tecnológicas importantes no desenvolvimento de chips de silício dopados com



# ESPECTROS DE ABSORÇÃO O1S E N1S DE 2 FÓTONS [1+1(IV+RAIOS-X)] DO NO RESOLVIDOS VIBRACIONALMENTE. 

Viviane C. Felicíssimo ${ }^{1 *}$ (PG), Freddy F. Guimarães ${ }^{1}$ (PG), Amary Cesar ${ }^{1}$ (PQ). viviane@dedalus.lcc.ufmg.br<br>${ }^{1}$ Universidade Federal de Minas Gerais - ICEx - Departamento de Química.<br>Palavras-chave: óxido nítrico, pulsos de laser, pacotes de onda.

A molécula do óxido nítrico (NO) no seu estado eletrônico fundamental $X^{2} \Pi$ apresenta a configuração eletrônica $1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{2} 4 \sigma^{2} 1 \pi^{4} 5 \sigma^{2} 2 \pi^{1}$. Os orbitais $1 \sigma$ e $2 \sigma$ correspondem aos orbitais de caráter atômico O1s e N1s, respectivamente. A transição de um elétron do orbital O1s ou N1s para o orbital anti-ligante e parcialmente ocupado, $2 \pi$, gera quatro estados eletrônicos excitados de camada interna: ${ }^{4} \Sigma^{-},{ }^{2} \Sigma^{-},{ }^{2} \Delta$ e ${ }^{2} \Sigma^{+}$. Dentre estes, somente os dupletos são observados nos espectros de absorção de raios-X. Devido à pequena diferença de energia entre os estados eletrônicos excitados e à alta densidade de excitações vibracionais que os acompanham, o espectro de fotoabsorção $1 s \rightarrow 2 \pi$ apresenta uma grande superposição das três bandas eletrônicas ${ }^{2} \Sigma^{-} \leftarrow X^{2} \Pi,{ }^{2} \Delta \leftarrow X^{2} \Pi$ e ${ }^{2} \Sigma^{+} \leftarrow X^{2} \Pi$ [1-3]. Com o objetivo de reduzir ou eliminar a superposição entre estas três bandas eletrônicas, o que viria a facilitar a identificação experimental e a interpretação individual destas, foram calculados os espectros de fotoabsorção O1s e N1s do NO a partir de estados vibracionais excitados do estado eletrônico fundamental $X^{2} \Pi$. São obtidos teoricamente os espectros referentes às transições $X^{2} \Pi\left(n^{\prime}=0,1\right.$ e 2$) \rightarrow N^{*} O\left({ }^{2} \Sigma^{*},{ }^{2} \Delta e^{2} \Sigma^{+}\right)$e $\mathrm{NO}^{*}\left({ }^{2} \Sigma^{*},{ }^{2} \Delta\right.$ e ${ }^{2} \Sigma^{+}$).

Inicialmente, os estados vibracionais excitados são produzidos por absorção de 1 fóton de uma fonte de luz contínua trabalhando na região do infravermelho (IV). Desta forma, são gerados estados estacionários vibracionais excitados. A partir destes, a transição eletrônica de um elétron de camada interna N1s ou O1s para o orbital $2 \pi$ é conseguida por meio da excitação de um fóton de raios-X. Alternativamente, um pacote de onda de estados vibracionais é preparado no estado eletrônico fundamental $X^{2} \Pi$, com o emprego de um laser pulsado de radiação IV, e, após um tempo de atraso prescrito, a excitação N 1 s ou $\mathrm{O} 1 \mathrm{~s} \rightarrow 2 \pi$ é realizada.

Os espectros de fotoabsorção O1s e N1s foram calculados empregando técnicas dependentes do tempo de propagação de um pacote de onda com o auxílio do programa e SPec [4]. As curvas de energia potencial descrevendo os estados eletrônicos envolvidos são representadas como um potencial de Morse, com os parâmetros moleculares $r_{e}, \omega_{e} e \omega_{e} x_{e}$ obtidos de da literatura [3]. As excitações eletrônico-vibracionais, a partir do estado vibracional $n^{\prime}=0$ do estado eletrônico fundamental, produz um espectro de absorção $\mathrm{NO}^{*}$, onde a excitação vibracional mais intensa ocorre para $n=8\left({ }^{2} \Sigma\right)$ e $n=3\left({ }^{2} \Delta \mathrm{e}^{2} \Sigma^{+}\right)$dos estados eletrônicos excitados indicados. Por outro lado, o espectro de absorção $\mathrm{N}^{*} \mathrm{O}$ apresenta a transição vibracional adiabática $0 \rightarrow 0$ como a mais intensa. Com a excitação envolvendo a participação de 2 fótons [ $1+1$ (IV+Raios-X)], a forma dos espectros de absorção N1s ou O1s $\rightarrow 2 \pi$ obtidos é modificada, refletindo o número de nós da função de onda vibracional inicial. As bandas eletrônicas devido às transições ${ }^{2} \Sigma^{-} \leftarrow X^{2} \Pi$, ${ }^{2} \Delta \leftarrow X^{2} \Pi e^{2} \Sigma^{+} \leftarrow X^{2} \Pi$ são, então, gradativamente separadas para o processo de absorção O1s. Neste caso, a banda ${ }^{2} \Sigma^{-} \leftarrow X^{2} \Pi$ torna-se claramente isolada das demais. Por outro lado, no espectro de fotoabsorção N1s não são observadas alterações marcantes que possam facilitar a separação entre as bandas eletrônicas.

Fazendo-se uso de técnicas de controle com pulsos de laser na região do IV é possível, com o controle adequado dos parâmetros que caracterizam o pulso, produzir um pacote de onda apropriado, e, então, obter os resultados desejados. Desta maneira, foi possível diminuir a superposição entre as bandas eletrônicas em ambos os espectros de fotoabsorção N1s e O1s.
[1] R. Püttner, I. Dominguez, T. J. Morgan, C. Cisneros, R. F. Fink, E. Rotenberg, T. Warwick, M. Domke, G. Kaindl, A. S. Schlachter, Phys. Rev. A, 59 (1999) 3415; [2] E. Kukk, G. Snell, J. D. Bozek, W. -T. Cheng, N. Berrah, Phys. Rev. A, 63 (2001) 062702; [3] R. Fink, J. Chem. Phys., 106 (1997) 4038; [4] F. F. Guimarāes, Programa eSPec, Depto Química, UFMG (2003). CNPq - CENAPAD MG/CO

## P154

# FORMAÇÃO DE ÓXIDO MISTO DURANTE A PREPARAÇÃO DE CATALISADOPES DE ZIRCOMNA SUPORTADA EM ALUMINA: UM ESTUDO VIA DFT E EXAFS. 

Kátia R. Souza ${ }^{1}(P Q)$, Jean G. Eon ${ }^{1}(P Q)$, Arnaldo C. Faro $\mathrm{Jr}^{1}(P Q)$, Alexandre A. Leitão ${ }^{2}$ (PQ), Alexandre B. Rocha ${ }^{2}$ (PQ), Rodrigo B. Capaz ${ }^{2}$ (PQ). rocha @if.ufrj.br<br>${ }^{1}$ Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT Bloco A, Rio de Janeiro,21949-900,RJ.<br>${ }^{2}$ Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro,21941-972,RJ.<br>Palavras-chave: DFT, EXAFS, óxidos mistos.

Catalisadores de zircônia suportada em alumina foram preparados por impregnação ao ponto úmido utilizando soluções de acetil-acetonato de zircônio em benzeno. Estes foram caracterizados pela técnica de EXAFS, cujos resultados preliminares mostraram que a fase suportada consiste de espécies $\mathrm{Zr}^{4+}$ hexacoordenadas a átomos de oxigênios e, ainda, que não têm zircônio como segundo vizinho. No entanto, nas formas naturais de zircônia eles estão coordenados a sete (fase monoclínica) ou oito (fases tetragonal e cúbica) átomos de oxigênio e naturalmente possuem zircônio como segundo vizinho.

Estes resultados sugerem que os íons $\mathrm{Zr}^{4+}$ ocupam posições octaédricas na estrutura de espinélio defectivo da $\gamma$-alumina, utilizada como suporte. A fim de investigar esta possibilidade, uma célula unitária idealizada de fórmula $\mathrm{ZrAl}_{4} \mathrm{O}_{8}$ foi construída. A estrutura de espinélio é mantida pela substituição de $\mathrm{Al}^{3+}$ por $\mathrm{Zr}^{4+}$ e formação de uma vacância devido à compensação de cargas. Quatro estruturas são possíveis, uma vez que tanto $0 \mathrm{Zr}^{4+}$ quanto a vacância podem ocupar posições octaédricas ou tetraédricas do espinélio.

Cada uma das estruturas foi otimizada com cálculos DFT-LDA com condições periódicas de contorno e base de ondas planas. Os elétrons de caroço foram tratados por pseudopotenciais. Estes últimos foram testados em sistemas semelhantes, a saber, $\gamma$-alumina e zircônia nas formas tetragonal e cúbica, onde produziram geometrias de equilíbrio e parâmetros de rede em bom acordo com os valores experimentais. Das quatro células unitárias de $\mathrm{ZrAl}_{4} \mathrm{O}_{8}$, aquelas em que os átomos de zircônio ocupam posições octaédricas são as de menor energia, quando mantido o parâmetro de rede da $\gamma$-alumina. A partir das estruturas otimizadas foram realizadas simulações dos espectros de EXAFS. O acordo com os valores medidos é excelente.

Os resultados confirmam a hipótese de migração dos ions zircônio para o interior da $\gamma$ -alumina. As células unitárias propostas, $\mathrm{ZrAl}_{4} \mathrm{O}_{8}$, são representativas do ambiente local dos íns $\mathrm{Zr}^{4+}$, o que é confirmado pelos espectros EXAFS. Não se pode descartar, no entanto, a formação de nanodomínios de uma fase representada pela fórmula acima, uma vez que o parâmetro de rede calculado difere em menos de $3 \%$ daquele correspondente à $\gamma$-alumina, calculado pelo mesmo método. Isto significa que pode haver integração de um óxido misto de fórmula $\mathrm{ZrAl}_{4} \mathrm{O}_{8}$ à estrutura da $\gamma$-alumina. (CNPq, FINEP, FAPERJ).

# CONFINAMENTO DE ELÉTRONS EM DOIS PONTOS QUÂNTICOS ACOPLADOS: UM MODELO PARA COMPUTAÇÃO QUÂNTICA. 

Alexandre B. Rocha (PQ), Ginette Jalbert (PQ), Carlos R. de Carvalho (PQ) e Humberto S. Brandi.<br>rocha@if.ufrj.br<br>Instituto de Física, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, 21945-970, RJ Brasil<br>Palavra-chave: computação quântica, interação com laser, métodos ab initio.

Consideramos um possível mecanismo de porta quântica, baseado nos spins de dois elétrons em dois pontos quânticos acoplados num semicondutor, GaAs-(Ga,AI)As. Estudamos os efeitos da interação de um laser no desdobramento dos níveis eletrônicos de mais baixa energia deste sistema na presença de um campo magnético homogêneo ( $B$ ). A interação do laser com os pontos quânticos é tratada na aproximação de bandas vestidas onde duas (ou três) bandas do bulk do semicondutor GaAs são consideradas, enquanto que a interação com o laser é levada em conta por meio da renormalização da energia do gap e das massas efetivas dos elétrons. Esta aproximação é válida fora de qualquer ressonância e foi utilizada com sucesso para tratar outras heteroestruturas confinadas em semicondutores.

Esta abordagem reduz o problema a um sistema de dois elétrons que interagem num meio dielétrico (semicondutor) e que tem suas massas efetivas modificadas em relação à massa do elétron livre. Este problema se assemelha, portanto, àquele de uma molécula de hidrogênio que, deste modo, pode ser tratado por métodos usuais de Química Quântica. O enfoque principal está na análise da diferença de energia entre os primeiros estados singleto e tripleto (J). Num primeiro momento, utilizamos a aproximação de Heitler-London (HL) numa base de orbitais s de Fock-Darwin num confinamento bidimensional, expresso por um potencial quártico, a fim de calcular J em função de campo do laser (I), de sua dissintonia ( $\delta$ ) e do campo magnético. Os cálculos mostram que o laser desempenha um papel semelhante ao de um campo magnético externo no que diz respeito ao confinamento eletrônico. Além disso, mostra-se que a ação do laser permite a formação de um espaço de Hilbert de dois estados constituido pelo par singleto-tripleto, que é um dos requisitos básicos para uma operação num computador quântico. Os resultados sugerem que é possível usar um pulso de laser na faixa de picosegundo para controlar operações de bits quânticos (qubits) em vez de potenciais externos lentos (campos elétrico e magnético) normalmente propostos na literatura.

Até este ponto, todos os cálculos foram feitos dentro da aproximação de HeitlerLondon, não variacional. O passo natural a seguir é utilizar funções variacionais do tipo GVB, MCSCF ou Cl a fim de validar os resultados obtidos. As modificações necessárias nos métodos são implementáveis em qualquer programa de Química Quântica, como porexemplo GAMESS. Isto é precisamente o que estamos fazendo no momento. (CNPq, FAPERJ).

# CÁLCULO DE SEÇÕES DE CHOQUE DE FOTOIONIZAÇÃO DO CHI PARA ENERGHAS NA REGIATO VUV 

Antonio Sérgio dos Santos ${ }^{\prime}(P Q)$, Lee Mu-Tao ${ }^{2}(P Q)$, Luiz M. Brescansin ${ }^{3}(P Q)$ e Luiz E. Machado' $(P Q)$

${ }^{1}$ Departamento de Fixica, UFSCar, 1:505-905. Sāu Coulos, SP, Brasil e-mail: assantos@df.ufscar.br
${ }^{2}$ Departanchut de Quimia'a. LFSC ar, 1:565-905. Sãu Culos. SP. Brasil
"Invituto de Fisica "Glab Wataghin", UNICAMP, INOSS.970, Campinas. SP. Brasil



#### Abstract

Atualmente, além de seu aspecto fundamental, a absorção de fótons por sistemas moleculares para energias na regiāo do ultravioleta de vácuo (VUV) é de interesse tanto tecnológico como ambiental. O gás metano, por exemplo, contribui para o eteito estufa por ser forte absorvente de radiação infravermeIha. Além disso, o metano é frequentemente empregado em processos tecnológicos que envolvem plasmas (processos de deposiçäo em filmes). Em ambos os casos, o conhecimento de seçōes de choque de fotoionização é de fundamental importância para o entendimento e modelamento de tais sistemas.

Na literatura, os resultados teóricos para as seçōes de choque de fotoionização e paràmetros de assimetria para o metano sāo escassos. Para o orbital de valência mais externo $1 / 2$, existem os resultados de Braunstein et al [1], baseados no método variacional iterativo de Schwinger (SVIM) [2], e os resultados de Stener e Decleva [3], obtidos pelo método do funcional densidade (DFT). Para o orbital de valência mais interno $2 \|_{1}$, existem somente os resultados de Stener e Decleva [3].

Neste trabalho apresentamos os resultados para as seçōes de choque integral e parámetros de assimetria para a fotoionização do orbital $2(1,1$ do metano, para energias no intervalo próximo do limi-  choque diferenciais de fotoionização, mediadas sobre as orientaçōes ao acaso das moléculas-alvo (experimentos na fase gasosa), sāo dadas por:


$$
\frac{d(L, V)}{d \Omega_{\vec{h}}}=\frac{(L, V)}{4}\left[1+\frac{\left.(L,)^{k}\right)}{\left.R_{2}(\cos )\right),}\right.
$$

onde $L(V)$ denota a forma comprimento (velocidade) do operador momento de dipolo e é o àngulo entre a direção de polarização da luz e o momentum do fotoelétron $k$. Aplicamos o SVIM [2], no qual a função de onda do fotoelétron é obtida por um processo iterativo. Na iteração zero, a funçảo è uma expansāo numa base de funçōes gaussianas e nas iterações seguintes as componentes da expansāo em ondas parciais da solução anterior sāo adicionadas à base. A interação do fotoelétron com o alvo é dada pelos potenciais estatico-troca, gerados pelos orbitais Hartree-Fock do ion molecular.

A Figura 1 mostra e para a fotoionização do orbital $2 a$, do metano, juntamente com os resultados experimentais de Backx e Van der Wiel [4] e
com os resultados teóricos de Stener e Decleva [3]. Até onde sabemos, não há resultados experimentais para os parämetros de assimetria. Nossos resultados apresentam uma razoavel concordância quantitativa e uma certa discrepáncia qualitativa com os dados experimentais e teóricos apresentados.


Figura l: Fotoionizatito do orbital de valencia $2 a 1$ do $\left(\cdot H_{1}\right.$ :



## Referências

[1] M. Braunstein, V. McKoy, L. E. Machado, L. M. Brescansin e M. A. P. Lima. J. (hem. Phws. 89. 2998 (1988)
[2] R. R. Lucchese, G. Raseev e V. McKoy, Ihy: Ra: A 25, 2572 (1982).
[3] M. Stener e P. Decleva, J. Elce: Spert. Rel. Phonom'nu 104, 135 (1999).
[4] C. Backx e M. J. Van der Wiel, I. Phys. B 8, 3020 (1975)
(FAPESP)

# DESENVOLVIMENTO RACIONAL DE LIGANTES E COMPLEXOS DE LANTANÍDEOS PARA DISPOSITIVOS ELETROLUMIINESCENTES 

Ana Carolina Roma (PG) e Ricardo Luiz Longo(PQ)<br>acroma2000@yahoo.com.br<br>Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco<br>Palavras-chave: Eletroluminescência, Lantanídeo, Tripleto.

Materiais orgânicos eletroluminescentes são de interesse acadêmico e tecnológico, principalmente na área de visualização e displays.

Complexos de ions lantanídeos são utilizados como material ativo eletroluminescente, pois apresentam alta eficiência quântica, boa estabilidade, além do excelente controle da cor devido às características atômicas (bandas estreitas) do espectro de emissão.

A utilização de ferramentas computacionais permite a modelagem e o desenvolvimento racional de novos ligantes e complexos com íons lantanídeos a serem utilizados em dispositivos eletroluminescentes. Apesar dos mecanismos de transferência de energia e de excitação em dispositivos eletroluminescentes serem distintos dos processos de fotoluminescência, espera-se que a quase-ressonância entre os níveis de menores energias tripleto do ligante e os níveis excitados do ion lantanídeo seja um dos fatores determinantes da eficiência destes dispositivos. Logo, a determinação das propriedades moleculares e espectroscópicas de ligantes e complexos de lantanídeos deverá servir de guia para o desenvolvimento de complexos para eficientes dispositivos eletroluminescentes.

Os ligantes inicialmente estudados são derivados de beta-dicetonas ( $\mathrm{R}_{1}$-CO-CHR-CO-R ${ }_{2}$ ) onde $\mathrm{R}_{1}$ e $\mathrm{R}_{2}$ podem ser $\mathrm{COOH}, \mathrm{CF}_{3}, \mathrm{CH}_{3}$, fenil, e oxadiazol, e R pode ser H , fenil, oxadiazol. Os complexos foram desenvolvidos com íon európio trivalente, [Eu(beta-dicetonato) ${ }_{3} L_{2}$ ], onde $L$ pode ser água, piridina ou DMTO.

As estruturas moleculares dos ligantes foram obtidas com o método ab initio RHF/6-31G* e dos complexos com os métodos RHF/6-31G e Sparkle II - AM1 implementados nos programas Gaussian98 e MOPAC 93. Nos cálculos ab initio o íon Eu (III) foi tratado com potencial efetivo de caroço (ECP) com os elétrons $4 f$ inclusos no ECP. Os cálculos espectroscópicos (níveis de energia e forças de oscilador) dos ligantes e dos complexos foram realizados com o programa ZINDO e o método $\operatorname{INDO} / \mathrm{S}-\mathrm{Cl}$.

As geometrias obtidas pelos métodos RHF/6-31G e Sparkle II - AM1 apresentaram boa concordância (figura 1), exceto para o caso em que o grupo $\mathrm{CF}_{3}$ estava presente, onde as distâncias de ligação $\mathrm{C}-\mathrm{CF}_{3}$ obtidas com o método Sparkle foram muito longas.


RHF/6-31G


Sparkle II - AM1

Figura 1. Estruturas do complexo $\left[\mathrm{Eu}(\text { fenil-metil-beta-dicetona })_{3}\right]^{3+}$
Não foi obtida uma correlação satisfatória entre os estados tripletos calculados com o ligante livre e os estados tripletos experimentais nos complexos, sendo necessária então, a determinação dos estados tripletos nos complexos para comparação com os dados experimentais. Os resultados indicam a seguinte seqüência da menor energia do estado tripleto para as betadicetonas neutras: $R=H, R_{1}=$ fenil e $R_{2}=$ fenil $\left(19.100 \mathrm{~cm}^{-1}\right)<R_{2}=C_{3}\left(19.800 \mathrm{~cm}^{-1}\right)<R_{2}=C H_{3}$ ( $20.000 \mathrm{~cm}^{-1}$ ). Contudo, a substituição de $R=H\left(19.100 \mathrm{~cm}^{-1}\right)$ por $R=$ fenil $\left(22.200 \mathrm{~cm}^{-1}\right)$ causa um aumento significativo do nível de energia tripleto. Dado o número de ligantes e as possiveis substituições, pretende-se realizar um planejamento e análise fatorial. (CAPES, CENAPAD-SP, FINEP, PADCT, RENAMI)

## P158

# TRANSFERÊNCIA DE ELÉTRONS EM LIGAÇÕES DE HIDROGÊNIO ENVOLVENDO PARES DE BASE AT E GC 

Ana Paula Souza Santos (PG) e João Bosco Paraíso da Silva (PQ)<br>Departamento de Química Fundamental - CCEN, Universidade Federal de Pernambuco, Recife (PE) 50740-540, e-mail: apaula_souzas @yahoo.com.br<br>Palavras-chaves: Ligações de Hidrogênio, Pares de bases do DNA, Ab initio.<br>O papel da transferência de elétrons (TE) através das ligações de hidrogênio (ligações-H) em sistemas de interesse biológico, como por exemplo, nos pares de bases do DNA, representa um tema de grande interesse tanto em química quanto em biologia.






Figura 1: Pares de bases AT e GC.
Neste trabalho os pares de bases formando ligações-H AT e GC (Figura 1) foram investigados através de cálculos de orbital molecular ab initio ao nível HF/6-31G** utilizando o programa GAUSSIAN 98.

Inicialmente, foi realizada uma otimização completa de cada uma das bases, bem como dos pares GC e AT para avaliar mudanças nos parâmetros geométricos energéticos, eletrônicos e espectroscópicos em função da formação das ligações-H. Resultados relativos aos parâmetros energéticos e da TE são apresentados nas Tabelas 1 e 2 .

Tabela 1 - Energias das ligaçōes-H, $\Delta \mathrm{E}$, (em kcal. $\mathrm{mol}^{-1}$ ) para os pares de bases AT e GC.

| Métodos | $A T$ | $G C$ |
| :---: | :---: | :---: |
| MP2/6-31G(0.25) | -12.4 | -25.8 |
| AMBER | -28.1 |  |
| HF/6-31G(d,p) | -13.1 | -25.4 |
| $H F / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})^{\mathrm{c}}$ | -11.8 | -25.7 |

${ }^{\text {a }}$ Ref.1; ${ }^{0}$ Ref.2; ${ }^{\text {c }}$ Este trabalho.

Tabela 2 - Transferência de elétrons $(\Delta \mathrm{Q})$ (em elétrons) entre os pares AT e GC.

|  | AT |  |  | Mulliken |
| :---: | :---: | :---: | :---: | :---: |
| Métodos | MClliken | Corrigidas $^{\mathrm{D}}$ | Corrigidas |  |
| MP2/6-31G $(0.25)^{\mathrm{a}}$ | 0.02 | - | 0.03 | - |
| $H F / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ | 0.0036 | 0.020 | 0.024 | 0.069 |

A partir destes resultados é possível notar que nossos valores calculados para o $\Delta E$ são similares àqueles reportados na literatura [1, 2], com $\Delta \mathrm{E}(\mathrm{GC})>\Delta \mathrm{E}(\mathrm{AT})$. Com relação a TE, observamos que $\Delta Q(G C)>\Delta Q(A T)$. Além disto, notamos que o $\Delta Q$ ocorre na seguinte direção $(A \rightarrow$ T) e $(C \rightarrow G)$. No momento, estudos da taxa de decaimento desta $T E$, em função da distância entre as bases, estão em andamento no nosso laboratório. (CAPES, CNPq).
[1] P. Hobza et al, J. Biomol. Struct. \& Dynam., 17, 1077-1086(2000).
[2] V. E. Ludwig, Dissertação de Mestrado, Universidade de São Paulo, 2001.

# AJUSTE DA SUPERFÍCIE DE ENERGIA POTENCIAL PARA A MOLÉCULA HCN 

André T. Ota ${ }^{1}{ }^{*}(\mathrm{PQ})$, Ricardo Gargano $^{2}(\mathrm{PQ})$, Kleber C. Mundim ${ }^{3}$ (PQ), Joaquim J.S. $\operatorname{Neto}^{2}(\mathrm{PQ})$, Gilberto C. Sanzovo ${ }^{1}$ (PQ).

tsutomu@uel.br

1. Departamento de Física, Universidade Estadual de Londrina, UEL
2. Instituto de Física, Universidade de Brasilia, UnB
3. Instituto de Química, Universidade de Brasilia, UnB

Palavras-chave: Superfície de energia potencial, sistema HCN, Meios astrofisicos
O ponto de partida para se estudar teoricamente estados não-ligdos e estados ligados de sistemas moleculares, tanto da visão quântica como da clássica, é o cálculo da Superfície de Energia Potencial (SEP). A SEP governa o movimento dos núcleos fornecendo a energia potencial para cada configuração nuclear do sistema, tornando-a assim a responsável direta da dinâmica molecular. Neste trabalho, apresentamos as SEPs e os espectros rovibracionais dos diátomos $\mathrm{CH}, \mathrm{CN}$ e NH . As SEPs foram construídas ajustando, para formas analíticas em termos das coordenadas Bond Order, pontos ab initio obtidos com o nível calculo e base UQCISD(T)/6-311++G(3d2f,3p2d). Os ajustes foram realizados utilizando dois métodos: o método estocástico Generalized Simulated Annealing (GSA) e o método de Powell. De posse dessas SEPs, foi possível resolver a equação de Schrödinger nuclear e obter o espectro rovibracional dos diátomos $\mathrm{CH}, \mathrm{CH}$ e NH . Os resultados obtidos estão em bom acordo com os dados experimentais encontrados na literatura. Neste trabalho, pretendemos também apresentar o espectro vibracional da molécula $H C N$, seguindo os mesmos procedimentos adotados no cálculo do espectro rovibracional dos diátomos $\mathrm{CH}, \mathrm{CN}$ e NH . O estudo de todas essas espécies moleculares é importante em regiões de formação de estrelas, cometas e outros meios astrofísicos, pois as mesmas participam da química da fase-gás através de várias rotas químicas, tais como fotodissociação, fotoionização, reações entre moléculas neutras, entre outras, de modo a contribuir para com a compreensã̉o da abundância e dinâmica operantes nesses meios. (PROCAD/CAPES e CNPq).

## P160

# THEORETICAL INVESTIGATION ON MOLECULAR STRUCTURE OF BIS(ÁCETILACETAANATO)COPPER(iii). 

Katia J. de Almeida (PG), Amary Cesar (PQ).<br>julia@dedalus.lcc.ufmg.br<br>Universidade Federal de Minas Gerais<br>Departamento de Química, Belo Horizonte, Brasil, 31270-901.<br>Keywords: Bis(acetilacetonato)copper(II), Molecular structure, DFT calculation.

The molecular structure of bis(acetilacetonato)copper(II), $\mathrm{Cu}(\mathrm{acac})_{2}$, was investigated by X-ray diffraction in solid ${ }^{1,2}$ and by electron diffraction experiments in gas phase ${ }^{3}$. From both experiments a plane quadratic molecular structure $\left(\mathrm{D}_{2 \mathrm{~h}}\right)$ was revealed for $\mathrm{Cu}(\mathrm{acac})_{2}$. However, more recent electron diffraction reinvestigations ${ }^{4}$ showed that the results better adjust a $\mathrm{C}_{2 h}$ structure for this complex in gas phase. It was infered an angle of $18^{\circ}$ between the planes formed by $\left[\mathrm{CH}_{3} \mathrm{CCHCCH}_{3}\right]$ carbon lateral and the $\left[\mathrm{O}_{2} \mathrm{CuO}_{2}\right]$ central fragments. Due to the differences found experimentally and our interest on the electronic properties of $\mathrm{Cu}(\mathrm{acac})_{2}$, computational studies was carried out aiming at the determination of the molecular geometry of bis(acetilacetonato)copper(II) in gas phase. Different molecular geometries of $\mathrm{Cu}(\mathrm{acac})_{2}$ with point group symmetries $D_{2 h}, C_{2 v}$ e $C_{2 h}$ were tested. The calculations were performed for B3LYP/DFT method with generalize gradient correction of the electronic density. The pseudopotentials with atomic basis set LANL2DZ for metallic center and SBKJC for carbon and oxygen atoms were used. The set of the harmonic vibrational frequencies were determined for all optimized molecular geometries. The absolute and relative energies was corrected for the zero point energy. The results showed small differences on the $\mathrm{D}_{2 h}, \mathrm{C}_{2 v}$ e $\mathrm{C}_{2 h}$ optimized molecular structural parameters. The $\mathrm{C}_{2 h}$ geometry is the electronically more stable structure in gas phase, a result that agrees very well with the experimental more recent of electron diffraction ${ }^{4}$ experimental results. The valence electronic spectrum of $\mathrm{Cu}(\mathrm{acac})_{2}$ in gas phase has also been obtained. (CNPQ).


Figure 1: Molecular structure of bis(acetilacetonato)copper(II) complex.

1. E. C. Lingafelter and R. L. Braun, J. Am. Chem. Soc., 88 (1996) 2951;
2. Z. A.. Starikova and E. A. Shugam, Sh. Strukt. Khim., 10 (1969);
3. S. Shibata and K. Sone, Bull. Chem. Soc. Jpn., 29 (1956);
4. S. Shibata, T. Sasase and M. Ohta, J. Molec. Struct., 96 (1983) 347;

## ACTIVATION OF METHANE: THEORETICAL STUDY ON C-H

## REACTIVITY BY F-BLOCK TRANSITION ELEMENTS.

Katia J. de Almeida (PG)*, Amary Cesar (PQ). julia@dedalus.lcc.ufmg.br Universidade Federal de Minas Gerais Departamento de Química, Belo Horizonte, Brasil, 31270-901.<br>Keywords: Methane, lanthanides, ab-initio.

The selective oxidation at mild conditions of methane to more useful products as alcohol, aldheyde, cetone, etc., has been extensively investigated due to the higher industrial, political and economical impact that this process may cause. The methane activation by naked transition metals is one of the simplest chemical reaction involving metallic centers and, therefore, it is a quite natural starting point for reactivity studies of this compound. These reactions have been found to be essential for screening the factors that determine their relative energies and mechanisms. The colected informations may be used as guidelines for describing more complex reactions where transition metals and methane taken place.

We report, in this work, the theoretical results obtained for the reactivity of methane with $f$-block neutral atoms. Hartree-Fock calculations was employed together with two different pseudo-potentials for the metallic centers: one which absorbs the $f$ electrons and the other which treats their dynamics explicitily. The calculations were carried out for three critical point at the potential energy curve along the oxidative addition reaction (scheme 1). The molecular geometry optimizations and vibrational frequencies determinations were performed for all species. The activation energies and reaction enthalpies were obtained and corrections for the vibrational zero point energy were taken.


Scheme 1
Our results show that, when explicitily treated, the $f$ electrons do not effectively contributes for neither M-H and M-C chemical bonds. The use of a pseudo-potential which absorbs the $f$ electrons produces equivalent results with only minor differences on the molecular bond lenghts and bond angles parameters for their equilibrium structures and transition states. The thermodynamics properties as the activation energies and reaction enthalpies, on the other hand, show a fairly large dependency on the choice of the pseudopotential employed. (CNPQ).

# ESTUDO TEÓRICO DA COLISÃO ELÁSTICA ENTRE ELÉTRONS E MOLÉCULAS ISOELETRÔNICAS: SiCO, CSiO e SiNN 

Milton Massumi Fuiimoto ${ }^{1 *}$ (PQ), Sérgio Eduardo Michelin (PQ) ${ }^{2}$, Lee Mu-Tao ${ }^{3}$ (PQ).<br>milton@fisica.ufpr.br<br>${ }^{1}$ Departamento de Física, Universidade Federal do Paraná (UFPR), ${ }^{2}$ Departamento de Física, Universidade Federal de Santa Catarina (UFSC) e ${ }^{3}$ Departamento de Química, Universidade Federal de São Carlos (UFSCar).<br>Palavras-chave: colisão elétron-molécula, radicais, seção de choque elástica.

O radical CCO é conhecido por ser um importante intermediário reativo em muitas reações químicas em fase gasosa, e tem sido detectado nuvens moleculares interestelares escuras. O radical SiCO , isovalente ao CCO , pode ser facilmente gerado pela reação de átomos de Si com CO em condições de laboratório e tem sido crescente o interesse na compreenção da Química do SiCO , desde que esta espécie pode existir no meio interestelar. No presente trabalho, calculamos a seção de choque da colisão elástica elétron- $\mathrm{SiCO}, \mathrm{CSiO}$ e SiNN. Estas espécies são moléculas de camada aberta (radicais) e relativamente instáveis. Devido a estas espécies serem altamente reativas a obtenção das seções de choque experimentalmente se torna uma tarefa árdua. Neste sentido o cálculo teórico pode ser de grande utilidade, além de uma motivação para que grupos experimentais meçam as seções de choque para estas espécies. Devido ao fato de, até o momento, não existirem dados sobre a seção de choque disponíveis na literatura para estas moléculas, fizemos um estudo sistemático envolvendo espécies isoeletrônicas e comparamos os resultados das seções de choque entre si. A dinâmica da interação elétron-molécula será representada através de um potencial complexo, no qual a parte real do potencial inclui os termos estático-troca-correlaçãopolarização e a parte imaginária representa os efeitos de absorção (competição entre canais). Como é bem conhecido, as moléculas de camada aberta possuem muitos estados de baixa energia, isso implica em que é necessário a inclusão dos efeitos de polarização da nuvem eletrônica para a descrição da colisão elástica entre elétrons de baixa energia e estas moléculas, tais efeitos são levados em conta por meio de um potencial modelo livre de parâmetros ajustados. A metodologia empregada para a obtenção da amplitude de espalhamento é o método variacional iterativo de Schwinger (MVIS) combinado com o método de ondas distorcidas (MOD). Nas equações de espalhamento a parte real do potencial é solucionada utilizando o MVIS enquanto que a parte imaginária do potencial é resolvida pelo MOD no formalismo "two-potential". As amplitudes de espalhamento são expandidas em ondas parciais e a expansão foi truncada em $\operatorname{Lmax}=40$ e $M m a x=16$, mas pelo fato destes alvos apresentarem dipolo permanente, o qual gera um potencial de longo alcance, utilizamos a técnica de completar com Born para computar ondas parciais mais altas na amplitude de espalhamento. Neste trabalho, calculamos as seções de choque integral (SCI), diferencial (SCD) e de transferência de momento da colisão elástica entre elétrons com estas moléculas na faixa de energias de impacto baixa e intermediárias ( 5 eV a 500 eV ). A comparação das SCl entre as três moléculas mostram que a partir de 20 eV já não existem diferenças significativas observáveis, o que já era esperado entre espécies isoeletrônicas. (Fundação Araucária, FUNPAR, CNPq e Fapesp).

# POTENCIAL DE IONIZAÇÃO E AFINIDADES ELETRONICAS PARA MOLÉCULAS DIATÔMICAS 

Jardel Pinto Barbosa ${ }^{1,2}$ (PG), Ilfran da Silva Nava Junior ${ }^{2}$ (IC), José Ciriaco Pinheiro ${ }^{2}$ (PQ), João E. V. Ferreira(PG) ${ }^{2}$<br>jardel@ufpa.br<br>${ }^{1}$ Colegiado de Ciências Agrárias, Campus Altamira, Universidade Federal do Pará 68370-000<br>${ }^{2}$ Laboratório de Química Teórica e Computacional, Departamento de Química, UFPa, 66075-110 Belém, PA, Amazônia, Brasil<br>Palavras-chave: conjuntos de bases gaussianas, potenciais de ionização, método CGHF

Informações detalhadas sobre o método CGHF podem ser encontradas na literatura. O mesmo foi introduzido como uma nova técnica para planejar conjuntos de funções de base gaussianas e tipo Slater.

No presente trabalho conjuntos de bases gaussianas (18s e 23s16p) foram obtidos com a ajuda do método CGHF para átomos que vão do Hidrogênio, Lítio até o Neônio. Os conjuntos de bases são contraídos para 4 s e 5 s para o Hidrogênio e $8 \mathrm{~s} 4 \mathrm{p}, 8 \mathrm{~s} 5$ p para Lítio até Neônio. Os conjuntos de bases 4 s e $8 s 4$ p foram enriquecidos com funções de polarizações e difusas (quando for o caso) e usadas para calcular os potenciais de ionização (PIs) e afinidades eletrônicas (AEs) para um grupo de moléculas diatômicas do primeiro período. Os cálculos foram feitos nos níveis HF, MP2, MP3, MP4, CISD e DFT (B3LYP). Nos cálculos DFT foi empregado o método dos três parâmetros híbridos de Becke através do uso do funcional de correlação de Lee - Yang - Parr (LYP).

Nossos resultados em geral, se mostraram próximo dos valores experimentais da literatura e apresentam pequenos desvios quando comparado a esses valores. (CENAPAD SP).

# ESTUDO COMPARATIVO DO MODO DE INCLUSÃO DA TETRACICLINA EM CICLODEXTRINAS 

Roberta P. Dias ${ }^{1 *}$ (IC), Beatriz A. Ferreira ${ }^{1,2}$ (PQ), Wagner B. de Almeida ${ }^{1}$ (PQ) roberta@netuno.qui.ufmg.br<br>${ }^{1}$ LQC-MM, Departamento de Química, ICEx, UFMG, Belo Horizonte, MG, 31270-901<br>${ }^{2}$ FACIBIS, Centro Universitário Newton Paiva, Belo Horizonte, MG, 30460-000.<br>Palavras-Chave: tetraciclina, ciclodextrina, Dinâmica Molecular.

A tetraciclina (Figura) é o principal constituinte de uma família de antibióticos de amplo espectro antibacteriano. Entretanto, a tetraciclina possui uma série de reações adversas, que podem ser minoradas pelo processo de inclusão em um veículo adequado, o que abre perspectivas para uma nova série de derivados.


Figura. Representação estrutural da tetraciclina (espécie zwiteriônica).
As ciclodextrinas (CD's) são oligossacarídeso cíclicos com uma cavidade hidrofóbica e o exterior hidrofílico. Portanto, as CD's propiciam a formação de complexos de inclusão capazes de transportar substratos apolares em meios polares. Dessa forma, um estudo teórico sistemático da possibilidade de formação de tais complexos torna-se de grande interesse, visando a melhoria da sua solubilidade e biodisponibilidade. Neste trabalho, desenvolvido com metodologias baseadas em Mecânica e Dinâmica Molecular (MDM), foram estudados: tetraciclina (TC), beta e gama ciclodextrinas ( $\beta$-CD e $\gamma$-CD) e seus respectivos complexos de inclusão. O campo de força adequado para este sistema é o OPLS (Optimized Potentials for Liquid Simulations) ${ }^{2}$, implementado no programa Macromodel ${ }^{1}$. As simulações foram realizadas a partir de estruturas otimizadas ao nível semi-empírico (Hamiltoniano PM3, MOPAC7 $7^{3}$ ), durante um tempo total $t=500 \mathrm{ps}(\Delta t=1 \mathrm{fs})$, no vácuo, a 298 K . Os resultados obtidos mostram que a inclusão da TC é energeticamente favorecida na $\gamma$-CD ( $E_{\text {complexação }}=$ $259 \mathrm{~kJ} / \mathrm{mol})$ em relação à $\beta-C D\left(E_{\text {complexação }}=-175 \mathrm{~kJ} / \mathrm{mol}\right)$, onde $E_{\text {complexação }}=E_{\text {complexo }}-\left(E_{\text {TC }}+\right.$ $\mathrm{E}_{\mathrm{CD}}$ ).

As distâncias médias dos oxigênios do interior da cavidade das CD's e da TC (carbono C12a, que representa aproximadamente o centro de massa da TC) foram estimadas e não mostraram variação considerável durante a complexação. Além disso, observa-se uma interação intermolecular mais forte no complexo formado com a $\gamma$-CD (Tabela). Dessa forma, pode-se supor que, no vácuo, a inclusão da tetraciclina em $\gamma$-CD é mais viável energeticamente em relação à inclusão em $\beta-C D$. Estudos relacionados ao modo de inclusão na água estão sendo realizados. (CNPq, FUNADESP, NEQC/ICE/UFJF, FAPEMIG).

Tabela. Distâncias médias entre o carbono C12a e os oxigênios do interior da cavidade das CD's
(Å), obtidas por simulação (MDM) dos complexos de inclusão no vácuo, a 298 K .

| Distância C12a | O 1 | O 2 | O 3 | O 4 | O |  | O |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta-\mathrm{CD}$ | $9,8(3)$ | $7,4(3)$ | $10,0(3)$ | $6,8(2)$ | $7,9(3)$ | $8,9(3)$ | $10,9(3)$ | - |
| $\gamma-\mathrm{CD}$ | $6,5(3)$ | $6,0(3)$ | $6,5(3)$ | $6,3(3)$ | $6,9(2)$ | $6,7(3)$ | $6,3(3)$ | $6,3(3)$ |

[^14]
# HYDROLYSIS PROEESS OF PROPYLENIC CISPLATIN ANALOGUES: AN AB INITIO STUDY 

Bruno A. C. Horta ${ }^{1}$, Luiz Antônio S. Costa ${ }^{1,2,3}(P G)$, Willian R. Rocha ${ }^{4}(P Q)$, Wagner B. de Almeida ${ }^{2}$ (PQ), Hélio F. Dos Santos ${ }^{1}(\mathrm{PQ})$<br>bruno@ice.ufjf.br<br>1. NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330<br>2. LQC-MM: Laboratório de Química Computacional e Modelagem Molecular, Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901<br>3. Escola Preparatória de Cadetes do $\operatorname{Ar}$ (EPCAR), Comando da Aeronáutica, Barbacena, MG, 36200-000<br>4. Depto de Química Fundamental, Universidade Federal de Pernambuco (UFPE), Recife, PE, 50960-910

Keywords: ab initio, hydrolysis, cisplatin analogues
Since the discovery of cisplatin (figure 1-a), various metal-based antitumor drugs such as cis-dichloro(ethylenediamine)platinum(II) (cis-DEP) (figure 1-b), have been prepared in attempt to obtain new compounds with broad activity spectrum, reduced side effects and effectiveness against resistant cells. The cisplatin mechanism of action passes through a hydrolysis process (equations 1 and 2) before reaching the final target DNA. The hydrolysis reaction is the first determinant step of the mode of action of cisplatin and, probably, also of its analogues that have the same leaving group. The monoaquo and diaquo products can bind to DNA, interrupting the cell division. In this work we describe the hydrolysis process of the cis-dichloro(propylenediamine)platinum(II), (cis-DPP), and cis-dichloro(n-benzylpropylenediamine)-platinum(II) (cis-nBz-DPP) (figures 1c and 1d).

(A)

(B)

(C)

(D)

Figure 1. (A) cisplatin (B) cis-DEP (C) cis-DPP (D) cis-nbz-DPP

$$
\begin{align*}
& {\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{Cl}^{-}}  \tag{1}\\
& {\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right]^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+\mathrm{Cl}^{-}\right.} \tag{2}
\end{align*}
$$

Theoretical studies have been performed by our research group in order to elucidate the mechanism of action of platinum drugs. Important parameters, like activation energies and rate constants for the hydrolysis process have been calculated at high ab initio level of theory.

The applied methodology was the optimization of all stationary points of the potential energy surface at the HF, DFT (B3PW91) and MP2 levels of theory using basis-set 6-31G* for all atoms except the Pt for which the LANL2DZ pseudopotential was used. The solvent effect was also included through PCM approach that presents a more realistic cavity shape. Calculated rate constants (table 1) show a very good agreement in comparison to those found for the cis-DEP analogues ${ }^{1}$, where experimental data are available. For the cis-nBz-DPP, the reaction occurs fifty times faster than cisplatin, indicating a potential drug and motivating studies with this kind of molecules. (CNPq, FAPEMIG, FINEP, CENAPAD-MG/CO, EPCAR).

Table 1: Rate constants calculated for cis-DPP and cis-nBz-DPP.

| $k_{1} / \mathrm{M}^{-1} \mathbf{s}^{-1}$ | HF | B 3 PW 91 |
| :--- | :---: | :---: |
| cis-DPP | $1,23 \times 10^{-4}$ | $3,30 \times 10^{-5}$ |
| N -Bz-cis-DPP | $5,13 \times 10^{-4}$ | $1,44 \times 10^{-4}$ |

Cisplatin: $2.5-8.5 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at different conditions.
1-Costa, L. A. S., Rocha, William R., De Almeida, Wagner B. and Dos Santos, Hélio F. Journal of the Chemical Physics 118, 23, 10584 (2003).

# DINÂMICA MOLECULAR DO DODECÂMERO d(CGCGAATTCGCG) 2 EM SOLUÇÃO COM CAMPO DE FORÇA OPLS 

Luciano Pinho Gomes ${ }^{1,2(\mathrm{Pg})}$, Marçal De Oliveira Neto ${ }^{1(\mathrm{Pq})}$<br>Ipgomes@ procc.fiocruz.br<br>${ }^{1}$ Universiade de Brasilia, Instituto de Química, Area de Fisico-química<br>${ }^{2}$ FIOCRUZ-RJ, Instituto Oswaldo Cruz, Dep. de Imunologia<br>Palavras-chave: campo de força OPLS, dinâmica molecular, DNA

O DNA d(CGCGAATTCGCG) ${ }_{2}$ tem sido bastante estudado estruturalmente [1] e teoricamente [2] por causa de sua importância biológica. Nos estudos teóricos os padrōes de hidratação têm atraído grande atenção por causa de sua vital importância para os sistemas biológicos, e atualmente é considerada parte integrante da estrutura do DNA. Instabilidades consideráveis foram observadas nas primeiras simulações com solventes explícitos, incluindo a abertura do pareamento das bases em tempos menores que 100ps [2]. Isto é muito mais rápido que a abertura observada experimentalmente da ordem de milissegundos [3]. Várias propostas para a correção deste problema foram feitas, porém os resultados não melhoraram muito, embora os estudos com NMR tendem a corroborar com as simulações [4]. Os problemas que geram os erros das simulações são, geralmente, atribuídos ao campo de força, aos métodos truncados de cálculo das interações eletrostáticas e ao passo do método de integração. Método: A estrutura usada foi o dodecâmero de Dickerson [1], código pdb 1BNA. Foram adicionados 24 contra-ions de Na e os hidrogênios pelo programa HyperChem6. O sistema foi minimizado com as águas cristalográficas e DNA estáticos usando o campo de força OPLS, com constante dielétrica 78.0 . Em seguida, a estrutura foi solvatada com os programas acessórios do programa GROMACS v. 3.1.4 com moléculas de água modelo SPC em uma caixa de dimensão $50 \AA \AA x 65 \AA ̊ \times 75 \AA \AA$. Um cálculo de minimização com 1000 passos steepest descent, PME com raio de corte $9 \AA$, ordem 4 e grid de $1.0 \AA$, e campo de força OPLS, foi realizado deixando-se estáticos o dodecâmero e contra-íons. Após esta etapa, duas dinâmicas para equilibrio foram feitas. A primeira somente considerando o solvente livre por 8 ps, com PME nas mesmas condições acima, iniciando-se as velocidades à 100 K , e a segunda com 2 ps e iniciando-se as velocidades à 5 K . Realizou-se uma outra etapa de minimização com o sistema completamente livre, com 1000 passos de gradiente conjugado e PME. Finalmente executou-se uma dinâmica de 200ps, com PME, passo de 1fs a uma temperatura de 298K. A visualização das análises foram feitas com o programa XmGrace. Resultados: Os parâmetros avaliados mostraram-se concordantes com os existentes na literatura. No caso de rmsd's, esta simulação apresentou um desvio máximo de $2.41 \AA$ (o cálculo incluiu os átomos de hidrogênio) enquanto que a literatura mostra um rmds que varia de $2.4 \AA$ a $4 \AA$ ou até $5 \AA$ considerando somente os átomos pesados [5]. Este desvio está dentro da diferença encontrada entre as estruturas cristalográficas de Dickerson e de Arnott que é de $2.4 \AA$ e bem próximo da resolução das estruturas de Dickerson que é de $2.3 \AA ̊$. Na média o rmsd ficou em $1.81 \AA \AA$, o que mostra uma trajetória bem estável. A estrutura final ficou a $3.47 \AA \AA$ da estrutura cristalográfica, o que esta de acordo com alguns resultados da literatura. Outro resultado interessante é que não ocorreu durante os 200 ps de simulação o rompimento das pontes de hidrogênio dos resíduos que ficam nas extremidades do DNA, fenômeno que é geralmente verificado depois de 100ps. Conclusão: Desta forma, o uso do GROMACS em conjunto com o campo de força OPLS e do método PME para cálculo das interações eletrostáticas permitiram uma simulação de dinâmica molecular estável e acurada demonstrando um grande potencial na simulação de ácidos nucléicos.

[^15]
# STRUCTURAL AND ELECTRONIG PROPEPTIES OF THE AMORPHOUS $\mathrm{HFO}_{2}$ 

Wanderlã Luis Scopel* (PQ), Antônio J. R. da Silva (PQ), and A. Fazzio (PQ) wlscopel@if.usp.br<br>Instituto de Física da Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil<br>Keywords: Amorphous materials, High-k dielectrics, $A b$ initio molecular dynamics

Among the potential candidates for replacement of $\mathrm{SiO}_{2}$ as gate dielectric, the hafnium oxide $\left(\mathrm{HfO}_{2}\right)$ seems to be one of the most promising materials due to many of its qualities, such as, for example, the thermodynamic stability of its interface with Si. Many experimental works have been reported that as-deposited $\mathrm{HfO}_{2}$ films, as well as the interfacial silicate layer created during the growth, present a disordered (amorphous) atomic structure. This $\mathrm{HfO}_{2}$ disordered structure can, however, be converted into a crystalline phase depending on the annealing temperature. The silicate layer or silicate films, on the other hand, are stable and maintain their amorphous structure. In any case, the study of amorphous $\mathrm{HfO}_{2}$ is an essential step towards a better and more realistic understanding of this class of high-k dielectrics. Up to now, only the crystalline phase of $\mathrm{HfO}_{2}$ has been theoretically studied (see, for example, Ref. [1]). One of the reasons is the lack (as far as we know) of empirical potentials for this system. Therefore, in this work we carried out ab initio molecular dynamics (AI-MD) calculations to generate the disordered atomic structure of the hafnium oxide. In order to do so, Density Functional Theory calculations were performed using ultrasoft pseudopotentials [2] to represent the core electrons, and plane waves as basis sets to expand the Kohn-Sham wavefunctions [3]. The generalized gradient approximation (GGA) of Perdew and Wang [4] was used for the exchange-correlation potential. The simulations were performed for a 96 atoms $\mathrm{HfO}_{2}$ supercell, using periodic boundary conditions. We used the following strategy: we started from the $\mathrm{HfO}_{2}$ crystalline configuration, heated the system up to 5400 K in 1000 MD steps (we used a 3 fs time step), thermalized at 5400 K for 2000 steps, and cooled to 300 K in 1000 steps. In order to generate a good statistics to analyze the structure we performed an additional 500 MD steps at 300 K . From these atomic configurations of the disordered system at 300 K , the bond-angles distribution, and the radial partial pair distribution functions were determined. The results show that the Hf-O-Hf bond-angle distribution has as peak at $75^{\circ}$ and width at half maximum of $10^{\circ}$. The partial pair distribution functions give $\mathrm{Hf}-\mathrm{O}, \mathrm{O}-\mathrm{O}$, and $\mathrm{Si}-\mathrm{Si}$ average bond lengths of $2.20 \AA, 2.70 \AA$ and $3.50 \AA$, respectively. Besides these structural analyses, electronic structure results will be presented, such as the density of states.


Figure 1 : a) Atomic positions for the $\mathrm{m}-\mathrm{HfO}_{2}$; b) Atomic positions for the amorphous $\mathrm{HfO}_{2}$. Small spheres are O atoms and large spheres are Hf atoms.

[^16]
# DYNAMICAL AND KINETIC PROPERTIES CALCULATIONS OF THE NA+HF REACTION USING TWO POTENTIAL ENERGY SURFACES 

Alessandra F. A. Vilela ${ }^{1}(\mathrm{PG})$, Ricardo Gargano ${ }^{1}(\mathrm{PQ})$, Kleber C. iviundim ${ }^{2}(\mathrm{PQ})$ and<br>Patricia R. P. Barreto ${ }^{3}$ (PQ) alessan@fis.unb.br<br>${ }^{1}$ Instituto de Fisica, Universidade de Brasilia, CEP 70919-970 Brasilia - DF.<br>${ }^{2}$ Instituto de Quimica, Universidade Brasilia, CEP 70919-970, Brasilia - DF.<br>${ }^{3}$ Instituto Nacional de Pesquisas Espaciais - INPEIMCT, CP515, CEP 12247-970, São José dos Campos, SP.

KEY WORDS: GSA method, Na+HF reaction, rate constants.
The study of chemical reaction dynamics is of great interest of both theorists and experimentalists due to its role in several important chemical processes. In this study, the Potential Energy Surface (PES) play a decisive role to compute the dynamical and kinetic properties of a reactive system. However, the fitting of the $a b$ initio electronic energies of polyatomic molecules for different nuclear configurations is a difficult task that involves a significant amount of work and chemical insight. In this last years, several work in the direction of providing efficient tools to help with this job have been made. More recently, a stochastic optimization technique, based on Generalized Simulated Annealing, has been utilized with success to fit PES for reactive scattering dynamics. In fact, we derived a new PES (GSA PES) through ab initio electronic energies for different nuclear configurations for reaction of sodium atoms with hydrogen fluoride in the ground state.

In this work, we report the Quasi-Classical Trajectories (QCT) calculations of the dynamical properties as reactive cross-sections, translational, vibrational and rotational energy distributions and angular distribution considering both GSA and BO5 PES. To complete these studies we also determine the kinetic properties of this reaction calculating the rate constants using the POLYRATE program, which is based on Transition State Theory (TST). These calculations has been made to permit a quantitative comparison between the GSA and BO5 PES. These comparison have been showed that the quality of the new GSA PES is comparable to BO5 PES. To illustrate this fact, we show in the figure below one of dynamical properties calculated using both GSA and BO5 PES.
(CNPq, CENAPAD-SP)
$\mathrm{Na}+1 \mathrm{~F}$ reactive total cross section


# DYNAMICAL AND KINETIC PROPERTIES CALCULATIONS OF $\mathrm{THE} \mathrm{Na}+\mathrm{LiH} \rightarrow \mathrm{NaLi}+\mathrm{H}$ REACTION 

Alessandra F. A. Vilela ${ }^{1}$ (PG), Ricardo Gargano ${ }^{1}$ (PQ), and Patrícia R. P. Barreto (PQ) alessan@fis.unb.br<br>${ }^{1}$ Instituto de Física, Universidade de Brasília, CEP 70919-970 Brasilia - DF.<br>${ }^{2}$ Instituto Nacional de Pesquisas Espaciais - INPE/MCT, CP515, CEP 12247-970, São José dos Campos, SP.

Key words: GSA and Powell methods, $\mathrm{Na}+\mathrm{LiH}$ reaction, rate constants.
The Potential Energy Surface (PES) play a decisive role to compute the dynamical and kinetic properties of a reactive system. However, the fitting of the ab initio electronic energies of polyatomic molecules for different nuclear configurations is a difficult task that involves a significant amount of work and chemical insight. In this work, we have showing the first version of PES built to $\mathrm{Na}+\mathrm{LiH}$ reaction.

To fit the $a b$ initio calculations for this system, for different nuclear configurations, using a Bond Order ( BO ) polynomial expansion for both two- and three-body terms, we have used both Generalized Simulated Annealing (GSA) and Powell methods (see figure below). These ab initio energies values that cover a relevant portion of the surface at theta, the angle formed by the NaLi and LiH internuclear distances, were obtained using Gaussian98 program with the $6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ basis set within a Møller-Plesset perturbation treatment for the correlation energy terms fourth order (MP4). To better describe the regions of weak interaction towards the asymptotic limits, we used QCISD(T) level of theory and $6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ basis set.

To test the quality of this PES, we report the Minimum Energy Path - MEP and QuasiClassical Trajectories (QCT) calculations of the dynamical properties as reactive crosssections, translational, vibrational and rotational energy distributions and angular distribution. To complete these studies, we also determine the kinetic properties of this reaction calculating the rate constants using the POLYRATE program, which is based on Transition State Theory (TST). (CNPq, CENAPAD-SP)


## P170

# UM ESTUDO AB INITIO DA CORREÇÃO TÉRMICA PARA O DIMERO DA ÁGUA 

Wagner B. De Almeida(PQ)<br>wagner @ netuno.qui.ufmg.br<br>Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31.270-901, Brasil<br>Palavras-chave: Ab initio, Dímeros de Água, Correção Térmica

O dímero da água $\left(\mathrm{H}_{2} \mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)$ está certamente entre os complexos moleculares existentes na fase gasosa mais estudados tanto do ponto de vista teórico quanto experimental. Dados experimentais de entalpia, energia livre de Gibbs e entropia de associação padrões na tempetura de $373,15 \mathrm{~K}$ foram obtidos por Curtiss e col. [L.A. Curtiss, D.L. Frurip, M. Blander, J. Chem. Phys. 71 (1979) 2703] e estão mostrados abaixo. Entre os resultados teóricos mais precisos para a energia de interação podemos citar o valor de $-4,7 \pm 0,35 \mathrm{kcal} \mathrm{mol}^{-1}$ obtido por Bartlett e col. [ K . Szalewicz, S.J.Cole, W. Kolos, R. Bartlett, J. Chem. Phys. 89 (1988) 3662 ] no nível CCSD-T e -4,. 66 kcal mol ${ }^{-1}$ obtido por Kim e col [K.S. Kim, B.J. Mhin, U.-S. Choi, K. Lee, J. Chem. Phys. 97 (1992) 6649] no nível MP2 utilizando um conjunto de funções de base extensas. Ambos os resultados incluem a correção devido ao erro de superposição de base (BSSE) que no cálculo MP2 foi de 0,33 $\mathrm{kcal} \mathrm{mol}^{-1}$, o menor valor obtido até então.

Em virtude do interesse de nosso grupo no cálculo da correção térmica em estudos de análise conformacional [H.F. Dos Santos, W.R. Rocha, W.B. De Almeida, Chem. Phys. 280 (2002) 31] e reações químicas na fase gasosa e em solução será apresentado neste trabalho uma investigação no nível ab initio correlacionado (MP2, MP4(SDTQ), CCSD-T) utilizando funções de base estendidas com inclusão de funções difusas ( $6-311++G(3 d f, 3 p d)$, aug-cc-pVQZ) da correção térmica para o dímero da água na fase gasosa, visando sobretudo uma avaliação do desempenho dos métodos ab initio de cálculos comumente disponíveis para a previsão da entalpia e energia livre de Gibbs padrão de associação para o dímero na temperatura de $373,15 \mathrm{~K}$, correspondendo às condiçōes do experimento realizado por Curtiss e col.

Tabela. Energias de Interação e correções BSSE em kcal mol ${ }^{-1}$.
Os valores CCSD e MP4(SDQ) estão incluidos em parenteses.

| Função de Base | $\Delta \mathrm{E}_{\text {cCle-nuc }}$ | $\underset{\operatorname{CCSD}-T-\operatorname{ESSE}}{ }$ | $\underset{M P 4 S D T Q}{\Delta E_{\text {ele-nuc }}}$ | $\underset{M P 4 S D T Q-B S E}{\Delta \mathbf{E}_{\text {ele-nuc }}}$ | $\pi$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline 6-311++G \\ (2 d, 2 p) \\ \hline \end{gathered}$ | $\begin{gathered} -5,35 \\ (-5,08) \\ \hline \end{gathered}$ | $\begin{gathered} 0,92 \\ (0,81) \\ \hline \end{gathered}$ | $\begin{gathered} -5,36 \\ (-5,08) \\ \hline \end{gathered}$ | $\begin{gathered} 0,96 \\ (0,83) \\ \hline \end{gathered}$ |  |
| $\begin{aligned} & 6-311++G \\ & \text { (2df,2pd) } \\ & \hline \end{aligned}$ | $\begin{gathered} -5,35 \\ (-5,06) \\ \hline \end{gathered}$ | $\begin{gathered} 0,86 \\ (0,74) \end{gathered}$ | $\begin{gathered} -5,37 \\ (-5,07) \end{gathered}$ | $\begin{gathered} 0,90 \\ (0,76) \\ \hline \end{gathered}$ |  |
| $\begin{aligned} & \text { 6-311++G } \\ & \text { (3df,3pd) } \\ & \hline \end{aligned}$ | $\begin{gathered} -5,32 \\ (-5,04) \\ \hline \end{gathered}$ | $\begin{gathered} 0,73 \\ (0,65) \\ \hline \end{gathered}$ | $\begin{gathered} -5,34 \\ (-4,51) \\ \hline \end{gathered}$ | $\begin{gathered} 0,76 \\ (0,66) \end{gathered}$ | $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{2} \mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}$ <br> Dados Experimentais: $\begin{array}{ll} \Delta H^{0}{ }_{373,15 \mathrm{~K}}=-3,59 \pm 0,5 \mathrm{kcal} \mathrm{~mol}^{-1} \\ \Delta \mathrm{G}^{0}{ }^{373,5 / 5 \mathrm{~K}}=3,34 & \mathrm{kcal} \mathrm{~mol}^{-1} \\ \Delta 5^{6}{ }_{37,15 \mathrm{~K}}=-18,59 \pm 1,3 & \mathrm{cal} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1} \end{array}$ |
| $\begin{aligned} & \text { aug-cc- } \\ & \text { pVDZ } \end{aligned}$ | $\begin{gathered} -5,29 \\ (-5,00) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0,88 \\ (0,76) \end{gathered}$ | $\begin{gathered} -5,30 \\ (-5,01) \end{gathered}$ | $\begin{gathered} 0,91 \\ (0,77) \\ \hline \end{gathered}$ |  |
| $\begin{gathered} \text { aug-cc- } \\ \text { pVTZ } \end{gathered}$ | $\begin{gathered} -5,22 \\ (-4,93) \end{gathered}$ | $\begin{gathered} 0,44 \\ (0,38) \end{gathered}$ | $\begin{gathered} -5,21 \\ (-4,93) \\ \hline \end{gathered}$ | $\begin{gathered} 0,47 \\ (0,39) \\ \hline \end{gathered}$ |  |
| $\begin{gathered} \text { aug-cc- } \\ \text { pVQZ } \end{gathered}$ | $\begin{gathered} -5,10 \\ (-4,81) \\ \hline \end{gathered}$ | $\begin{gathered} 0,14 \\ (0,10) \end{gathered}$ | $\begin{gathered} -5,09 \\ (-4,81) \end{gathered}$ | $\begin{gathered} 0,15 \\ (0,10) \\ \hline \end{gathered}$ |  |

Podemos observar pela tabela acima que a função de base consistente-correlacionada de Dunning (aug-cc-pVQZ) produziu uma correção de BSSE de somente $0,15 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ no nivel correlacionado MP4(SDTQ), menos da metade do melhor valor conhecido até então, mostrando que o presente cálculo de energia de interação para o dímero, utilizando o modelo da supermolécula, é livre do erro devido à superposição de bases (BSSE), dentro da precisão experimental para a entalpia de associação de $\pm 0,5 \mathrm{kcal} \mathrm{mol}^{-1}$. Este valor de energia de interação pode ser considerado o mais preciso para o dímero da água disponível na literatura. (CNPq, FAPEMIG).

# THEORETICAL STUDIES OF PVP-I $I_{2}$ CHARGE-TRANSFER COMPLEXES 

Kleber de A. Almeida¹ (PG), Écio J. França ${ }^{\dagger}$ (PQ), Hector A.C.Gil ${ }^{2}$ (PQ), Alvaro A.A. de Queiroz ${ }^{1}(P Q)$.<br>alencar@unifei.edu.br<br>${ }^{1}$ Departamento de Física e Química/Instituto de Ciências, Universidade Federal de Itajubá - UNIFEI.<br>${ }^{2}$ Departamento de Engenharia Química e de Alimentos, Escola Mauá de Engenharia.

Key-words: poly(vinylpyrrolidone), charge transfer complexes, iodine.
Poly(vinylpyrrolidone) (PVP) is a vinyl polymer possessing planar and highly polar side groups due to the incorporation of a peptide bond in the lactam ring. PVP shows a strong tendency to form charge-transfer complexes (CTC) with iodine in solution or same in the solid state. Recently, the poly(vinylpyrrolidone)-iodine ( $\mathrm{PVP}-\mathrm{I}_{2}$ ) charge-transfer complexes have gained significance due to their potential applications for the development of resistive-type humidity sensors. In the present study the different model structures of PVP- $\mathrm{I}_{2}$ CTC by performing molecular mechanics were examined. The molecular modeling reported in this paper are all at the MNDO-d level and were performed using the Spartan suite of programs, which provides a state-of-the-art package for ab initio calculations and iodine parameterizations. Preliminary PVP oligomeric structures were obtained by direct minimization of the classical molecular mechanics total energies with respect to all geometric variables, i.e. bond lengths and angles. Several starting structures were used to achieve energy convergence. These structures were then refined by successive reoptimization of the geometry using MNDO-d basis sets, except where intractable convergence difficulties were encountered or the system was too large for our computational resources. The output includes the optimized geometry, molecular orbital energies (eigenvalues) and total electronic energy as well as orbital population. The electrostatic potential $\mathrm{V}(\mathrm{r})$ and the Mülliken population analysis were used as tools for identifying and ranking the molecular PVP sites most susceptible to the electrophilic iodine attack. The obtained PVP isosurfaces values for carbonyl and the nitrogen lone pair in the lactam unity appears to be a strongly evidence of the involvement of these species in the formation of PVP charge-transfer complexes with iodine. The Mülliken distribution charges indicate the formation of a ligand-to-metal charge-transfer transition (an LMCT transition) and give rise to a large transition dipole moment in the PVF-I $\mathrm{I}_{2}$ charge-transfer complex. The calculated heat of charge-transfer complex formation increased monotonously with an increasing number of VP units on the macromolecule, indicating that PVP easily react with valence electron of the halogen atom, to be formed stable $\mathrm{PVP}-\mathrm{I}_{2}$ CTC. The $\mathrm{PVP}-\mathrm{I}_{2}$ has a similar energy gap ( $\Delta \varepsilon_{\text {номо-LUмо }}=6.129 \mathrm{eV}$ ) to the $\operatorname{PVP}$ ( $\Delta \varepsilon_{\text {номо-LUMо }}=6.569 \mathrm{eV}$ ). This result may be an indicative of the stable character of the PVP-I $\mathrm{I}_{2}$ CT complex. The theoretical results obtained in this work are in good accordance with our recent spectroscopic investigations about $\mathrm{PVP}-\mathrm{I}_{2}$ charge transfer complexes. In order to understand the interaction between iodine and PVP, the electronic spectra of iodine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were recorded. The absorption band due to free iodine appears at 502 nm without any additional transition. It was observed a strong absorption at 366 nm in the $\mathrm{PVP}-\mathrm{I}_{2}$, characteristic of the presence of triiodide anion $\left(1_{3}{ }^{\circ}\right)$. The indication that PVP interacts strongly with iodine and a triiodide comes out from the development of a new charge-transfer band at 250 nm with a shoulder at 290 nm , which is comparable in shape and absorption wavelength to the charge-transfer band present in iodine-ether complexes. Assuming that a charge-transfer interaction is responsible for $\mathrm{I}_{3}{ }^{3}$ formation, the possible bonding sites are the carbonyl and the nitrogen lone pair. The interaction through the oxygen should be similar to the protonation due to the strong electron acceptor property of the iodine. In contrast, if $\mathrm{I}_{2}$ is interacting through the nitrogen lone pair, a decrease in the contribution of protonated PVP structure is expected, leading to an increase in the C-O bond order and a upward shift in the carbonyl band position.

# POLYANILINE CHROMIUM CHARGE TRANSFER COMPLEXES 

Pauio H.O. de Souza ${ }^{1}(\mathrm{PG})$, iñarisa Grassi ${ }^{1}$ (PQ), Demério A. Wiv. Soares ${ }^{1}$ (PQ), Aivaro A.A. de Queiroz (PQ).<br>alencar@ efei.br<br>${ }^{1}$ Departamento de Física e Química/Instituto de Ciências, Universidade Federal de Itajubá. Key words: polyaniline, chromium doping, charge transfer complexes.

Polyaniline (PANI), a conjugated conducting polymer has been the subject of considerable scientific and technological interest due to their electronic and optical properties. The modification of PANI by coordination with metallic ions appears to be an interesting route to improve their electrical conductivity and have a high potential to produce molecular wires. Recently there was a great interest in the study of the optical and electronic properties of chromium doped polymers due to their increasing application in holography. In this work we have studied the polyaniline-chromium charge transfer complexes ( $\mathrm{PANI}-\mathrm{Cr}, \mathrm{Cr}=\mathrm{Cr}^{+6}$ ) employing a semi-empirical quantum mechanical approach. Semi-empirical methods were carried out using Parameterization 3 (PM3) and the Modified Neglect Differential Overlap (MNDO) of the MOPAC package. We find that the optimized geometries obtained with MNDO are in good agreement with PM3 results. Since the PM3 and MNDO geometries are equivalent, we discuss here only the results from the latter technique, in order to facilitate the comparison with the results of the oligomeric chromium charge transfer complexes of PANI like as the quinoid and benzenoid moieties intervened by nitrogen. Due to the interaction with chromium, the benzenoid structures lose its aromatic character to give rise to diene structures. The MNDO optimized $\mathrm{Cr}-\mathrm{C}$ distances are short: 1.867 A for the $\mathrm{Cr}-\mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{6}$ bonds and 1.971 A for the $\mathrm{Cr}-\mathrm{C}_{1}$ bond. These values are close to the experimental distances found in organochromium compounds clearly indicating that covalent bonds are formed between the Cr and PANI. We have carried out a Mülliken analysis of the charge distribution to obtain trends in the possible charge transfers. Here also, the MNDO and PM3 results are in good agreement. The interaction leads to a charge transfer of $\approx 0.653|\mathrm{e}|$ from each Cr atom to the PANI phenyl ring. From MNDO approach, two Cr atoms interact preferentially with a single ring, remaining unaffected the other ring. There is a strongest charge increase on those carbon atoms that are bonded to the Cr. The Fermi level for undoped PANI and PANI-Cr charge transfer complex structures is located around -5.3 eV relative to the vacuum level. The highest occupied and the lowest unoccupied bands of PANI are $\pi$-likes bands. The orbital of the lowest unoccupied band have nodes on the nitrogen atoms, which breaks the conjugation path. The ring excess charge populates a $\pi^{*}$ level of PANI and becomes the HOMO of the PANI-Cr charge complexes system, while the HOMO of the Cr quinoid or benzenoid structures depopulates to give the LUMO of the charge transfer complex. This fact may be the main reason for the flatness of the bands closest to the Fermi level of PANI-Cr complexes. In summary, the MNDO and PM3 predictions for the electronic properties of PANI-Cr charge transfer complexes are consistent with our experimental conductivities measurements. In this sense, an increase in conductivity of the conjugated polymer after chromium doping may be allied to the increase of the $\pi$ conjugation of the benzenoid-quinoid structures due to the expanding of the coiled PANI chains induced by the chromium doping.

# ESTRUTURA ELETRÔNICADOSESTADOS-ÔNICOS-DA acroleína 

Eveline Braga Fraga ${ }^{1}$ (IC), Maria Cristina Rodrigues da Silva(PQ)<br>ebfraga@hotmail.com<br>Departamento de Físico-Química, Instituto de Química, UFRJ<br>CT,Bloco A, Sala 408, llha do Fundão, Rio de Janeiro, RJ, 21949-900<br>Palavras-chave: potenciais de ionização, compostos carbonilados, espectroscopia de fotoelétron

A acroleína $\left(\mathrm{CH}_{2} \mathrm{CHCHO}\right)$ é o menor composto carbonilado que apresenta conjugação de uma dupla ligação carbono-carbono com um grupo aldeídico. Nos processos de ionização de compostos carbonilados, os estados iônicos de menor energia do cátion são aqueles gerados pela retirada de elétrons do par isolado do oxigênio, $\mathrm{n}(\mathrm{O})$, e da ligação $\mathrm{C}=\mathrm{O}$, $\pi(\mathrm{C}=\mathrm{O})$. A presença da ligação $\mathrm{C}=\mathrm{C}$ na acroleína introduz um efeito de conjugação entre o sistema de elétrons $\pi$ que complica a identificação dos estados gerados pela remoção de um elétron da molécula neutra. Os dados experimentais referentes aos processos de ionização da acroleína, como os oriundos da espectroscopia de fotoelétron, não estabelecem, de forma clara e inequívoca, o ordenamento energético dos estados eletrônicos do cátion $\mathrm{CH}_{2} \mathrm{CHCHO}^{+}$. Turner et al. [1], por exemplo, atribuem a primeira banda de ionização à remoção do elétron $\mathrm{n}(\mathrm{O})$ enquanto Kimura et al. [2], com base no teorema de Koopmans, atribuem esta banda à ionização do elétron $\pi(\mathrm{C}=\mathrm{C})$.

Cálculos de estrutura eletrônica em nível Hartree-Fock e pós-Hartree-Fock foram realizados neste trabalho com o intuito de verificar o ordenamento energético e caracterizar a geometria dos estados iônicos do cátion $\mathrm{CH}_{2} \mathrm{CHCHO}^{+}$em sua região de valência. Este estudo mostra que a utilização do teorema de Koopmans para estabelecer o ordenamento energético dos estados gerados pela remoção de um elétron da molécula neutra leva a resultados equivocados ao prever que a primeira banda de ionização corresponde à remoção do elétron do orbital ocupado de maior energia, $\pi(\mathrm{C}=\mathrm{C})$. Cálculos em nível HF, B3LYP, MP2, MP4, CISD, QCISD e CCSD mostram que o efeito de reorganização eletrônica faz com que o estado obtido pela remoção do elétron $n(O)\left({ }^{2} A^{\prime}\right)$ tenha uma energia menor que a do estado alcançado pela remoção do elétron $\pi(C=C)\left({ }^{2} A^{\prime \prime}\right)$. As geometrias obtidas para estes dois estados são compatíveis com a estrutura das bandas de ionização observadas no espectro de fotoelétron da acroleína. Em relação à geometria da molécula neutra, o primeiro ${ }^{2} A^{\prime}$ apresenta apenas pequenas alterações dos parâmetros geométricos enquanto o primeiro ${ }^{2} \mathrm{~A}^{\prime \prime}$ apresenta um aumento considerável da distância da ligação $\mathrm{C}=\mathrm{C}$, compatível com a extensa estrutura vibracional observada na segunda banda de ionização. Os resultados relativos ao cálculo de potenciais de ionização adiabáticos mostram que o nível MP2 é o que fornece valores mais próximos dos experimentais. O estado gerado pela remoção do elétron $\pi(\mathrm{C}=\mathrm{O})$, correspondente ao segundo ${ }^{2} A$ ", foi também investigado utilizando métodos multiconfiguracionais (CAS) e de interação de configurações (CIS). Nossos resultados indicam que a terceira banda de ionização do espectro de fotoelétron da acroleína corresponde efetivamente a este estado. (CNPq).
[1]. Turner, D. W.; Baker, C.; Baker, A. D.; Brundle, C. R. Molecular Photoelectron Spectroscopy, Wiley: London, 1970.
[2]. Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S. Handbook of Hel Photoelectron
Spectroscopy of Fundamental Organic Molecules; Japan Sci. Soc.: Tokyo, 1981.

# EFEITOS DE DEFORMAÇÕES ESTRUTURAIS EM NANOTUBOS DE CARBONO 

Jussane Rossato ${ }^{1,(\mathrm{PG})}$, Ronaldo Mota ${ }^{2,(P Q)}$, Rogério J. Baierle ${ }^{3,(P Q)}$ e Adalberto Fazzio ${ }^{4,(\mathrm{PQ})}$<br>jrossato@mail.ufsm.br<br>${ }^{1}$ Universidade Federal de Santa Maria - Departamento de Física - RS,<br>${ }^{2}$ Universidade Federal de Santa Maria - Departamento de Física - RS<br>${ }^{3}$ Centro Universitário Franciscano - Departamento de Física - RS<br>${ }^{4}$ Universidade de São Paulo - Instituto de Física - SP<br>Palavras-chave: nanotubos de carbono, deformações estruturais, cálculos de primeiros princípios

Neste trabalho estudamos, a partir de cálculos de primeiros princípios baseados na teoria do funcional da densidade, as propriedades eletrônicas e estruturais de nanotubos de carbono de paredes simples submetidos a deformações mecânicas. Nanotubos são conhecidos por suportarem grandes pressões mecânicas e, tanto do ponto de vista teórico como experimental, apresentam interessantes propriedades eletromecânicas.

Adotamos para análise o tubo zigzag ( 8,0 ), o qual é deformado via a aplicação de uma força externa, suposta agir sobre um único átomo de carbono da superfície, tal como, por exemplo, através da aplicação da ponteira aguda de microscopia de força atômica. No modelo adotado para nossa simulação, todos os átomos são totalmente relaxados após a aplicação da força, a menos do átomo no qual a força é exercida. Para evitar a translação do tubo como um todo, uma fileira de átomos, paralela ao eixo e na face oposta, os quais são mantidos fixos. Desta forma, garantimos que as estruturas atômicas dos nanotubos são otimizadas em cada etapa do processo de deformação.

Para efetuarmos os cálculos de primeiros princípios o Programa SIESTA é utilizado, o qual resolve de forma auto-consistente as equações de Kohn-Sham via uma aproximação da densidade local para o termo de exchange -correlação.

Do ponto de vista de propriedades eletrônicas, determinamos como se modificam o gap do semicondutor, originalmente da ordem de 0.55 eV , e as respectivas estruturas de bandas em cada etapa da intensidade crescente da força externa, a qual é simulada como sendo exercida tanto de fora para dentro como de dentro para fora, sempre perpendicular ao eixo do tubo. Na análise estrutural, a força é exercida sobre o átomo até o limite superior da produção do rompimento e a conseqüente formação da vacância. Nossos resultados indicam uma grande elasticidade do sistema, tal que o rompimento quando a força é aplicada para fora demanda, no limite superior de rompimento, uma força externa aplicada da ordem de 11,35 nN , a qual está associada a uma particular energia de formação da vacância, o que permite comparação com resultados previamente conhecidos, tanto teóricos como experimentais. A análise das densidades de carga total na região de ruptura, imediatamente antes e após o rompimento, permite elucidar a natureza e as intensidades das ligações envolvidas. Quando a força é aplicada para dentro, demonstramos que, mesmo no limite superior de aproximação com a face oposta do tubo, o rompimento não ocorre, permitindo assim um estudo muito elucidativo da reversibilidade do sistema. (CNPQ e FAPERGS. Os cálculos foram realizados no CENAPAD - UNICAMP-SP).

# REATIVIDADE DOS SÍTIOS Fe (II)Fe(IIII) E Zn (III) Fe (IIII) EM MODELOS BIOMIMÉTICOS AS PAPs 

Lilian W. Paes ${ }^{1}(P Q)^{*}$, Ademir Neves ${ }^{2}(P Q)$, Roberto B.Faria ${ }^{1}(P Q)$, Juan O. MachucaHerrera ${ }^{1}$ (PQ), Sérgio de P. Machado ${ }^{1}$ (PQ)<br>weitzelcoelho@yahoo.com.br<br>${ }^{1}$ Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro.<br>${ }^{2}$ Departamento de Química, Universidade Federal de Santa Catarina. Palavras-chave: Complexos binucleares, ab-initio, reatividade.

As fosfatases ácidas púrpuras (PAPs) são metalo-hidrolases que apresentam um sítio ativo binuclear $\mathrm{Fe}(\mathrm{III})-\mathrm{M}(\mathrm{II})$, onde $\mathrm{M}=\mathrm{Zn}$ (kbPAP), Fe (bsPAP e ufPAP) e Mn (spPAP). Apesar das PAPs serem oriundas de plantas, mamíferos e bactérias, vários estudos apontam para o fato delas apresentarem o mesmo conjunto de aminoácidos no seu sítio ativo, ou seja, apresentam a mesma relação estrutural, sugerindo que os resíduos de aminoácidos que ligam os centros binucleares sejam idênticos nos diferentes tipos de PAPs ${ }^{1}$. A substituição do ion $\mathrm{Zn}^{\prime \prime}$ por $\mathrm{Fe}^{\prime \prime}$ na kbPAP revela que as propriedades espectroscópicas assemelham-se às observadas para as fosfatases de mamíferos, onde $M=F e^{11}$. Desta forma, cálculos teóricos visando uma compreensão da reatividade e da propriedade eletrônica de tais sistemas foram realizados através dos programas GAMESS, utilizando o método ab initio ROHF, com a base ECP-SBK, e EXTEN97, através do método de Hückel Estendido onde foram incorporadas as equações de Dronskowski ${ }^{2}$ referente ao índice de reatividade ácido/base, permitindo o cálculo da dureza relativa dos átomos de uma molécula. Partindo de uma geometria otimizada ${ }^{3}$ de um modelo contendo dois íons Fe no estado de oxidação II e III, foi possível substituir o ion Fe ${ }^{\prime \prime}$ pelo íon $\mathrm{Zn}^{\prime \prime}$ (figura 1), devido ao fato das duas estruturas experimentais apresentarem parâmetros estruturais semelhantes ${ }^{4-5}$.


Figura 1: Estrutura do modelo contendo o sítio $\mathrm{Fe}^{\mathrm{II} \mathrm{\prime}} \mathrm{Zn}^{\prime \prime}$
Os cálculos de OM a nível ab initio mostram que os orbitais atômicos que contribuem para o HOMO são os orbitais atômicos $d_{x y}$ do átomo de ferro lll e os orbitais $p \pi$ do grupo fenolato terminal. Os orbitais atômicos $d$ do átomo de $Z n^{\prime \prime}$ e o orbital atômico $p$ do átomo de oxigênio do grupo fenolato em ponte, não contribuem para o $H O M O$. Comportamento semelhante foi observado para o modelo com o sítio $\mathrm{Fe}(\mathrm{III}) \mathrm{Fe}(\mathrm{II})^{3}$. A análise populacional de Mulliken calculada pelo método ab-initio no HOMO, para o átomo de oxigênio do grupo fenolato em ponte e para o átomo de oxigênio do grupo fenolato terminal são respectivamente, 0,0001 e 0,889 , estes valores, aliado a participação dos orbitais atômicos no HOMO, sugerem que a transição é fenolato $p \pi \rightarrow F e^{I I I} d \pi^{*}$ característica das PAPs. Esta tendência foi também observada para o modelo contendo $\mathrm{Fe}^{\mathrm{ll}}$. Os índices de reatividade calculados pelo programa EXTEN97 são 0,72 para o íon $\mathrm{Zn}^{11}$ e 0,34 para o íon $\mathrm{Fe}^{\mathrm{II}}$, mostrando que o ion $\mathrm{Zn}{ }^{11}$ é uma espécie mais "dura", em comparação ao ion $\mathrm{Fe}^{\prime \prime}$. A substituição do ín $\mathrm{Fe}^{\prime \prime}$ pelo ion $\mathrm{Zn}^{\prime \prime}$, não apresentou nenhuma mudança significativa na estrutura eletrônica do modelo, o que já era previsto experimentalmente ${ }^{4-5}$. Ao comparar o índice de reatividade, nota-se que o ín Zn (II) apresenta um indice de reatividade maior do que o Fe (II), gerando assim, um sitio ativo para o substrato (éster de fosfato) mais eficaz. Esta observação encontrase de acordo com resultados encontrados experimentalmente ${ }^{4}$, visto que a atividade da enzima contendo o ion $\mathrm{Zn}^{11}$ é superior a contendo o íon Fe". CAPES, FUJB, Fundação José Pelúcio Ferreira

[^17]
# PROPOSTA DE OBTENÇÃO DO CAMPO DE FORÇA DA ÁGUA Líquida via cálculos de estrutura eletrônica 

Marco Aurélio A. Barbosa ${ }^{1}(\mathrm{PG})$ e Ricardo Gargano ${ }^{2}(\mathrm{PQ})$<br>aurelio@unb.br<br>${ }^{1}$ Instituto de Física, Universidade de São Paulo.<br>${ }^{2}$ Instituto de Física, Universidade de Brasília.<br>Palavras-chave: campos de força, modelos de água líquida, potencial de Lennard-Jones.

A evolução da capacidade de processamento computacional e o uso de campos de força, com funções de interação simples, têm viabilizado simulações de sistemas complexos através de métodos de Monte Carlo (MC) e Dinâmica Molecular (DM).

No caso da água líquida, os campos de força mais utilizados são os modelos TIP (Transferable Intermolecular Potential) e SPC (Simple Point Charge), que foram parametrizados visando reproduzir dados experimentais da água líquida à temperatura ambiente, como a capacidade térmica e as funções de distribuição radial. Para ambos, a interação entre duas moléculas de água ocorre através de um termo eletrostático e um potencial de Lennard-Jones atuando entre os oxigênios, sendo a parte eletrostática representada por cargas pontuais situadas ao longo de cada molécula.

Esses modelos já foram extensamente estudados e, atualmente, são capazes de reproduzir várias propriedades físicas da água na fase líquida. No entanto, a sua elaboração ainda está vinculada à parametrizações, que possuem abordagens extremamente práticas mas que não esclarecem os princípios físico-químicos que levam ao aparecimento de um potencial efetivo.

Neste trabalho, apresentamos uma metodologia que pode ser utilizada para obter o potencial efetivo de sistemas na fase líquida. Para mostrar a viabilidade desse método, o mesmo é aplicado no estudo do potencial efetivo da água líquida. Essa abordagem tem como ponto de partida o trabalho desenvolvido por Tu e Laaksonen onde, usando teoria de perturbação, é demonstrada que a contribuição eletrostática da interação intermolecular pode ser representada por cargas pontuais efetivas que são iguais a média das cargas na fase líquida e na fase gasosa, obtidas através de cálculos ab initio.

Para calcular as cargas na fase líquida, utilizamos uma configuração de água equilibrada a temperatura ambiente com 216 moléculas. Calculamos a estrutura eletrônica de cada molécula usando teoria de perturbação de segunda ordem de Moller-Plesset (MP2). A molécula escolhida é mantida no centro de uma caixa com condições de contorno periódicas e o restante do solvente é representado por cargas pontuais.

O tratamento dado por Tu e Laaksonen é estendido considerando a variação na interação intermolecular causada pela inclusão dos efeitos de correlação e troca entre duas moléculas de água. Desta forma, realizamos cálculos ab initio para vários pares de moléculas e determinamos a variação na interação efetiva, dada por:

$$
\Delta U_{c o r r}=\sum_{\alpha \in A} \sum_{\beta \in B}\left(Q_{A B, \alpha} Q_{A B, \beta}-Q_{\alpha} Q_{\beta}\right) \frac{1}{R_{\alpha \beta}},
$$

onde $Q_{A B, a}$ é o conjunto de cargas obtido levando-se em conta os efeitos de correlação e troca entre $A$ e $B$, enquanto o conjunto $Q_{a}$ foi obtido considerando apenas a interação eletrostática entre $s A$ e $B$.

Os resultados atuais para os valores de $\Delta U_{\text {cor }}$ mostram uma concordância com os potenciais de Lennard-Jones utilizados nos modelos de água líquida. (CNPq, Universidade de Brasília).

# ESTUDO AB INITIO DO COMPORTAMENTO ESTRUTURAL E ELETRÔNICO DA DIMETILAMINO - BENZONITRILA E AMINO - BENZONITRILA. 

Christian da S. Rodrigues (IC) ${ }^{\star 1}$, Lauro C. Dias Jr. (PQ) ${ }^{2}$ e Rogério Custodio (PQ) ${ }^{3}$<br>csr@iqm.unicamp.br<br>${ }^{2}$ Depto. de Química / Universidade Federal do Paraná<br>${ }^{3}$ Endereço para correspondência: Instituto de Química / Unicamp Caixa Postal 6154, CEP 13083-970 Campinas - SP<br>1,3 Depto. de Físico - Química - Instituto de Química / Universidade Estadual de Campinas Palavras - chave: Benzonitrila, Barreira de Rotação, Mecanismo TICT

Na década de 1960, alguns pesquisadores observaram que soluções de 4-dimetilaminobenzonitrila (DMABN) apresentavam duas bandas de fluorescência em presença de solventes polares, ao contrário da maioria dos compostos, que apresenta apenas uma. Desde então, compostos que apresentam esse fenômeno têm sido objetos de estudos teóricos e experimentais que, levaram anos mais tarde à proposição do modelo de "Transferência de Carga Intramolecular com Distorção Geométrica", conhecido pela sigla TICT (Twisted Intramolecular Charge Transfer).

Para que isto ocorra, é preciso haver um doador (DN) e outro receptor (AC) de elétrons unidos em uma molécula através de uma ligação que possua liberdade rotacional, ou seja, isenta de impedimento estérico. Desta forma, uma molécula planar e pouco polar no estado fundamental ( $\mathrm{S}_{0}$ ) pode ser excitada atingindo o primeiro estado excitado $\left(\mathrm{S}_{1}\right)$, no qual ocorre a transferência de carga entre DN e AC acompanhada de uma rotação do grupo doador em torno da ligação que une os grupos Conseqüentemente, é obtido um estado eletrônico excitado denominado TICT no qual as duas partes da molécula estão dispostas perpendicularmente entre si. Na previsão teórica, é verificada a existência de uma barreira energética de interconversão entre o estado localmente excitado $S_{1}$ e o TICT. Também é verificada a existência de dependência da energia deste estado com o potencial de ionização do doador, a afinidade eletrônica do receptor e a atração entre o DNe o AC.

Este projeto visa melhor compreender o comportamento e propriedades eletrônicas da DMABN através de cálculos ab initio em níveis HF e MP2 e do efeito da substituição do grupo doador $-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ por $-\mathrm{NH}_{2}$ formando a amino-benzonitrila (ABN).

Inicialmente otimizou-se as estruturas das duas moléculas em nível HF utilizando o conjunto de bases cc-pVDZ. Com os resultados pré-otimizados, foram feitas otimizações em nível HF/cc-pVTZ e MP2/cc-pVDZ. O efeito de correlação foi considerado devido a necessidade de um maior refinamento no nível de teoria na caracterização conformacional dos grupos amina. Uma das conseqüências não observadas no nível HF é a piramidalização do grupo amino. Nos níveis correlacionados os grupos amino tendem em determinados compostos a apresentar estruturas não planares melhorando consideravelmente a semelhança com estruturas obtidas experimentalmente.

A troca dos grupos metila por hidrogênios não provocou alterações significativas tanto na estrutura molecular quanto na altura da barreira de rotação encontrada. Os resultados encontrados para o cálculo da barreira de rotação no estado fundamental, indicam que a estrutura mais estável ocorre quando o ângulo diedro entre $\mathrm{C}-\mathrm{N}-\mathrm{C}=\mathrm{C}$ na DMABN (ou $\mathrm{H}-\mathrm{N}-\mathrm{C}=\mathrm{C}$ para o caso da ABN ) é de $30^{\circ}$ ou $150^{\circ}$ e o máximo ocorre em $90^{\circ}$, com uma barreira de aproximadamente $3 \mathrm{kcal} / \mathrm{mol}$, independente da substituição da metila por hidrogênio.

Os resultados dos cálculos de momento de dipolo para as duas moléculas também indicam pouca alteração em relação à substituição dos grupos metila por hidrogênio. Sua análise vai ao encontro das suposiçōes fundamentadas nos cálculos de energia. Ambas estruturas apresentam menor momento de dipolo em $90^{\circ}$, o que indica que, quando em solventes polares, a estrutura "torcida" no estado fundamental seria altamente desfavorecida, ao contrário da estrutura quase planar. Isso deve dificultar a interconversão de uma estrutura para a outra nas condições do estado fundamental. Para que o estado excitado seja estabilizado pelos solventes polares nesta geometria, uma considerável separação de cargas deve ocorrer. Estudos neste sentido encontram-se em andamento. (Fapesp, CNPq).

## P178

# USING AN INTERVAL BRANCH AND BOUND ALGORITHM IN THE HARTREE-FOCK METHOD 

Carlile C. Lavor ${ }^{1}$ (PQ), Marco Antonio Chaer Nascimento ${ }^{2}$ (PQ)<br>carlile@ime.uerj.br<br>${ }^{1}$ Departamento de Matemática Aplicada, Instituto de Matemática e Estatística Universidade do Estado do Rio de Janeiro - UERJ (²Departamento de Físico-Química, Instituto de Química<br>Universidade Federal do Rio de Janeiro - UFRJ (chaer@chaer.iq.ufrj.br)<br>Key words: Hartree-Fock method, branch and bound method, interval analysis.

The Hartree-Fock method [2] is a well known and widely used method to obtain atomic and molecular electronic wave functions, based on the minimization of a functional of the energy.

Alternatively, we propose to use a deterministic global optimization algorithm based on a branch and bound method that applies techniques of interval analysis.

A branch and bound method [3] brackets the global minimum of a function $f$ to be minimized by developing converging upper and lower bounds for the global minimum. These bounds are obtained, respectively, by local minimizations and using techniques of interval analysis [1]. They are refined by iteratively partitioning the initial search region into smaller subregions. Subregions where the lower bound for $f$ is greater than the current upper bound for the global minimum of $f$ can be discarded, because they cannot contain a global minimizer. The process continues until the interval that contains the global minimum is reduced to a desired length.

Traditional global optimization algorithms can sample the function $f$ at only a finite number of distinct points. Hence, there is no way of knowing whether the function drops to some unexpectedly small value between sample points. On the other hand, interval analysis provides bounds for $f$ over a continuum of points. Each real quantity is represented by an interval of floating-point numbers and these intervals are added, subtracted, multiplied, divided, etc., in such a way that each computed interval is guaranteed to contain the (unknown) value of the corresponding real quantity.

The proposed approach was applied to the ground-state of He and Be atoms. (FAPERJ and CNPq)
[1] E.R. Hansen, Global Optimization using Interval Analysis, Springer-Verlag, Berlin (1993).
[2] I.N. Levine, Quantum Chemistry, $5^{\text {th }}$ Edition, Prentice-Hall, New Jersey (2000).
[3] L.G. Mitten, Branch and Bound Method: General Formulation and Properties, Operations Research, 18 (1970), pp. 24-34.

# ESTUDO COMPUTACIONAL DA INTERAÇÃO ENTRE TYR188 DA TRANSCRIPTASE REVERSA DO HIV-1 E NEVIRAPINA 

Mariângela Dametto (PG) Sérgio E. Galembeck* (PQ)<br>segalemb@usp.br<br>Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto - SP, Brasil.<br>Palavras-chave: AIDS, inibidores não nucleosídeos, interações fracas.

A enzima transcriptase reversa (RT) do vírus HIV-1 é um dos alvos utilizados para o tratamento da AIDS. Os medicamentos administrados aos pacientes contêm inibidores dessa enzima, conhecidos como inibidores não nucleosídeos (NNRTI), que se ligam num sítio alostérico da enzima e não no sítio ativo dessa polimerase. Um problema que surge com a utilização desses inibidores é a resistência promovida por mutações existentes na transcriptase reversa. Vários estudos têm sido realizados para se compreender o mecanismo dessa inibição e para contornar esse problema de resistência.

O estudo da interação entre a transcriptase reversa e os inibidores não nucleosídeos é abordado neste trabalho por meio de métodos computacionais, utilizando-se cálculos químico-quânticos e estruturas cristalinas do complexo RT/NNRTI extraídas do PDB (Protein Data Bank). Inicialmente, está sendo estudada a interação entre a nevirapina e um aminoácido do sítio alostérico, a tirosina 188, que apresenta um grande número de contatos com este inibidor.


Figura. Dímero formado pela nevirapina e a tirosina 188 da RT.
Nesta etapa, foi realizada a otimização de geometria do dímero relaxando somente os hidrogênios, utilizando o método HF/6-31G(d). Os métodos NBO (Natural Bond Orbital) e NSA (Natural Steric Analysis) foram utilizados para se analisar as interações estabilizadoras e desestabilizadoras, respectivamente, utilizando-se o modelo B3LYP/6-31+G(d,p). Observou-se que as principais interações são do tipo $\pi(C-C) \rightarrow \sigma^{*}(X-H)(X=N, C)$ e $\sigma(X-H) \rightarrow \sigma^{*}\left(X^{\prime}-H\right)$ ( $X, X^{\prime}=N, C$ ) e que as interações no dímero são de menor intensidade quando comparadas às interações nos monômeros. As interações repulsivas (desestabilizadoras) que ocorrem entre a tirosina 188 da RT e a nevirapina são mais intensas do que as interações estabilizadoras, sendo que as interações que mais contribuem para a desestabilização, verificadas pelo o método NSA, são correspondentes às principais interações observadas com o método NBO. As cargas atômicas também foram calculadas pelo método NPA (Natural Population Analysis), tendo sido observado que a nevirapina é o aceptor e a tirosina 188 da RT é o doador de carga, mas a transferência de carga é muito fraca (0,02e). (FAPESP, CNPq, CAPES/PROAP, LCCA)

# CÁLCULOS QUímICO-QUÂNTICOS DE HIDRETOS METÁLICOS PARA ARMIAZENAMENTO DE HIDROGÊNIO. 

Francisco C. Alves Lima $(P G)^{1}$, Milan Trsic $(P Q)^{1}$, Ricardo F. Aroca(PQ $)^{2}$<br>fdcal@iqsc.usp.br<br>${ }^{1}$ Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo.<br>${ }^{2}$ Materials and Surface Science Group, School of Physical Sciences, Univesity of Windsor, On, N9B 3P4 Canadá.<br>Palavras-chave: armazenamento de hidrogênio, alanatos, teoria do funcional da densidade.

Atualmente a busca por um combustível renovável alternativo que seja economicamente viável e sem emissão de poluente no meio ambiente, tem sido intensamente investigado pela comunidade cientifica. Essa procura se deve ao fato dos combustíveis fósseis não serem renováveis e devido a grande quantidade de poluentes emitidos durante a sua combustão. Tendo em vista essa preocupação, grandes empresas automobilísticas estão investindo maciçamente na tecnologia de célula a combustível e no desenvolvimento de novas formas de combustível alternativo.

Uma alternativa viável é a utilização de gás hidrogênio como combustível. Várias formas de obtenção estão em estudos, uma delas é a utilização de hidretos metálicos a base de Lantânio, Níquel e Magnésio devido sua alta capacidade de armazenamento de hidrogênio e seu baixo custo. Mas suas aplicações são limitadas devido à baixa cinética de adsorção e a sua alta estabilidade termodinâmica.

Um novo grupo de material renovável para armazenamento de hidrogênio são os alanatos (metal alcalino, alumínio e hidrogênio) devido a sua alta capacidade de captação e liberação de hidrogênio no estado sólido em condições ambiente, tornando-se bastante adequado à utilização desses compostos em célula a combustível do tipo PEM (Membrana de Troca de Próton). Os alanatos $\mathrm{NaAlH}_{4}$ e $\mathrm{LiAlH}_{4}$ liberam cerca de $7,3 \%$ e $10,5 \%{ }^{1}$, respectivamente, em peso de hidrogênio, uma quantidade muito significativa em relação a outros compostos. Porém, o efeito da cinética de adsorção dificulta sua utilização em célula a combustível.

Faz-se necessário um estudo teórico desses compostos, uma vez que, a correlação entre a estrutura eletrônica e a estabilidade dos alanatos são discutidas em termos da natureza das ligações entre os átomos. Previamente utilizou-se métodos HF, MP2 e DFT na forma implementada no programa Gaussian 98. Em relação aos métodos DFT, foi emprego o método híbrido B3LYP/6-311G**, por ser um que o método com custo computacional similar ao HF e com resultados situado entre o MP2 e o MP3. Estudou-se a distribuição de cargas na molécula e será proposto mecanismo e barreiras de energia para processo de captação e liberação de energia de hidrogênio.

Preliminarmente, observou-se dois possíveis arranjos para coordenação do ânion $\mathrm{AlH}^{4}$ com os cátions dos metais alcalinos, com simetrias moleculares $\mathrm{C}_{3 \mathrm{~V}}$ e $\mathrm{C}_{2 \mathrm{~V}}$, para estruturas monodentada e bidentada, respectivamente.

Analisou-se os valores de energia calculados para os possíveis arranjos em todos os níveis de teoria citados, e observou-se que os resultados obtidos pelo método de DFT apresentam os menores valores de energia para a estrutura bidentada. (FAPESP,CNPq).

[^18]
# PLACZEK-PROGRAMA DESENVOLVIDO-PARAOCÁLCULO DE PROPRIEDADES RAMAN EM NÍVEIS ARBITRÁRIOS DE TEORIA. 

Luciano N. Vidal ${ }^{1}$ (PG), Pedro A.M. Vazquez ${ }^{1}$ (PQ).<br>Invidal@iqm.unicamp.br<br>${ }^{1}$ Instituto de Química da UNICAMP, C.P. 6154, 13084-971, Campinas, SP, Brasil.

Palavras-chave: Espectroscopia Raman, Polarizailidades Dinâmicas, Teoria da Resposta Linear.


#### Abstract

O programa PLACZEK foi concebido para o cálculo de intensidades Raman absolutas e razōes de depolarização Raman de moléculas poliatômicas em fase gasosa, à maneira descrita na ref.[1]. As propriedades Raman tratadas no programa são de dois tipos: (1) Estáticas, produzidas pela ação de um campo elétrico de freqüência nula e (2) Dinâmicas, geradas pela ação de um campo elétrico oscilante. Implementações computacionais baseadas em métodos ab initio ou DFT são freqüêntes para as propriedades do primeiro tipo, porém, existem poucos programas disponiveis para cálculos do segundo tipo, que são limitados aos métodos HF, MCSCF e DFT. A disponibilidade de implementações computacionais da função de resposta linear[2], que permite o cálculo de polarizabilidades dinâmicas, precursoras das intensidades Raman dentro da Teoria da Polarizabilidade de Placzek, motivaram o desenvolvimento do programa PLACZEK, escrito em linguagem Fortran 77, que possibilita o estudo de propriedades Raman em níveis arbitrários de teoria. O cálculo de intensidades Raman absolutas exige o conhecimento das condições em que o espectro é medido, tais como o tipo de polarização da radiação incidente, sua freqüência e intensidade, o ângulo formado entre o feixe incidente e o espalhado, e também de parâmetros intrinsicos do sistema espalhador, que são as freqüências vibracionais e gradientes da polarizabilidade molecular com relação as coordenadas normais de vibração.

O gradiente da polarizabilidade é primeiramente calculado em coordenadas cartesianas atômicas e a seguir projetado nas coordenadas normais, também calculadas pelo programa. As polarizabilidades dinâmicas são obtidas a partir do programa DALTON, que também é chamado para o cálculo de energias ou dos gradientes da energia (construção da matriz de constantes de força). Esta metodologia é vantajosa porque permite que as intensidades Raman de isotopômeros sejam computadas a partir de um mesmo gradiente (cartesiano) da polarizabilidade e além disto permite o emprego de modelos hibridos para determinar as propriedades Raman. Como exemplo, a Tabela 1 mostra o resultado da combinação de coordenadas normais HF com os gradientes correlacionados da polarizabilidade molecular, determinados nos níveis MP2, CC2 e CCSD. Ela mostra as diferenças percentuais entre as intensidades Raman de $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ e H 2 CO obtidas com hessianas HF analíticas, com relação as intensidades calculadas com hessianas semi-analíticas (geradas a partir do gradiente analítico da energia) nos niveis MP2, CC2 e CCSD, onde os gradientes da polarizabilidade foram computados. As diferenças são sempre inferiores a $4 \%$, fazendo desta combinação uma excelente alternativa para economizar tempo de processamento computacional.


Tabela 1: Diferenças percentuais entre as intensidades Raman obtidas com coordenadas normais HF, e coordenadas normais nos niveis abaixo listados.

|  | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NH}_{3}$ | $\mathrm{H}_{2} \mathrm{CO}$ |
| :--- | :--- | :--- | :---: |
| MP2/aug-cc-pVDZ | 0,1 | 0,2 | 3,0 |
| MP2/aug-cc-pVTZ | 0,0 | 0,3 |  |
| MP2/aug-cc-pVQZ | 0,0 |  |  |
| MP2/Sadlej | 0,0 | 0,4 |  |
| $\mathrm{CC2} /$ aug-cc-pVDZ | 0,1 | 0,2 |  |
| CC2/ag-cc-pVTZ | 0,0 | 0,3 | 3,7 |
| CC2/aug-cc-pVQZ | 0,0 |  | 3,3 |
| CC2/Sadlej | 0,0 | 0,4 | 2,9 |
| CCSD /aug-cc-pVDZ | 0,1 | 0,1 | 1,3 |
| CCSD /aug-cc-pVTZ | 0,0 | 0,3 |  |
| CCSD /aug-c-pVQZ | 0,0 |  |  |
| CCSD/Sadlej | 0,0 | 0,4 | 1,0 |

A fim de melhorar o desempenho do programa, o uso de simetria no cálculo da matriz hessiana e dos gradientes da polarizabilidade foi implementado, restringindo o cálculo de derivadas ao conjunto de átomos que não são simetricamente equivalentes. O programa PLACZEK tornou possível avaliar o desempenho de métodos e funções de base no cálculo de intensidades Raman dinâmicas de sistemas poliatômicos, mostrando que existe uma grande demanda por funções de base (aug-cc-pVTZ) e correlação eletrônica (CCSD), para o cálculo de intensidades Raman precisas[3].
[1] Vidal, L.N.; Vazquez, P.A.M. Quim. Nova, 2003, 26, 507.
[2] Helgaker, T. et al. Dalton release 1.2.1 (2001), an electronic structure program University of Oslo, Norway.
[3] Vidal, L.N.; Vazquez, P.A.M. $26^{a}$ Reunião da Soc. Bras. de Química 2003, Poços de Caldas, Brasil.

# CORRELAÇÃO ELETRÔNICA ESTÁTICA E DINÂMICA E CONVERGENCIA DE FUNÇÕES DE BASE EM PERFIS DE EXCITAÇÃO RAMIAN. 

Luciano N. Vidal ${ }^{*, 1}$ (PG), Pedro A.M. Vazquez ${ }^{1}$ (PQ).<br>Invidal@iqm.unicamp.br<br>${ }^{1}$ Instituto de Química da UNICAMP, C.P. 6154, 13084-971, Campinas, SP, Brasil. Palavra-chave: Espectroscopia Raman, Correlação Eletrônica, Teoria da Resposta Linear.

Devido ao limitado número de pacotes computacionais que permitem o cálculo de polarizabilidades em freqüências não nulas (conhecidas como polarizabilidades dinâmicas) e suas derivadas, a quantidade de trabalhos realizados sobre intensidades Raman dinâmicas, sejam ab initio ou DFT, é bastante limitado. Até as trabalhos de Vidal[1] e Neugebauer[2], efeitos de correlação eletrônica ainda não eram conhecidos para sistemas poliatômicos. Ambos autores, usando o pacote DALTON[3], que permite o cálculo de polarizabilidades dinâmicas para métodos $a b$ initio, desenvolveram programas que derivam numericamente as polarizabilidades e, a partir destes gradientes, calculam as intensidades Raman segundo a Teoria da Polarizabilidade de Placzek. Este trabalho tem por objetivo divulgar resultados de um estudo de efeitos de correlação eletrônica estática e dinâmica sobre intensidades e conseqüentemente perfis de excitação Raman de sistemas poliatômicos. Além disto, este estudo também abrange a demanda de funções de base necessária para o cálculo preciso desta propriedade.

A Tabela 1 expõe as intensidades Raman da molécula $\mathrm{H}_{2} \mathrm{O}$, calculadas e experimentais, para uma freqüência de excitação de 514 nm . Estas intensidades são medidas perpendicularmente ao feixe incidente, sem o uso de polarizadores, tendo o feixe incidente polarização ortogonal ao plano espalhador (plano formado pelos feixes incidente e espalhado). Autores da área[4] costumam usar o símbolo $S\left(\pi / 2 ; \perp^{i}, \perp^{s}+\|^{s}\right)$ para indicar este tipo de intensidade. Segundo a Tabela 1, os modelos MP2 e CC2 são tão ineficazes quanto o HF para o cálculo de intensidades Raman. Os métodos CCSD e CASSCF reproduzem muito bem os resultados experimentais quando bases contendo funções difusas são usadas. Considerando o estudo realizado por Pecul[5] para sistemas diatômicos usando o modelo CC3 e os resultados preliminares exibidos na Tabela 1, verifica-se nestes casos que o cálculo de gradientes de polarizabilidades de demanda um tratamento mais sofisticado da correlação dinâmica. A Tabela 1 também evidencia a importância da inclusão de correlação estática (CASSCF) na função de onda para descrever-se corretamente os gradientes das polarizabilidades moleculares.

Tabela 1: Intensidades Raman $S\left(\pi / 2 ; \perp^{\prime}, \perp^{s}+\|^{s}\right.$ ) (em $\AA /$ /u.m.a.) e freqüências vbracionais experimentais (expressas em $\mathrm{cm}^{-1}$ ) para $\mathrm{H}_{2} \mathrm{O}$. Excitação em 514 nm .

|  | $\mathrm{v}_{1}\left(\mathrm{a}_{1}\right) 1595$ | $\mathrm{v}_{2}\left(\mathrm{a}_{1}\right) 3657$ | $\mathrm{v}_{3}\left(\mathrm{~b}_{2}\right) 3756$ |
| :--- | :---: | :---: | :---: |
| HF/aug-cc-pVDZ | 1,33 | 92,17 | 27,77 |
| HF/aug-cc-pVTZ | 0,83 | 93,38 | 27,27 |
| HF/aug-cc-pVQZ | 0,69 | 93,48 | 26,91 |
| HF/Sadlej | 0,82 | 94,75 | 26,67 |
| MP2/aug-cc-pVDZ | 2,18 | 144,43 | 34,83 |
| MP2/aug-cc-pVTZ | 1,22 | 141,87 | 3202 |
| MP2/aug-cc-pVQZ | 0,94 | 139,50 | 30,61 |
| MP2/Sadlej | 1,12 | 157,19 | 33,60 |
| CC2/aug-cc-pVDZ | 2,29 | 149,31 | 33,61 |
| CC2/aug-cc-pVTZ | 1,25 | 150,69 | 30,97 |
| CC2/aug-cc-pVQZ | 0,96 | 151,08 | 29,97 |
| CC2/Sadlej | 1,12 | 163,96 | 32,04 |
| CCSD/aug-cc-pVDZ | 1,98 | 117,20 | 30,35 |
| CCSD aug-cc-pVTZ | 1,11 | 117,14 | 28,48 |
| CCSD /aug-cc-pVQZ | 0,88 | 11,20 | 27,48 |
| CCSD/Sadlej | 1,06 | 124,60 | 29 |
| CAS(8,8)/aug-cc-pVDZ | 1,76 | 107,99 | 28,10 |
| CAS(8,8)/aug-cc-pVTZ | 1,06 | 110,99 | 27,73 |
| CAS(8,8)/aug-cc-pVQZ | 0,85 | 111,44 | 27,19 |
| CAS(8,8)/Sadlej | 0,97 | 112,72 | 26,87 |
| Experimetnal/6] | $0,9 \pm 0,02$ | $108 \pm 14$ | $19,2 \pm 2,1$ |

Os estudos já realizados indicam que o uso de métodos sofisticados no tratamento da correlação eletrônica dinâmica (CCSD) e também que funções de onda de caráter multiconfiguracional (CASSCF) são importantes para o cálculo de intensidades Raman absolutas precisas.
[1] Vidal, L.N.; Vazquez, P.A.M. Quim. Nova, 2003, 26, 507.
2] Neugebauer, J.; Reiher, M.; Hess,B.A. J. Chem. Phys. 2002, 117, 8623.
[3] Heigaker, T. et al. Dalton release 1.2.1 (2001), an electronic structure program University of Oslo, Norway.
[4] Long, D.A. The Raman Effect, A Unified Treatment of the Theory of Raman Scattering by Molecules; John Wiley \& Sons, LTD: England, 2002.
[5] Pecul, M.; Coriani, S. Chem. Phys. Lett. 2002, 355(3-4), 327.
[6] Quinet, O.; Champagne, B. J. Chem. Phys. 2001, 115, 6293.

# THE-INFRARED VIBRATIONAL INTENSTITIES AND-POLAR TENSORS OF HFCO AND DFCO 

Harley P. Martins Fo ${ }^{1}$ (PQ), Roberto L. A. Haiduke ${ }^{2}$ (PG) and Roy E. Bruns ${ }^{2,3}$ * (PQ) bruns@iqm.unicamp.br<br>${ }^{1}$ Departamento de Quimica, Universidade Federal do Paraná, CP 19081, 81531-970 Curitiba, PR, Brazil. ${ }^{2}$ Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas, SP, Brazil. ${ }^{3}$ Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil.

Palavras-chave: Intensity sums, polar tensors, transferability
The infrared band intensities of HFCO and DFCO have been measured some time ago, but the derivation of atomic polar tensors from them has been hampered by the indeterminacy of the $B_{u}$ dipole moment derivative directions. Also, $G$-sum rule relationships indicate that the intensity sum for HFCO should be bigger than that of DFCO, whereas the measured sums have the opposite ordering ( $360.2 \pm 12.3$ and $400.1 \pm 12.0 \mathrm{~km} \mathrm{~mol}^{-1}$, respectively). The diference between these values is probably significant, indicating possible intensity inaccuracies in the individual band measurements. Since post-Hartree-Fock calculations yield band intensities with reasonable accuracy, we have used theoretical estimates to analyse the measured intensities. Polar tensors transfered from $\mathrm{H}_{2} \mathrm{CO}$ and $\mathrm{F}_{2} \mathrm{CO}$ were also used to estimate intensity sums and dipole derivative directions.

Band intensity and polar tensor calculations were carried out at the B3-LYP/cc-pVTZ, MP2(FC) $/ 6-311++G(3 d, 3 p)$ and QCISD/aug-cc-pVTZ levels using theoretically optimized equilibrium geometries. The three sets of theoretical results for band frequencies, intensities and polar tensors are in very good agreement with each other, notably MP2 and B3-LYP results. The greatest discrepancies to the experimental values appear for the intensities of the strongest bands (CO and CF stretching vibrations). Theoretical directions of the dipole moment derivatives involving oxigen and fluoro displacements are consistent with simple point charge models in which the oxigen and fluorine atoms are negatively charged while the carbon atom is positively charged. The direction of derivatives involving hydrogen displacements indicate that charge transfer to the hydrogen must occur.

The $G$ intensity sum rule relates the intensity sum of a molecule to its atomic effective charges. Applied in a comparative manner for HFCO and DFCO, it establishes that

$$
\begin{equation*}
\left(\sum A_{i}\right)_{H F C O}-\left(\sum A_{i}\right)_{D F C O} \approx 1462.4 \chi_{H}^{2} \tag{1}
\end{equation*}
$$

From this equation, the intensity sum of HFCO is expected to be larger or equal to that for DFCO, contrary to the experimental result that the HFCO intensity sum is about $40 \mathrm{~km} \mathrm{~mol}^{-1}$ less than that for DFCO. Another intensity sum rule relating intensity sums for molecules having similar atomic composition was shown empirically to work for carbonyl and thyocarbonyl halides. Applying it to HFCO, $\mathrm{H}_{2} \mathrm{CO}$ and $\mathrm{F}_{2} \mathrm{CO}$ results in the equation

$$
\begin{equation*}
2\left(\sum A_{i}\right)_{H F C O}=\left(\sum A_{i}\right)_{F_{2} \mathrm{CO}}+\left(\sum A_{i}\right)_{\mathrm{H}_{2} \mathrm{CO}} \tag{2}
\end{equation*}
$$

Using the experimental intensity sums of 205 and $852 \mathrm{~km} \mathrm{~mol}^{-1}$ for $\mathrm{H}_{2} \mathrm{CO}$ and $\mathrm{F}_{2} \mathrm{CO}$, respectively, an intensity sum for HFCO of $529 \mathrm{~km} \mathrm{~mol}^{-1}$ is estimated. This value is in reasonable agreement with the three theoretical intensity sums, while being much larger than the experimental sum ( $360.7 \mathrm{~km} \mathrm{~mol}^{-}$ ${ }^{1}$ ). An equation analogous to eq. (2) appears to be valid for the carbon mean dipole moment derivatives:

$$
\begin{equation*}
2 \bar{p}_{C}(\mathrm{HFCO})=\bar{p}_{C}\left(\mathrm{~F}_{2} \mathrm{CO}\right)+\bar{p}_{C}\left(\mathrm{H}_{2} \mathrm{CO}\right) \tag{3}
\end{equation*}
$$

By using carbon mean dipole derivatives experimentally derived for $\mathrm{H}_{2} \mathrm{CO}$ and $\mathrm{F}_{2} \mathrm{CO}$, the equation predicts a $\bar{p}_{C}(H F C O)$ value of 1.05 e , in reasonable agreement with the 1.12 to 1.13 e range of values for the theoretical results. Applying the same equation for the oxygen mean dipole derivative also results in an estimated value very close to the average theoretical value. The general agreement between results from these rules, based in experimental data from $\mathrm{H}_{2} \mathrm{CO}$ and $\mathrm{F}_{2} \mathrm{CO}$, and the

## P184

# VIBRATIONAL INFRARED INTENSITIES AND POLAR TENSORS OF 1,2-DIFLUOROETHYLENES 

Harley P. Martins Filho (PQ)<br>hpmf@quimica.ufpr.br<br>Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990 Curitiba, PR, Brazil.

Keywords: Polar tensors, transferability, difluoroethylenes
The polar tensors of the difluoroethylenes have received special attention in studies about the transferability of electrical parameters between similar molecules. A few independent determinations of the polar tensors of 1,2 -difluoroethylenes have shown that the intensities of the trans isomer may be estimated with good accuracy by using hydrogen and fluorine polar tensors transferred from the cis isomer. Recently infrared and Raman spectra for cis and trans $1,2-{ }^{13} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$ have been reported ${ }^{1}$, along with a complete reassessment of the force fields and normal modes for the ${ }^{12} \mathrm{C}$-containing difluoroethylenes assisted by quantum chemical calculations. The measured frequencies were empirically corrected for Fermi resonances and phase shifts. A major result has been the interchange of the $v_{7}$ and $v_{12}$ assignment in the trans isomer, with significant intensity redistribution. These new data prompted a new determination of the polar tensors for the difluoroethylenes and a reexamination of the transference procedures.

The polar tensors have been determined in the usual way through equation $P_{x}=\mathbf{P}_{Q} \mathbf{L}^{-1} \mathbf{U B}$ $+P_{p} \beta$. We have used the $\mathrm{L}^{-1}$ matrices reported by Craig et al. ${ }^{1}$ and the TPOLAR program for computation of matrices $\mathbf{U}, \mathrm{B}, \mathbf{P}_{\mathrm{\rho}}$ and $\beta$. The $\mathrm{L}^{-1}$ matrices were based in a molecular geometry estimated at B3-LYP/6-311++G** level and thus the same geometry was used in determining $\mathbf{B}$ and $\beta$ matrices. The signs and directions of the dipole moment derivatives comprising the $P_{Q}$ matrix were chosen to be the same as those of the $\mathbf{P}_{\mathrm{Q}}$ matrix obtained theoretically by taking the $\mathbf{P}_{\mathrm{x}}$ matrix estimated at B3-LYP/6-311++G** level and multiplying it by the matrix AU $^{-1} \mathrm{~L}$ from TPOLAR. The $\mathbf{P}_{\mathrm{x}}$ matrix is the juxtaposition of the atomic polar tensors estimated at B3-LYP/6-311++G** level reported by Craig et al. ${ }^{1}$.

In order to verify the isotopic invariance of the new set of polar tensors, we have calculated root mean square errors for the tensor elements from each pair of related molecules (trans 1,2$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2} /$ trans $1,2-\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{~F}_{2}$ and cis $1,2-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2} /$ cis $1,2-\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{~F}_{2}$ ). The values for the cis isomers are (units of e): 0.0018 ( $\mathrm{B}_{1}$ symmetry), 0.0304 ( $\mathrm{B}_{2}$ symmetry) and 0.0235 ( $\mathrm{A}_{1}$ symmetry). For the trans isomers: 0.0133 ( $\mathrm{B}_{\mathrm{u}}$ symmetry) and 0.0174 ( $\mathrm{A}_{u}$ symmetry). These values are significantly lower than those corresponding to previously reported polar tensors, which shows that the new tensors fit the invariance criterion better. Also, the infrared intensities of trans $1,2-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$ were estimated through the new polar tensors of the cis isomer, resulting in better estimates than the earlier ones ${ }^{2}$ (See Table 1). The new estimates for $v_{7}$ and $v_{12}$ intensities reinforce the new band assignment, while the equal values of the earlier estimates ( $9.1 \mathrm{~km} \mathrm{~mol}^{-1}$ ) do not discriminate the bands. Besides the new band assignment, the new spectra data from Craig et al. ${ }^{1}$ are "harmonically corrected", which suggests that the accuracy of estimates by transference may be conditioned to the effectiveness of the harmonic approximation. (CNPq)

[^19]Table 1. Comparison of observed and estimated band intensities of trans $1,2-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$.

| Symm. | i | Obs. $^{2}$ | Calc. $^{2}$ | This work |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{\mathrm{u}}$ | 6 | 56.7 | 40.0 | 47.8 |
|  | 7 | 1.5 | 9.1 | 2.7 |
| $\mathrm{~B}_{\mathrm{u}}$ | 9 | 9.5 | 9.9 | 12.5 |
|  | 10 | 14.7 | 6.0 | 9.9 |
|  | 11 | 217.7 | 205.1 | 217.3 |
|  | 12 | 12.7 | 9.1 | 12.0 |

# FUNÇÕES DE ONDA GVB ALĖM DA APROXIMAÇAOO DE EMPARELHAMENTO PERFEITO: IMPLEMENTAÇÃO COMPUTACIONAL E APLICAÇÕES 

André Gustavo Horta Barbosa(PQ) ${ }^{1 *}$, Marco Antônio Chaer Nascimento (PQ) ${ }^{2}$ andré@vm.uff.br<br>${ }^{1}$ Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói-RJ 24020-150, Brasil<br>${ }^{2}$ Instituto de Química, Departamento de Físico-Química, Universidade Federal do Rio de Janeiro Palavras Chave: GVB, Simetria Permutacional, Implementação Computacional

Em uma série de trabalhos recentes, demonstramos que métodos baseados em Teoria dos Orbitais Moleculares (MO) são, em geral, incapazes de tratar de forma matematicamente correta a indistinguibilidade dos elétrons. A ocorrência freqüente de instabilidade Hartree-Fock e a indeterminação intrínseca dos orbitais moleculares associados a funções de onda MO monoconfiguracionais, são manifestações da falta de simetria permutacional implícita em sua forma analítica (ansatz). Embora seja possível, através de cálculos MO criteriosamente executados, obter valores aceitáveis para um grande número de propriedades observáveis, os conceitos clássicos de "estrutura química", e de ligações químicas, não podem ser emulados de forma não ambígua por este tipo de função de onda.

Funções de onda GVB (Generalized Valence Bond) são capazes de tratar de forma matematicamente correta a indistinguibilidade dos elétrons, com a vantagem adicional de emular de forma precisa o conceito clássico de estrutura química. Entretanto, nos pacotes computacionais existentes, esta função de onda só esta presente na sua aproximação mais simples GVB-PP, onde se impõe a restrição de emparelhamento perfeito para cada par de elétrons. Embora esta aproximação seja útil no tratamento de vários sistemas moleculares, ela é incapaz de tratar algumas situações importantes, como dissociação de ligações múltiplas, quebra de simetria e ligações químicas envolvendo mais de 2 elétrons.

Neste trabalho discutimos as características de funções de onda GVB mais gerais e sua relação com a Teoria da Ligação Química. Apresentamos também, uma implementação computacional de uma forma de função de onda GVB, que permite o tratamento eficiente de sistemas de maior complexidade e dimensão. Isto é possível através de uma nova técnica de "endereçamento canônico" (canonical addressing) de elementos de matriz do hamiltoniano GVB. Através desta nova técnica, cálculos GVB com os vários acoplamentos de spin tratados variacionalmente foram realizados para sistemas com até 22 elétrons ativos com resultados numéricos superiores a cálculos CASSCF (Complete Active Self-Consistent Field), com menos esforço computacional. Sistemas teste investigados incluem a molécula de $N_{2}$ (10 elétrons ativos), radical alila ( 17 elétrons ativos), e butadieno ( 22 elétrons ativos). A função de onda obtida além de possuir energia significativamente menor que a obtida no método Hartree-Fock, apresenta simetria permutacional correta e emula automaticamente o conceito clássico e de estrutura química.
(CNPq, FAPERJ, Instituto de Milênio de Materiais Complexos)

# ESTUDOS TEÓRICOS SOBRE ESTRUTURA E REATIVIDADE dE CARBÂNIONS 

André Gustavo Horta Barbosa(PQ)<br>andré@ vm.uff.br<br>Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, NiteróiRJ 24020-150<br>Palavras-chave: Carbânions, GVB, OPCP

Neste trabalho são apresentados cálculos ab initio em nível GVB (Generalized Valence Bond) de estrutura química de carbânions. Através destes cálculos podemos diferenciar três tipos gerais de carbânions. Carbânions $s p^{3}$, nos quais a carga está concentrada em um átomo de carbono tetracoordenado em geometria aproximadamente tetraédrica com 3 ligantes e um par de elétrons (cada orbital contém 1 elétron). Este tipo é altamente reativo e instável em relação à molécula neutra correspondente.


O segundo tipo é formado por carbânions alílicos $\mathrm{sp}^{2}$, que são especialmente estáveis devido ao alívio de repulsões eletrostáticas causado pela geometria planar dos centros de carga. A função de onda GVB para este tipo de carbânion não apresenta conjugação entre os elétrons "pi" e do par livre, mostrando a formação de duas ligações "pi" adjacentes e não conjugadas (3 centros e 4 elétrons),

onde $R^{\prime}$ e $R^{\prime \prime}$ são radicais alquila e/ou hidrogênios. Este modelo orbital, que é intrinsecamente mais acurado que qualquer um baseado em orbitais moleculares, é consistente com o comportamento destes sistemas em reações concertadas. A aplicação do "Princípio da Continuidade de Fase de Orbitais" (OPCP), (que inclui as regras de Woodward-Hoffman como casos limite na presença de simetria molecular) com estes orbitais GVB, indicando que a cicloadição concertada de carbânions alílicos à ligações duplas é favorecida na orientação suprafacial.

O terceiro tipo é formado pelos enolatos, os quais, em teoria "VB clássica" têm a sua maior estabilidade em relação aos outros tipos explicada admitindo-se ressonância entre duas estruturas:


Apesar da estrutura com oxigênio negativamente carregado parecer "intuitivamente" mais razoável, sabe-se que os enolatos reagem através de adição eletrofilica ao carbono. Cálculos GVB em sistemas onde $\mathrm{R}^{\prime}$ e $\mathrm{R}^{\prime \prime}$ são radicais alquila e/ou hidrogênios, concentram a carga negativa no átomo de carbono (estrutura da esquerda), eliminando a necessidade de sobreposição com uma estrutura que contenha o oxigênio negativamente carregado (estrutura da direita).

Para finalizar, vale ressaltar que funções de onda GVB para sistemas carbaniônicos são inéditas na literatura. A partir destes modelos podemos não só racionalizar resultados conhecidos da química de carbânions, como também com mais estudos, prever qualitativamente aspectos ainda desconhecidos sobre a reatividade destes compostos.

## MECANISMO DE REAÇÃO PARA A FLUORAÇÃO DO METANOL UTILIZANDO DIETILAMINO ENXOFRE TRIFLUORETO (DAST)

Leonardo Baptista (PG)*, Glauco F. Bauerfeldt (PQ), Edílson C. da Silva (PQ), Graciela Arbilla (PQ).

baptista @ iq.ufrj.
Departamento de Físico-Química, Instituto de Química da UFRJ
Palavras-chave: DAST, fluoração, ab initio
Os fluoretos orgânicos apresentam um variado leque de funções, desde os mais diversos tipos de fármacos até moléculas intermediárias em síntese orgânica. O reagente mais comum utilizado para inserir o fluoreto em moléculas orgânicas é o dietilamino enxofre trifluoreto (DAST). O fato de não existir estudos teóricos detalhados sobre esta molécula e do mecanismo pelo qual acontece a substituição de uma hidroxila pelo flúor, nos levou a investigar este problema.



Foi realizado o estudo teórico do mecanismo de fluoração de uma molécula de metanol (esquema 1). Foi realizado em níveis RHF, B3LYP e B3PW91, todos com base 631G**. Esquema 1: Mecanismo da fluoração do metanolNa primeira etapa de reação é formado um intermediário com eliminação de HF. A barreira de energia calculada para esta etapa é de $27 \mathrm{kcal} / \mathrm{mol}$, em nível DFT, e de $59,75 \mathrm{kcal} / \mathrm{mol}$ em nível RHF. O esquema 2 mostra as estruturas obtidas utilizando o funcional B3LYP e os parâmetros termodinâmicos para a primeira etapa da reação


Esquema 2: Estudo da primeira etapa da reação de fluoração utilizando B3LYP. Energia em kcal/mol

Pretende-se ainda estudar os parâmetros cinéticos da primeira etapa, estudar a termodinâmica e a cinética da segunda etapa, construir a superfície de energia potencial para as duas etapas e o estudo detalhado dos intermediários presentes no mecanismo. Agradecimentos: Ao CNPQ pela bolsa de mestrado e ao professor Adilson David da Silva, do Departamento de Química da UFRJ pelo apoio dado ao trabalho.

# ESTUDO AB INITIO CORRELACIONADO DA SUPERFÍCIE DE ENERGIA POTENCIAL DO COMPLEXO HOBr. $\mathrm{H}_{2} \mathrm{O}$ 

Cristina Maria P. Santos ${ }^{1}(P Q)$, Roberto B. Faria ${ }^{1}(P Q)$, Sérgio P. Machado ${ }^{1}(P Q)$,<br>Wagner B. De Almeida ${ }^{2}$ (PQ)<br>cmsantos@iq.ufrj.br<br>${ }^{1}$ Laboratório de Química Inorgânica Computacional, Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Caixa Postal 68563, Rio de Janeiro, RJ, 1945-970, Brasil<br>${ }^{2}$ Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brasil<br>Palavras-chave: ab initio, superfície de energia potencial, $\mathrm{HOBr} . \mathrm{H}_{2} \mathrm{O}$

A superfície de energia potencial (PES) do complexo HOBr. $\mathrm{H}_{2} \mathrm{O}$ foi estudada através dos métodos ab initio "coupled cluster" com excitações simples e dupla (CCSD) e teoria de perturbação de "Mфller-Plesset" de segunda e quarta ordem (MP2, MP4). Nos cálculos, foram empregadas funções de base de qualidade "triple-zeta", com funções de polarização e difusas (6$311++G(3 d f, 3 \mathrm{pd}))$. Seis pontos estacionários foram localizados, sendo três estruturas de mínimo e três correspondentes a estados de transição de primeira ordem. Das estruturas de equilibrio relativas a um mínimo global, duas são confôrmeros, estando os hidrogênios da água em posições syn e anti em relação ao bromo, e apresentam virtual degenerescência ( $\Delta \mathrm{E}=0,3 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ ). A diferença entre as estruturas syn e a do terceiro mínimo é da ordem de $4 \mathrm{kcal} \mathrm{mol}^{-1}$.


Figura: Estruturas syn e anti, respectivamente, do complexo $\mathrm{HOBr}_{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}$ (Bromo •, Oxigênio •, Hidrogênio :)
A conectividade entre os estados de transição foi confirmada através da análise de IRC. A barreira de interconversão syn $\Leftrightarrow$ anti foi de $0,3 \mathrm{kcal} \mathrm{mol}^{-1}$, indicando a existência de uma mistura das duas formas syn e anti do complexo $\mathrm{HOBr} . \mathrm{H}_{2} \mathrm{O}$. Os erros devidos à superposição de bases (BSSE) também foram determinados através de cálculos de energia de ponto único, tendo como base a estrutura otimizada pelo método MP2/6-311G(d,p). O emprego da base $6-311++G(3 d f, 3 p d)$ mostrou convergência quanto aos valores de energia de ligação, estando os valores de BSSE em aproximadamente $1 \mathrm{kcal} \mathrm{mol}^{-1}$, o que corresponde a $15 \%$ da energia de estabilização em todos os cálculos "Post-Hartree-Fock" (Ver Tabela ). (CNPq, FAPEMIG, FAPERJ, FUJB).

Tabela. Valores $A b$ initio de energia de ligação ( $\Delta E_{\text {ele-nuc }}^{\text {gas }}$, em $\mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ ), em fase gasosa e no vácuo, e os respectivos valores BSSE de correção ( $\Delta E_{\text {elc-nuc }}^{\text {BSSE }}$,em kcal $\mathrm{mol}^{-1}$ ).

| Bases | 6-311G (d,p) |  | 6-311++G (d, p) |  | 6-311++G (2d,2p) |  | 6-311++G (2df,2pd) |  | 6-311++G (3df,3pd) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Estrutura syn | $\Delta E_{\text {ele-ntu }}^{\text {gas }}$ | $\triangle E_{\text {cle-nuc }}^{\text {BSSE }}$ | $\Delta E_{\text {clc }}^{\mathrm{gas}} \mathrm{nuc}$ | $\triangle E_{\text {ele }- \text { mue }}^{\text {DSSE }}$ | $\Delta E_{\text {rim-muc }}^{\text {gas }}$ | $\triangle E_{\text {elentue }}^{\text {BSSE }}$ | $\Delta E_{\text {rim }}^{\text {gas }}$ guc | $\Delta E_{\text {cle } n u m}^{\text {asse }}$ | $\Delta E_{\text {rle }}^{\text {sasuc }}$ | $\Delta E_{\text {cheneme }}^{\text {BSSE }}$ |
| MP2 | -7,1 | 3,6 | -8,0 | 2,3 | -7,6 | 1,4 | -7,8 | 1,3 | -7,8 | 1,2 |
| MP4(SDQ) | -9,2 | 3,3 | -7,6 | 2,1 | -7,1 | 1,3 | -7,3 | 1,2 | -7,3 | 1,1 |
| $\begin{aligned} & \text { MP4(SDTQ } \\ & \hline \end{aligned}$ | $-9,7$ | 3,6 | -8,0 | 2.4 | -7,6 | 1,4 | -7,8 | 1,4 | -7,8 | 1,2 |
| CCSD | -9,1 | 3,3 | -7,6 | 2,1 | -7,2 | 1,2 | -7,3 | 1,2 | -7,3 | 1,0 |
| $\operatorname{ccsD}(\mathrm{T})$ | -9,5 | 3,5 | -8,0 | 2,3 | -7,6 | 1.4 | -7,8 | 1,3 | -7,8 | 1,1 |

# UMA NOVA ESCALA DE ANFIPATIA EMM MEIO AQUOSO: UM ESTUDO POR SIMULAÇÃO MOLECULAR 

Fernanda M. Mazzé ${ }^{1}(P G)$, Léo Degrève ${ }^{2}$ (PQ)<br>femazze@yahoo.com<br>${ }^{1,2}$ Grupo de Simulação Molecular, Depto. de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. dos Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brasil.

Palavras-chave: escala de anfipatia, energia configuracional e simulação molecular


#### Abstract

Quase tudo que ocorre nas células envolve uma ou mais proteínas. Elas são as macromoléculas biológicas mais abundantes. Também são extremamente versáteis em sua função. As proteinas são constituídas por subunidades monoméricas relativamente simples, os aminoácidos, que em número de vinte, ligados covalentemente em seqüências lineares características, formam todas as proteínas. O mais notável é que as células podem produzir milhares de proteínas com propriedades e atividades extremamente diferentes pela reunião dos mesmos vinte aminoácidos em muitas combinações e seqüências diversas. A individualidade de cada proteína é promovida pela sua estrutura nativa, fornecendo condições tridimensionais ideais para que uma determinada proteína possa desenvolver perfeitamente sua função. Deste modo, fica evidente que estrutura e função de proteínas são intimamente relacionadas. O enovelamento de proteínas em ambiente aquoso tem sido foco de muitas pesquisas porque a água é o solvente natural, ou seja, a vasta maioria das interações moleculares em sistemas biológicos ocorre em ambiente aquoso. À luz da observação geral de que o interior das proteínas solúveis em água é predominantemente composto por aminoácidos hidrofóbicos enquanto que as cadeias laterais hidrofilicas estão na parte externa solvatada e, portanto, que a estrutura é estabilizada pela água, deu-se início ao trabalho de correlação entre a estrutura das proteínas e os aminoácidos que as compõem. Analisando as diferentes escalas de anfipatia, ou seja, escalas que indicam a hidrofobicidade dos aminoácidos, observa-se que a hidrofobicidade de um resíduo está diretamente relacionada com a metodologia empregada em tal determinação, não havendo consenso. Com o objetivo de desenvolver, em meio realista, uma escala de anfipatia que leve o menos possível fatores arbitrários em consideração como, por exemplo, a natureza do solvente, ou que leve em conta apenas métodos estatisticos, este trabalho se propõe a elaborar uma nova escala de anfipatia que determina a ordem de hidrofobicidade dos aminoácidos em água por simulação molecular. Sistemas constituídos por peptídeos formados por aa, Gly-aa-Gly e Gly-Gly-aa-Gly-Gly (aa refere-se a todos os aminoácidos) e moléculas de água SPC/E na concentração de $\sim 54 \mathrm{~mol} / \mathrm{L}$, à 298 K e $\mathrm{pH}=7$ foram submetidos a simulações por dinâmica molecular no ensemble NVT. O intervalo de integração utilizado foi de $1.5 f s$. As análises foram baseadas nas energias configuracionais dos diferentes peptídeo-água. As energias configuracionais obtidas podem ser divididas em duas partes: a do esqueleto peptídico e a da cadeia lateral de aa. Os resultados indicam que a energia do esqueleto peptídico, considerando peptídeos com mesmo número de resíduos, permanece praticamente constante, independentemente da natureza da cadeia lateral de aa. Já os valores da energia da cadeia lateral são praticamente constantes para um mesmo aa nos peptídeos com diferentes números de resíduos. A fim de verificar a real exeqüibilidade em se estabelecer uma escala de anfipatia utilizando a energia configuracional é ainda necessário comparar os resultados obtidos neste trabalho com escalas de anfipatia já existentes. As correlações indicam que, freqüentemente, as energias configuracionais obtidas via simulação molecular concordam com a literatura mas que as escalas de anfipatia não devem ser tratadas como absolutas: os valores de hidrofobicidade dos aminoácidos são apenas reflexos das metodologias usadas e do ambiente onde a medida foi realizada. A escala de anfipatia aqui proposta tem valores que variam de 0 , no caso da glicina que foi utilizada como aminoácido padrão, até 100 , para o glutamato. A importância em se ter uma boa escala de anfipatia está diretamente relacionada com a determinação e o entendimento da estrutura de proteínas e suas relações estrutura-atividade. (FAPESP, CNPq)


# ANFIPATIA EM MEIO APOLAR 

Ferinanưa mi minzeé (PG), Léo Değrèvé (PQ)<br>femazze@yahoo.com<br>${ }^{1,2}$ Grupo de Simulação Molecular, Depto. de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. dos Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brasil.<br>Palavras-chave: dinâmica molecular, efeito hidrofóbico e aminoácidos em meio apolar

As proteínas desempenham quase todas as funções catalíticas e estruturais nas células. As funções das proteínas estão intimamente ligadas às suas estruturas nativas, tendo em vista que uma proteína desnaturada perde completamente a sua atividade biológica. Um dos problemas mais persistentes na química das proteínas tem sido compreender as várias forças envolvidas no processo de enovelamento das proteínas que originam sua conformação. Atualmente, o efeito hidrofóbico é considerado o fator mais importante para o entendimento da estabilidade tridimensional das proteínas. O efeito hidrofóbico refere-se ao fenômeno associado com a solvatação de solutos hidrofóbicos em água. Esta hidratação de solutos apolares resulta no aumento da ordem estrutural das águas nos arredores do soluto e na associação das moléculas de soluto mediadas pela força do solvente. Freqüentemente, a estrutura nativa das proteínas arranja-se de modo que as cadeias laterais hidrofílicas tenham acesso ao solvente aquoso enquanto que, ao mesmo tempo, é minimizado o contato entre as cadeias laterais hidrofóbicas e a água. Recentemente, contudo, tem sido noticiado que há importantes desvios destas expectativas, sugerindo que o acomodamento das cadeias laterais dependa não somente da sua hidrofobicidade mas também de efeitos estéricos entre as estruturas secundárias na região interna das proteínas. Visando uma melhor compreensão da hidrofobicidade dos aminoácidos associada aos efeitos estéricos, foram realizados estudos por simulação molecular de pequenos peptídeos em tetracloreto de carbono. Este solvente foi utilizado a fim de mimetizar o interior hidrofóbico das proteínas globulares e a região interna de membranas. O modelo utilizado nas simulações por dinâmica molecular no ensemble NVT foi aa, Gly-aa-Gly e Gly-Gly-aa-Gly-Gly, onde aa refere-se aos vinte aminoácidos essenciais, sendo a glicina usada como resíduo de referência. As análises realizadas para esses peptídeos foram baseadas nas suas energias configuracionais. Os resultados obtidos indicam que as energias configuracionais das cadeias laterais dos aminoácidos estão relacionadas ao número de átomos constituintes de tais cadeias. Por exemplo, a valina (resíduo tipicamente apolar) possui energia configuracional menos atrativa com as moléculas de tetracloreto de carbono do que a glutamina (resíduo polar). Essas observações podem ser explicadas porque a valina tem apenas três átomos explícitos constituintes da sua cadeia lateral, enquanto que a glutamina apresenta sete átomos. Considerando todos os aminoácidos, a correlação entre as energias configuracionais de suas cadeias laterais e o número de átomos destas cadeias foi de 0,95 . Deste modo, pode-se concluir que a região hidrofóbica habitada por determinados resíduos dependa não somente da natureza química de tal cadeia, mas também do volume ocupado por ela. (FAPESP, CNPq)

# DINÃMICA E SOLVATAÇÃO DE ENCEFALINAS EM SOLUÇÃO AQUOSA. 

Davi S. Vieira (PG), Léo Degrève( PQ )<br>davisv@usp.br<br>Grupo de Simulação Molecular, Departamento. de Química<br>Faculdade de Filosofia Ciências e Letras de Ribeirão Preto.<br>Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brasil.<br>Palavras chave: encefalinas, atividade analgésica, dinâmica molecular

O termo encefalina é usado para denominar uma mistura de dois pentapeptídeos isolados do cérebro de mamíferos, a metionia-encefalina (Tyr-Gly-Gly-Phe-Met )e a leucinaencefalina (Tyr-Gly-Gly-Phe-Leu). Estes peptídeos são neurotransmissores que, ao se ligar à sítios estereoespecíficos de receptores opióides no cérebro, atuam no mecanismo de analgesia. Modificações na estrutura das encefalinas têm sido realizadas com a finalidade se obter análogos de maior potência. Um dos análogos de maior potência é a $2^{\prime}, 6^{\prime}$ dimetil-tirosina encefalina (dmt-encefalina), obtida via metilação nas posições 2 e 6 do anel aromático da tirosina. O objetivo do trabalho é estudar, de uma forma comparativa, as propriedades dinâmicas, estruturais e energéticas das encefalinas naturais (leucina-encefalina e metioninaencefalina) e da dmt-encefalina visando um melhor entendimento dos fatores relacionados com as suas diferentes atividades. Os sistemas constituídos de uma molécula de encefalinas e de moléculas de água $\mathrm{SPC} / \mathrm{E}$ à 298 K em pH fisiológico foram submetidos à simulação de dinâmica molecular no ensemble NVT. Os peptídeos e as moléculas de água foram modelados pelo campo de força GROMOS96. As análises foram feitas utilizando funções de distribuição radial (FDR), perfis das energias configuracionais átomo do peptídeo-solvente ( para detectar as ligações de hidrogênio intermoleculares), distâncias entre átomos do peptídeo, o que nos permite estudar as mudanças conformacionais ao longo do tempo, e o desvio quadrático médio (RMSD) para avaliar a estabilidade das estruturas geradas. Dos perfis das distribuições de energias e das FDR's observa-se que as propriedades estruturais e energéticas de solvatação das encefalinas são muito semelhantes, com exceção das da cadeia lateral do primeiro resíduo onde há uma maior hidrofobicidade no caso da dmt-encefalina. As propriedades dinâmicas investigadas pelo monitoramento do RMSD e das distâncias interatômicas também se mostraram muito semelhantes e características de moléculas flexiveis porém as movimentações dos anéis aromáticos são diferentes. A principal diferença se deve aos grupos metila ligados ao anel aromático do resíduo 2',6'dimetil-tirosina. Estes grupos conferem uma maior restrição na movimentação da cadeia lateral quando comparada com a das encefalinas naturais. A presença de restrições na movimentação dos anéis aromáticos, principalmente no primeiro resíduo, tem sido apontada como um dos principais fatores responsáveis pelo aumento da atividade em vários análogos. (FAPESP, CNPq).

# INFLUÊNCIA DO SOLVENTE NA ESTRUTURA SECUNDÁRIA da gramicidina a, uni estudo via simulação por DINÂMICA MOLECULAR 

Davi S. Vieira (PG ), Léo Degrève( PQ )<br>davisv@usp.br<br>Grupo de Simulação Molecular, Departamento. de Química Faculdade de Filosofia Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brasil. Palavras-chave: gramicidina $A$, estrutura secundária, dinâmica molecular

A gramicidina $A(G A)$ é um peptídeo hidrofóbico, produzido pela bactéria Bacillus brevis, constituído de 15 resíduos de aminoácidos alternando configurações Le e D, que confere a GA uma estrutura secundária denominada hélice- $\beta$. Em meio fosfolipídico a GA se dimeriza via aproximação dos grupos N -terminais (estrutura cabeça com cabeça). Na forma dimérica a GA atua como um canal iônico, apresentando atividade antibiótica contra bactérias Grampositivas. O dímero de GA tem sido extensivamente estudado como um modelo para canais iônicos em muitos estudos teóricos e experimentais. A sua atividade biológica que está intimamente relacionada com a sua estrutura, deve ser influenciada por diferentes fatores, tais como a natureza do solvente. Vários modelos têm sido sugeridos para a estrutura da GA em diferentes solventes. Com o intuito de investigar a influência do solvente na estabilidade estrutural e conseqüentemente na relação estrutura atividade, o monômero e o dímero de GA foram estudados por simulação de dinâmica molecular nos meios aquoso e tetracloreto de carbono ( $\mathrm{CCl}_{4}$ ). Sistemas constituídos pelo monômero ou dímero de GA, moléculas de água $\mathrm{SPC} / \mathrm{E}$ ou moléculas de $\mathrm{CCl}_{4}$ em pH fisiológico e 298 K foram submetidos à simulações de dinâmica molecular no ensemble NVT. Os sistemas foram modelados pelo campo de força GROMOS96. As ligações de hidrogênio intramoleculares foram monitoradas usando o critério geométrico. As características estruturais responsáveis pela atividade biológica da GA: cadeias laterais orientadas para o exterior, grupos polares da cadeia principal (carbonilas e aminas) orientados para o centro do canal de modo a formar uma rede de ligações de hidrogênio intramoleculares, que estabiliza a estrutura hélice- $\beta$ da GA, parecem ser conservadas em $\mathrm{CCl}_{4}$. Em solução aquosa a GA perde rapidamente estas características, levando a desnaturação. A solução aquosa favorece a desnaturação da GA, pois os grupos polares inicialmente presentes no centro do canal tendem a ficar expostos ao solvente para formar ligações de hidrogênio intermoleculares e as cadeias laterais hidrofóbicas tendem a ficar próximas umas das outras para minimizar o contato com o solvente. Portanto, a polaridade do solvente é um fator importante para a estabilidade da estrutura secundária do peptídeo, logo o $\mathrm{CCl}_{4}$ mostrou-se um bom solvente para imitar a hidrofobicidade do ambiente de membranas.(FAPESP, CNPq).

# CÁLCULO TEÓRICO DAROTAÇÃO ÓTICA DE monossacarídeos 

Flávio Bittencourt da Cruz ${ }^{1}$ (IC), Benedetta Mennucci ${ }^{2}$ (PQ) e Clarissa O. da Silva* ${ }^{1}$ (PQ)<br>clarissa-dq@ufrj.br<br>${ }^{1}$. Departamento de Química - Universidade Federal RURAL do Rio de Janeiro, Rodovia BR 465 km 47, Seropédica, RJ, BRASIL.CEP 23890-000. Tel. $+55-21-2682-2807$.<br>${ }^{2}$.Dipartimento di Chimica e Chimica Industriale - Università degli Studi di Pisa, via Risorgimento 35, Pisa, Itália. 56126<br>Palavras-chave: rotação ótica, monossacarídeos, cálculos ab initio

O objetivo deste trabalho consiste na obtenção de uma metodologia ab initio para a determinação da rotação ótica de monossacarídeos de 6 membros em solução aquosa, a ser futuramente utilizada na validação de mapas conformacionais de carboidratos. Primeiramente, foram obtidas as energias e populações em solução aquosa para os 6 confôrmeros $\alpha$ e os 3 confôrmeros $\beta$ da manose ${ }^{1}$, e para os 3 confôrmeros $\alpha$ e os 5 confôrmeros $\beta$ da glicose ${ }^{1,2}$, que constam na literatura como sendo aqueles mais abundantes, através de uma descrição B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d,p). As geometrias utilizadas nesta etapa do trabalho foram obtidas a partir de dados de literatura ${ }^{1,2}$. Tais confôrmeros diferem entre si pela posição da hidroxila do carbono anomérico (axial $\alpha$ ou equatorial $\beta$ ), e pela orientação do grupo metilênico do carbono 6 em relação ao átomo de oxigênio do anel (GG ( $\approx-60^{\circ}$ ), GT $\left(\approx 60^{\circ}\right.$ ) e $T G\left(\approx 180^{\circ}\right)$ ). A diferença estrutural entre a manose e a glicose se deve à posição axial ocupada pela hidroxila do C2 do anel na manose, enquanto que na glicose todas as hidroxilas dos átomos de carbono (C2-C4) ocupam posições equatoriais. O valor da rotação ótica ${ }^{3}$ para cada confôrmero foi calculado em nível ab initio B3LYP/aug-cc-pVDZ/B3LYP/6-31G(d,p). As respectivas populações obtidas foram utilizadas como pesos numa média ponderada para a obtenção do valor teórico da rotação ótica. Os resultados preliminares, que são para a manose de $+32,56^{\circ}$ e para a glicose de $+62,56^{\circ}$ quando comparados com os respectivos valores experimentais de $+14,20^{\circ}$ e $+52,7^{\circ}$ demonstram-se satisfatórios, porém nos fazem acreditar que o conjunto de confôrmeros obtidos para a manose merece ulterior investigação. Investigase também, paralelamente, a utilização de metodologia ONIOM no cálculo desta propriedade, o que poderá proporcionar a identifição das contribuições relativas de cada centro quiral no valor total da rotação ótica destes sistemas. (CNPq).

$\alpha$-manose (GG)

$\square$-glicose (GT)

[^20]
## P194

# CARACTERIZAÇÃO DA ESTRUTURA DA GOMESINA EM MEIO AQUOSO POR SIMULAÇÃO MOLECULAR 

Carlos Alessandro Fuzo ${ }^{1}$ (IC), Léo Degrève ${ }^{1}(\mathrm{PQ})$<br>cfuzo@bol.com.br<br>${ }^{1}$ Grupo de Simulação Molecular, Depto. Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirāo Preto, SP, Brasil.

Palavras-chave: peptídeos antimicrobianos, simulação molecular, gomesina
A gomesina é um peptídeo antimicrobiano constituinte do sistema imune da aranha Acanthoscurria gomesiana. Esse peptídeo, formado por 18 resíduos de aminoácidos, é catiônico apresentando seis resíduos carregados positivamente, uma lisina e cinco argininas. Ele possui quatro resíduos de cisteína envolvidos em duas pontes dissulfeto. Sua estrutura tridimensional, determinada por RMN, é do tipo $\beta$-hairpin com duas cadeias antiparalelas ligadas pelas duas pontes dissulfeto. Há muito interesse na sua utilização como fármaco devido ao seu alto poder antimicrobiano. No entanto, seu mecanismo de ação ainda não está bem elucidado. Dessa forma, torna-se necessário analisar a estrutura e a estabilidade estrutural desse peptídeo em meio aquoso porque a água é o seu meio de atuação. A finalidade é ter artefatos para a construção de análogos mais potentes, específicos e estáveis nesse meio. O trabalho aqui descrito apresenta um estudo de simulação molecular sobre a hidratação, estabilidade e os fatores que promovem a estabilidade estrutural da gomesina no meio aquoso. Os métodos de simulação molecular são bastante úteis para os objetivos propostos neste trabalho pois os métodos experimentais não possibilitam uma verificação da estruturação molecular no nível que tal proposta possa ser conduzida.

A simulação foi realizada no ensemble NVT com sistema de simulação constituído por uma molécula de gomesina, 6776 moléculas de água e íons para preservar a eletro-neutralidade, tal como ocorre naturalmente em sistemas biológicos. A estabilidade estrutural foi caracterizada pelos desvios quadráticos médios da posição dos átomos $N, C$ e $C \alpha$ da cadeia principal no decorrer da simulação em relação à estrutura de RMN. As ligações de hidrogênio intramoleculares foram determinadas utilizando as distribuições de distância entre pares de átomos do peptídeo. A hidratação do peptídeo foi caracterizada pelas funções de distribuição radial e distribuições de energia, ambas entre pares de átomos peptídeo-água. Os desvios quadráticos médios para os resíduos 2-7 e 11-16, que formam a folha $\beta$, encontraram-se em torno de $2 \AA$ mostrando que a região da folha $\beta$ é estável. Identificaram-se ligações de hidrogênio intramoleculares somente entre átomos da cadeia principal. Foram detectadas sete ligações de hidrogênio intramoleculares sendo que seis delas ocorreram entre as cadeias antiparalelas que formam a folha $\beta$. A solvatação da cadeia principal se faz principalmente pelos átomos $C O$ uma vez que eles podem formar ligações inter e intramoleculares simultaneamente. Todas as partes polares das cadeias laterais encontraram-se hidratadas revelando uma alta exposição do peptídeo ao meio aquoso. As distâncias dos átomos do peptídeo até as moléculas de água de hidratação estavam de acordo com resultados experimentais sobre a estrutura cristalina de proteínas e com simulações moleculares de outras proteínas.

Portanto, o trabalho mostra que é possível reproduzir resultados experimentais utilizando as técnicas de simulação molecular e, mais importante, obter os parâmetros que não podem ser calculados experimentalmente. A gomesina é bastante estável na região da folha $\beta$ sendo que tal estabilidade é proporcionada pelas duas pontes dissulfeto e pelas seis ligações de hidrogênio intramoleculares entre as cadeias antiparalelas. As ligações de hidrogênio intermoleculares, água-água e peptídeo-água, também ajudam a manter a integridade estrutural do peptídeo e, dessa forma, tais moléculas de água também fazem parte da estrutura ativa do peptídeo. (CNPq e FAPESP)

# TESTE DE UMA NOVA ESCALA DE ANFIPATIA FORMULADA POR SIMULAÇÃO MOLECULAR 

Carlos Alessandro Fuzo ${ }^{1}$ (IC), Fernanda Marur Mazzé (PG) ${ }^{1}$, Léo Degrève ${ }^{1}$ (PQ) cfuzo@bol.com.br<br>${ }^{1}$ Grupo de Simulação Molecular, Depto. Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brasil. http://obelix.ffclrp.usp.br

Palavras-chave: escala de anfipatia, aplicação em proteínas, simulação molecular
Atualmente o grande interesse dos estudos da química de proteínas é desvendar qual será o tipo de enovelamento (estrutura nativa) a partir de uma dada sequência de aminoácidos. Tendo em vista o avanço no sequenciamento do código genético pelo projeto Genoma é de suma relevância obter ferramentas que proporcionem, a partir de simples análises da constituição e seqüência de aminoácidos de uma proteína, a predição da estrutura protéica ou ao menos identifiquem regiões da proteína expostas ou escondidas ao solvente. Geralmente, esta identificação é abordada pelo uso de escalas de anfipatia. Entretanto, a ordem de hidrofobicidade dos aminoácidos varia entre as diferentes escalas de anfipatia encontradas na literatura porque a construção de cada escala é sujeita à metodologia empregada. Na tentativa de contornar esses problemas foi elaborada uma escala de anfipatia em meio realista que determina a ordem de hidrofobicidade dos aminoácidos em água por simulação molecular. Nessa escala, a ordem de hidrofobicidade é proposta levando em consideração a energia de solvatação das cadeias laterais dos vinte aminoácidos padrão. O trabalho aqui descrito é um teste da escala proposta por simulação molecular. A aplicação foi realizada em resultados de simulação molecular de proteínas no meio aquoso, também desenvolvidas no Grupo de Simulação Molecular. As proteínas utilizadas para análise foram (de acordo com as siglas no protein data bank): 1FGF, 1DFN, 1MAG, 1OMG, 1OMN. Foram calculadas as energias das cadeias laterais de todos os resíduos dessas proteínas. As energias encontradas foram correlacionadas com a escala de anfipatia proposta. As comparações foram realizadas separadamente para aminoácidos com cadeias laterais apolares, polares e polares carregadas. Os resíduos apolares e polares apresentaram correlações maiores do que $0,8 \mathrm{com}$ a escala proposta. Os resíduos polares carregados apresentaram menores correlações, que pode ser justificada por flutuações nas energias das cadeias laterais devido a formações de ligações de hidrogênio intramoleculares. Portanto, a escala de anfipatia proposta fornece resultados concordantes com sistemas formados por proteínas com composição e sequência de aminoácidos variadas utilizando simulação molecular.(FAPESP e CNPq)

# The Density Functional Method from First Principles 

Olavo L. da Silva Fitho ${ }^{1}(P Q)$ and Antônio C. Pedrosa ${ }^{1}(P Q)$<br>${ }^{1}$ Universidade de Brasilia, Instituto de Fisica, Campus Universitário Darcy Ribeiro, Asa Norte, Cx 04455, 70919-970<br>- olavo@fis.mnb.br

Palavras-Chaves: Density Functional, Analytic aprroach
The functional density theory is now a complete established theory and proved itself to be a profitable field of research. One of its major drawbacks is precisely the lack of na exact expression for the density functional linking the energy and the probability density function, $E[\rho(x ; t)]$. This work intends to present such an exact expression based upon previous developments derived by one of the authors as a result of investigations on the foundations of quantum mechanics. The results are mathematically exact and the final expression does not include any sort of approximation whatsoever.

In some previous papers, one of the authors showed that it is possible to derive a positive-definite phase-space probability density function for any quantum mechanical problem, given by

$$
\left.F(\mathbf{x}, \mathbf{p} ; t)=\rho(\mathbf{x}, t) \exp \left[-\left(\mathbf{p}-\mathbf{p}_{\mathrm{m}}(\mathbf{x}, \mathrm{t})\right) /\left(2 \pi \sigma^{2}(\mathbf{x}, \mathrm{t})\right)\right] /\left[2 \pi \sigma^{2}(\mathbf{x}, \mathrm{t})\right)\right]^{\mathrm{i} / 2}
$$

where

$$
\sigma^{2}(x, t)=\lim _{i x \rightarrow 0}-h^{2} \nabla^{2} \ln Z(x, \delta x ; t) / 4 \quad \text { and } \quad p_{m}(x, t)=\lim _{i x \rightarrow 0}-i h^{2} \nabla \ln Z(x, \delta x)
$$

with the characteristic function $Z(x, \delta x ; t)$ given by

$$
Z(x, \delta x)=y \cdot(x-\delta x / 2) y(x+\delta x / 2)
$$

and $y(x ; t)$ is the probability amplitude of the problem.
This result can be taken into the usual phase-space average procedure to find the average energy functional and the final result is given by the expression.

$$
\begin{equation*}
E[\rho(x, t), p(x ; t)]=\int \rho(x, t)\left[p(x ; t)^{2} / 2 m+V(x)-h^{2} \nabla^{2} \ln Z(x, \delta x ; t) / 8 m\right] d x \tag{1}
\end{equation*}
$$

given in terms of the probability density function $\rho(\mathbf{x}, \mathrm{t})$ and the average momentum (upon configuration space) $p(x ; t)$.

To show the adequacy of the present model, the above equation (1) was applied to exactly soluble quantum mechanical problems, such as the harmonic oscillator and the hydrogen atom. As can be easily verified, the results agree exactly with the usual ones obtained by traditional methods.

These preliminary results give us confidence that (1) can be considered as the exact energy density functional (depending upon the probability density $\rho(x, t)$ and the average momentum $p(x ; t)$ (that is zero for all ground states).

With this density functional at hand it is now possible to find, by variational techniques, the exact equation determining the density function $\rho(\mathbf{x}, \mathrm{t})$ (for ground states) which is the direct solution of the problem.

The aim of the present work is precisely to present the above mentioned equation for the density function, together with its application to some already known atomic and molecular systems to compare our results with those already found in the literature.

# INTERAÇÃO DE UM ANTIBIÓTICO COM UMA MEMBRANA MODELO: UM ESTUDO POR DINÂMICA MOLECULAR 

Adriana M. Namba* (PQ) (), Marcos R. Lourenzoni (PG) e Léo Degrève (PQ) amnamba@usp.br Grupo de Simulação Molecular (http://obelix.ffclrp.usp.br), Departamento de Química, FFCLRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto-SP, Brasil.<br>Palavras-chaves: defensina, mecanismo de ação, dinâmica molecular.

Devido à adaptação das bactérias patogênicas que têm se tornado mais resistentes aos antibióticos, o desenvolvimento de novos fármacos é um problema cada vez mais urgente. Entre as substâncias naturais que poderiam ser aplicadas nos seres humanos, destacam-se a $\alpha$-defensina humana HNP-3 (Human Neutrophil Peptide-3) que é um peptídeo antimicrobiano catiônico de amplo espectro, constituído por 30 aminoácidos. Resultados da estrutura de R-X revelam que esse peptídeo é dímerico, constituído de três folhas $\beta$ antiparalelas, estabilizadas por ligações de hidrogênio (LH) intramoleculares, pontes -S-S- e interações hidrofóbicas. Estudos sobre danificação de membranas têm indicado que a maioria dos peptídeos antimicrobianos provoca um aumento na permeabilidade da membrana plasmática. Apesar da realização de muitos estudos experimentais e teóricos, o mecanismo de ação desses peptídeos antimicrobianos ainda é problema de debate. Neste trabalho simulações de dinâmica molecular (DM) foram utilizadas para estudar a interação do HNP-3 com um modelo simples de membrana celular formado por um meio misto água-tetracloreto de carbono. O peptídeo foi imerso em uma caixa cúbica onde uma metade era preenchida com moléculas de água e a outra com $\mathrm{CCl}_{4}$, a 300 K . Alguns contra-íons foram adicionados, para manter a eletro neutralidade do sistema. O campo de força GROMOS96 foi utilizado para modelar o soluto, as moléculas dos solventes e os íons. As LH intramoleculares foram determinadas de acordo com um critério de distância e porcentagens de ocorrência. Funções de distribuição radial e distribuição de energia de pares foram utilizados para analisar as características estruturais e energéticas da hidratação do peptídeo. Os resultados obtidos foram comparados com dados previamente obtidos das simulações do HNP-3 em solução aquosa. As análises indicam que o peptídeo teve sua face hidrofóbica, região do grampo $\beta$ (Gly18-Thr19-Cys20-Ile21-Tyr22-GIn23-Gly24-Arg25-Leu26-Trp27-Ala28-Phe29-Cys30-Cys31) totalmente dirigida para a fase apolar e que as cadeias laterais dos resíduos catiônicos migraram para a interface. Os desvios quadráticos médios, com relação à estrutura inicial, mostram um desvio maior envolvendo os resíduos presentes nessa região. Nas simulações em solução aquosa observou-se que a estrutura quaternária do HNP-3 era mantida pela presença de várias LH intramoleculares e intermonômeros, além de interações hidrofóbicas entre as faces dos anéis aromáticos de Tyr17, Tyr22, Trp27 e Phe29. Em meio misto, observa-se que durante as simulações ocorre o afastamento entre os dois monômeros, com a ruptura de várias LH observadas no dímero em solução aquosa. Esse resultado se deve ao fato de haver uma desestabilização entre os contatos hidrofóbicos existentes entre os anéis aromáticos dos resíduos Tyr17 e Tyr22, provocados pela presença do $\mathrm{CCl}_{4}$, ocasionando numa repulsão dos grupos hidroxilas para o meio polar. No entanto, o dímero mantém sua estrutura devido à permanência de LH intermonômeros nas regiões próximas à região N -terminal. Os resultados mostram claramente que a característica do HNP-3 possuir ambos os domínios hidrofílicos e hidrofóbicos é responsável por sua interação com lipídeos de membranas e pelo mecanismo pelo qual sua superfície hidrofílica insere dentro de membranas citoplasmáticas carregadas da maioria das bactérias. (FAPESP-CNPq).

## P198

# LIGAÇÕES DE HIDROGÊNIO NO MONÔMERO E NO DÍMERO DA DEFENSINA HUMANA HNP-3 

Adriana M. Namba* (PQ), Gustavo H. Brancaleoni (PG) e Léo Degrève (PQ)<br>amnamba@usp.br<br>Grupo de Simulação Molecular (http://obelix.ffclrp.usp.br), Departamento de Química, FFCLRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto-SP, Brasil.<br>Palavras-chave: defensina, dinâmica molecular, ligação de hidrogênio.

A aplicação dos métodos de dinâmica molecular (DM) tem mostrado considerável progresso durante os últimos anos. Esses métodos são muito úteis nos estudos de solvatação de biomoléculas, pois permitem analisar o comportamento de peptídeos através da utilização de solventes e eletrólitos em condições fisiológicas bastante reais e explícitas. O comportamento do solvente nas vizinhanças dos átomos dos peptídeos é uma informação importante utilizada para descrever e entender as propriedades dinâmicas e termodinâmicas dos peptídeos em sistemas biológicos. Neste trabalho as simulações de DM, em meio aquoso, foram utilizadas para investigar as ligações de hidrogênio que estabilizam a estrutura do monômero e do dímero do HNP-3 (human neutrophil peptide 3). Esse peptídeo, altamente abundante nos grânulos azurófilos, é constituído de 30 resíduos de aminoácidos. Pertencente à família das $\alpha$-defensinas, tem sido alvo de importantes estudos por contribuir para a imunidade inata e adquirida através de sua potente atividade antimicrobiana e habilidade para ativar as células T. A principal vantagem desses peptídeos antimicrobianos é que eles atuam sem exibir toxicidade contra as células humanas e, por isso, são candidatos promissores para novos antibióticos com alto valor terapêutico.

A estrutura de partida para as simulações de DM foi obtida do banco de dados PDB, que utiliza o código 1 dfn para o HNP-3. O campo de força GROMOS96 e o modelo de água SPC/E foram empregados para desenvolver as simulações de DM no ensemble NVT, a 298K. O critério geométrico e as frações de ocorrência foram utilizados para examinar a ligações de hidrogênio (LH) intrapeptídeo. Para identificar as ligações de hidrogênio com as moléculas de água, foram utilizadas as funções de distribuição radial e distribuições de energias de pares átomos do peptídeo/água. No monômero foram detectadas 15 LH intramoleculares, juntamente com 36 e 35 LH intermoleculares envolvendo átomos das cadeias principal e laterais. No caso do dímero, foram identificadas 10 e 11 LH intramoleculares nos monômeros A e B, respectivamente. A sobreposição dos átomos da cadeia principal tanto do monômero 1 quanto do 2, da estrutura dimérica obtida das simulações, com os átomos da cadeia principal do monômero simulado resulta num desvio quadrático médio de aproximadamente $0,22 \mathrm{~nm}$. Os resultados indicam que os átomos CO dos resíduos Cys3, Thr19 e lle21, juntamente com os átomos NH dos resíduos Cys5, Thr19 e lle21 que formavam LH intermoleculares com as moléculas de água, passaram a formar ligações de hidrogênio intermonômeros. Um total de oito LH intermonômeros foi detectado, sendo que cinco delas não foram observadas na estrutura de R-X. As análises permitiram identificar os resíduos importantes no processo da dimerização do HNP-3. A comparação entre a hidratação das cadeias laterais dos resíduos polares do monômero e do dímero simulados indica comportamentos similares em ambos os casos e que a dimerização não altera a capacidade dos grupos laterais polares de formarem ligações de hidrogênio com as moléculas de água. (FAPESP-CNPq).

# ELASTIC SCATTERING OF LOW-ENERGY ELECTRONS BY ISOMERS OF $\mathrm{C}_{4} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{8}$, AND $\mathrm{C}_{4} \mathrm{H}_{10}$. 

Adriana R. Lopes*1 ${ }^{* 1}(P G)$, Marco A. P. Lima ${ }^{2}$ (PQ), Luiz G. Ferreira ${ }^{2}$ (PQ), Márcio H. F. Bettega ${ }^{1}$ (PQ)<br>adriana@fisica.ufpr.br<br>${ }^{1}$ Departamento de Física, Universidade Federal do Paraná<br>${ }^{2}$ Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas<br>Palavras-chave: Scattering, isomers, Schwinger.

Studies of electron-scattering from hydrocarbons are very important for a variety of applications, like astrophysical and atmospheric phenomena, low temperature processing plasmas, and gas discharges. Recent experimenal studies on electron-molecule collisions with $\mathrm{C}_{3} \mathrm{H}_{4}$ isomers, were done by Szmytkowski and Kwitnewski [1], Nakano at al [2] they measure total and differential cross section. Lopes and Bettega [3] performed a theoretical study of electron collisions with $\mathrm{C}_{3} \mathrm{H}_{4}$, with very good agreement with available experimental results. Szmytkowski and Kwitnewski [4] measured total cross section for electron collisions $\mathrm{C}_{4} \mathrm{H}_{6}$ isomers 1,3-butadiene, 2-butyne, and also with $\mathrm{C}_{4} \mathrm{~F}_{6}$ (hexafluoro-2-butyne). They discussed the isomer effect and also the halogenation effect through the comparison of total cross section. We calculed elastic integral, differential, and momentum transfer cross sections for the isomers of $\mathrm{C}_{4} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{8}$, and $\mathrm{C}_{4} \mathrm{H}_{10}$. The isomers of $\mathrm{C}_{4} \mathrm{H}_{6}$ are 1,3-butadiene, 2-butyne and cyclobutene, which belong to $C_{2 h}, D_{3 h}$ and $C_{2 v}$ groups, respectively. The isomers of $C_{4} H_{8}$ are isobutene, trans- and cis-2-butene, skew- and syn-1-butene, which belong to $\mathrm{C}_{2 v}, \mathrm{C}_{2 n}$ and $\mathrm{C}_{\mathrm{s}}$ groups, respectively. And the isomers of $\mathrm{C}_{4} \mathrm{H}_{10}$ are butane and isobutane, which belong to $\mathrm{C}_{2 \mathrm{~h}}$ and $\mathrm{C}_{3 \mathrm{v}}$ groups, respectively. To compute the elastic cross sections we used the Schwinger multichannel method with pseudopotentials (SMCPP), at the static-exchange approximation. We made a comparative study of the elastic cross sections for these isomers and discussed the isomer effect, reported by Szmytkowski and Kwitnewski. We compare our results with available experimental results and find a qualitative agreement. (CNPq, CAPES, FUNPAR, Fundação Araucária, CENAPAD-SP).
[1] C. Szmytkowski and S. Kwitnewski, J. Phys. B:At. Mol. Opt. Phys. 35, 3781 (2002).
[2] Y. Nakano, M. Hoshino, M. Kitajima, H. Tanaka, and M. Kimura, Phys. Rev. A 66, 032714 (2002).
[3] A. R. Lopes and M. H. F. Bettega, Phys. Rev. A 67, 032711 (2003).
[4] C. Szmytkowski and S. Kwitnewski, J. Phys. B:At. Mol. Opt. Phys. 36, 2129 (2003).

# EITTING POTENTIAL ENERGY SUREACE FOR THE $H_{3}{ }^{+}$ION THROUGH GENERALIZED SIMULATED ANNEALING 

Curt Max Panisset ${ }^{1}$ (PG), Kleber C. Mundim ${ }^{1}$ (PQ), Ricardo Gargano ${ }^{2}$ (PQ) and Joaquim. J. S. Neto ${ }^{2}$ (PQ)<br>neto@fis.unb.br<br>${ }^{1}$ Instituto de Química, Universidade Brasilia, Brasilia - DF, CEP 70919-970.<br>${ }^{2}$ Instituto de Física, Universidade Brasília, CP 04455, Brasilia - DF, CEP 70919-970

Key Words: $\mathrm{H}^{+}{ }_{3}$ molecular ion, GSA method, potential energy surface.

With objective to extent the use of the Generalized Simulated Annealing (GSA) technique to fitting Potential Energy Surface (PES), we show hat this method is also suitable to fitting the PES for bond systems. In order to do so, we reproduced the PES to the ground state of the $\mathrm{H}^{+}{ }_{3}$ system (see figure below) using a functional form given by a polynomial in Bond Order (BO) coordinates. We have chosen this system, which is the simplest stable polyatomic molecule and has very accurate electronic structure calculations. In fact, we have used $69 a b$ initio Cl calculations plus adiabatic and relativistic corrections published by Cencek et al. These corrections resulting in a sub-micro-hartree accuracy in the determination of vibrational levels of the $\mathrm{H}^{+} 3$ molecular ion. These calculations were obtained in a sequence paper using a $7-\mathrm{th}, 9$-th and 10 -th order polynomial in Morse-type symmetry adapted coordinates (Jaquet PES), and improved by introducing non-adiabatic corrections to nuclear dynamics. The quality of the GSA PES is asserted by computing the associated vibrational spectra. The resulting energies are compared with those obtained using the Jaquet PES as well as with experimental results. From this quantitative comparison, we can concluded that the $\mathrm{H}^{+}{ }_{3}$ GSA PES is comparable to the best PES for the $\mathrm{H}^{+}{ }_{3}$ system available in the literature. CNPq


# RELAÇÃO ENTRE ESTRUTURA E ATIVIDADE DE 8.0.4’NEOLIGNANAS COM ATIVIDADE ANTIFÚNGICA 

Anderson A. C. Pinheiro (PG), Rosivaldo S. Borges (PG), Lourivaldo S. Santos (PG) e Cláudio N. Alves (PQ)<br>Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil. Ė-mail:

Palavras-chave:pm3, neolignanas, qsar
As neolignanas são micromoléculas que aparecem na constituição das ligninas, macromoléculas que se depositam nas paredes de células vegetais, conferindo a estas, notável rigidez, sendo constituintes da parede celular de tecidos associados a caule, folha e raiz de todas as plantas vasculares.A sua abundância, aliada às suas propriedades bioquímicas, tem despertado o interesse dos estudiosos na elaboração de pesquisas sobre a atividade desses compostos contra diversos tipos de doenças.

Neste trabalho foi realizado um estudo em 18 compostos derivados das 8.O.4'neolignanas (Fig. 1), que apresentavam atividade antifúngica contra dermatócitos, um grupo de fungos que caracteristicamente infeccionam as áreas queratinizadas da pele humana.

Inicialmente, foram realizados cálculos para a obtenção da conformação de menor energia para esses compostos, usando o método da mecânica molecular. Posteriormente, aplicamos o método semiempírico PM3 para otimização da geometria e obtenção dos parâmetros eletrônicos que poderiam ser correlacionados com a atividade biológica dos compostos. A equação que relaciona estrutura e atividade foi obtida pelo método da regressão linear múltipla (MLR). A análise de regressão dos dados mostrou que a energia de hidratação ( EH ) e a carga sobre o átomo de carbono $3^{\prime}\left(Q_{3}^{\prime}\right)$, são as propriedades que apresentam maior relação com a atividade biológica desses compostos. O modelo de regressão obtido pela equação 1 (Eq.1) apresenta um grau de explicação de $86 \%$ da variabilidade dos valores observados para a atividade. O teste de significância indicou valor de $F=30,48$ cerca de sete vezes maior que o valor tabelado. Além do mais, apresentou considerável grau de previsibilidade, pois $Q^{2}=0,81$ e pequena soma dos erros de previsão $S E P=0,41$. Com base na equação de regressão, verifica-se que quanto menor a energia de hidratação ( EH ) e o aumento das cargas negativas sobre o átomo de carbono $3^{\prime}\left(Q^{\prime}\right)$, maior será a atividade biológica. (UFPA, CNPq).




$\mathrm{R}_{1}, \mathrm{R}_{2}$, e $\mathrm{R}_{3}=-\mathrm{H},-\mathrm{OCH}_{3},-\mathrm{OCH}_{2} \mathrm{O}-$
$R_{4}$ e $R_{5}=-H$, trans-propenil e-alil
$\log 1 / E C_{50}=-5,09-0,38 \mathbf{E H}-0,92 \mathbf{Q}_{3}$ (Eq. 1)

$$
\mathbf{F}=30,48 \quad \mathbf{R}^{2}=0,86 \quad \mathbf{Q}^{2}=0,81 \quad \mathbf{S E P}=0,41
$$

Figura 1 - Estrutura geral básica e numeração de substituintes para doze neolignanas alcoólicas e seis cetônicas.

## ESTUDO TEÓRICO DO MECANISMO MOLECULAR DE

## REAÇõES DE DIELS-ALDER ENTRE O CICLOPENTADIENO E O CROTONALDEIDO

Agnaldo S.Carneiro (PG) e Cláudio N. Alves (PQ)<br>agsicar@.ufpa.br

Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil
Palavras-chave: diels-alder, mp2, dft.
A reação entre o ciclopentadieno(CP) e o crotonaldeido (R) foi estudada experimentalmente por Howarth e colaboradores na presença de catalisador. Segundo o pesquisador a reação é concertada e o produto de maior rendimento foi o endo.

Neste trabalho o mecanismo molecular para a reação de Diels-Alder entre o CP e o $R$ foi estudado usando cálculos de mecânica quântica com níveis de teoria MP2 e B3LYP, com o conjunto de base 6-31G*.

Os resultados obtidos estão descritos na tabela 1. Dentre os métodos estudados observa-se que o MP2 é o mais eficiente, pois prediz uma preferência cinética pelo ET (estrutura de transição) endo, justificando as investigações experimentais, enquanto o método B3LYP fornece ETs endolexo que são praticamente isoenergéticas. Os estudos prosseguem utilizando catalisadores, levando-se em consideração as condições nas quais as reações estão sendo realizadas. (UFPA, CNPq).

Figura 1: Reação entre o ciclopentadieno e o crotonaldeido


Tabela 1. Valores das barreiras de energias ( $\mathrm{kcal} \mathrm{mol}^{-1}$ ) para as reações de cicloadição entre $\mathbf{C P}+\mathbf{R}$.

| Pontos Estacionários | B3LYP/6-31G* | MP2/6-31G $^{*}$ |
| :---: | :---: | :---: |
| ETendo-(CP+R) | 19,357 | 39,337 |
| ETexo-(CP+R) | 20,881 | 46,374 |

# UM MODELO PERIÓDICO PARA DOPAGEM DO $\mathrm{TiO}_{2} \mathrm{COM}$ Átomos de nb E Cr. 

Luis.A. Vasconcellos ${ }^{1}(P Q)$, Julio R. Sambrano ${ }^{1}(P Q)$, Gustavo. F. Nobréga ${ }^{1}$ (IC), João

B. L. Martins ${ }^{2}(P Q)$, Armad. Beltran ${ }^{3}(P Q)$

1- Universidade Estadual Paulista, Laboratório de Simulação Molecular - DM, Bauru, SP, 17033-360, Brasil.
2- Universidade de Brasilia, Instituto de Química, CP 04478, Brasilia, DF, 70919-970, Brasil.
3- Universitat Jaume I, Departament de Ciencies Experimentals, Campus de Riu Sec, Castelló E12071, Spain.
Palavras-chave: Varistores, óxidos metálicos, modelos periódicos.
O interesse teórico e experimental em superfícies químicas de óxidos metálicos tem crescido rapidamente. Esta grande atenção é devida aos diferentes tipos de reações catalíticas sobre as superfícies oxidadas e à preparação de filmes destes materiais com importantes aplicações tecnológicas. Entre estes podemos destacar o óxido de titânio, $\mathrm{TiO}_{2}$, que é encontrado na natureza preferencialmente na estrutura do tipo rutilo.

As propriedades e efeitos da dopagem deste óxido têm sido objeto de diversos estudos experimentais, porém ainda com um número não significativo de estudos teóricos. Desta forma, analisam-se os efeitos e influências da dopagem de Nb e Cr , substituindo átomos de Ti superficiais e internos da superfície (110). Em particular a dopagem do $\mathrm{TiO}_{2}$ tem uma elevada importância, pois pode alterar as características varistoras e catalisadoras do material. A simulação foi realizada com o programa periódico CRYSTAL98, aplicando a teoria do funcional de densidade, com o funcional híbrido B3LYP. Utilizam-se os conjuntos de funções de base de Durand-Barthelat's para representar os átomos de Ti, O e Cr e ECP de Hay e Wadt e a respectiva base HAYWSC-(31d)G para o átomo de Nb.

Foram otimizados os parâmetros da célula unitária, $a, c$ e o parâmetro interno u. A partir destes parâmetros construímos um modelo periódico de 9 e 7 .camadas, para as superfícies oxidada e reduzida, respectivamente. O número de camadas selecionado para os cálculos foi obtido através do teste de convergência da energia de superfície ( $E_{\text {sup }}$ ) e da distribuição de cargas.

As propriedades eletrônicas são dependentes da posição e do metal substituído. Observa-se que os átomos de Nb são depositados preferencialmente abaixo do átomo de Ti hexa-coordenado (segunda camada), influenciando na redistribuição de cargas da superfície e conseqüentemente no gap de energia (definido como a diferença entre a banda, diferença entre a banda de condução e de Valencia). Para os átomos de Cr observa-se uma posição de dopagem preferencial na superfície. Neste sentido, discute-se com detalhes a densidade de estados, estrutura de bandas e sítios de dopagem. Os resultados obtidos são comparados com resultados teóricos e experimentais.


Modelo de 9 camadas da superfície (110)

# PONTES DE HIDROGÊNIO C-H...O EM MODELOS PARA SISTEMAS BIOLÓGICOS 

Myriam MI. S. de Giambiagi * ${ }^{1}$ (PQ) (rio@cbpf.br), Pérycles Tupy Vieira Júnior ${ }^{2}$ (PG), Marçal de Oliveira Neto ${ }^{2}$ (PQ)<br>${ }^{1}$ Centro Brasileiro de Pesquisas Físicas, ${ }^{2}$ Departamento de Química, UnB<br>Palavras-chave: pontes de hidrogênio, ligações $\mathrm{CH} . . . \mathrm{O}$, índice para ligações multi-centradas

Apesar das pontes de hidrogênio envolvendo o átomo de carbono terem sido reconhecidas há mais de 40 anos, o avanço das técnicas teóricas e experimentais tem chamado recentemente atenção sobre sistemas biológicos nos quais elas aparecem [1]. Cálculos anteriores [2] têm mostrado a utilidade de um índice MO (orbitais moleculares) para ligações multi-centradas na estimativa de pontes de hidrogênio [3]. Neste trabalho, exploraremos a aplicação desse índice em ligaçõ̃es CH ...O.

Todos os índices para pontes de hidrogênio são negativos. Foi argumentado que ligações de 3 centros, para serem consideradas ligações "reais", devem ter índice positivo [4]. Temos mostrado, porém, através da funcional densidade de ordem N (sendo N o número de elétrons na função de onda escrita como um único determinante na aproximação de HartreeFock) e usando a álgebra de Grassmann [5], que o índice para ligações multi-centradas representa a correlação entre as flutuações das cargas eletrônicas com respeito aos seus valores médios; no caso de 3 centros, não leva a nenhuma conclusão sobre o significado para o sinal.

A otimização da geometria dos sistemas estudados foi feita através de cálculos ab initio com base atômica $6-31 \mathrm{G}^{*}$, que leva a estruturas de acordo com a experiência. Os índices são calculados na aproximação MOPAC-PM3, para poder compará-los aos obtidos anteriormente. Os modelos adotados são: a) o dímero do ácido acético no cristal, com uma ponte $\mathrm{CH} . . \mathrm{O}$ e uma outra $\mathrm{OH} . . . \mathrm{O}$; b) os dímeros formamida-formamida e formamida-glioxal. Em ambos, as pontes CH...O são, como esperado, mais fracas que as NH...O e OH...O. Porém, as variações da distribuição de carga eletrônica indicam claramente pontes de hidrogênio.

Estudaremos a variação do índice $\mathrm{I}(\mathrm{CHO})$ em função da distância e do ângulo afastado da linearidade. Compararemos esse comportamento com os de I(NHO) e I(OHO). Nosso objetivo é o cálculo de interações não usuais, encontradas em todos os codons de tRNA, envolvendo $\mathrm{C} 2-\mathrm{H}$ da adenina e O 4 de uracil ou timina.
[1] P. Auffinger, E. Westhof, J. Mol. Biol., 305, 1057 (2001).
[2] M. Giambiagi, M.S. de Giambiagi, M. de Oliveira Neto, Phys. Chem. Chem. Phys., 3, 5059 (2001).
[3] M. Giambiagi, M.S. de Giambiagi, K.C. Mundim, 1, 423 (1990).
[4] A.B. Sannigrahi, T. Kar, Chem. Phys. Lett., 173, 569 (1990).
[5] K.C. Mundim, M. Giambiagi, M.S. de Giambiagi, J. Phys. Chem., 98, 6118 (1994).

## P206

# CORRELATION FUNCTION QUANTUM MONTE CARLO STUDY OF THE VIBRATIONAL STRUCTURE OF H ${ }^{+}$CLUSTERS, $n=2-5$ 

Washington B. Silva ${ }^{1}$ (PG) and Paulo Hora Acioli ${ }^{1}$ (PQ)<br>pacioli@fis.unb.br<br>${ }^{1}$ Instituto de Física, Universidade de Brasília, C.P. 04455, Brasilia, DF, 70910-970, Brazil<br>Palavras-chave: vibrational levels, normal modes, Correlation Function Quantum Monte Carlo.

The $\mathrm{H}_{3}{ }^{+}$molecular ion is considered to be the most abundant and chemicall important ionic species in interstellar clouds. It can also be the precursor of larger hidrogen based ions such as $\mathrm{H}_{4}{ }^{+}$and $\mathrm{H}_{5}{ }^{+}$. In this study we are interested in understanding the evolution of the vibrational level structure as a function of the cluster size. As a first approximation we performed a normal mode analysis on each of the potential energy surfaces studied in this work. We have then used the correlation function Monte Carlo (CFQMC) to assess the quantum and anharmonic effects in the vibrational spectrum on these moelecules. We have determined that both the anharmonic and quantum effects are needed to obtain spectroscopic accuracy. In particular for the higher excite states. The use of CFQMC is particularly important as the computational effort does not increase exponentially and one can treat all degrees of freedom explicitly for all the systems studied in this work.

# USING SEMIEMPIRICAL AND AB INITIO METHODS TO STUDY THE DOPED POLYACETILENE CHAIN 

Alessandra F. A. Vilela ${ }^{1}$ (PG), Ricardo Gargano ${ }^{1}(P Q)$ and Geraldo M. e Silva ${ }^{1}(P Q)$<br>alessan@fis.unb.br<br>${ }^{1}$ Instituto de Fisica, Universidade de Brasilia, Brasilia - DF.

KEY WORDS: polyacetilene, band gap, ssh and ppp models
The manipulation of single molecules opens the possibility of creation of a wide range of functional devices that mimic the solid-state ones, and may also have other new and important characteristics and functions. The fabrication of molecular electronic devices is not so far in the future and we can already foresee and even design various special molecules. Conducting polymers are a fundamental part of molecular devices. They can work as molecular level wires linking and carrying charge through the molecular circuit. In this sense, polyacetylene (PA) has appeared early as a good candidate to integrate molecular switches. These molecular devices have been studied with several methods. From model Hamiltonians to ab initio methods, many authors have revealed important characteristics and features of such devices. Nevertheless, there has been a lack of studies linking these two approuch, which would reveal new results and phenomena. The main purpose of the present work is to establish the correspondence between the radical description using model Hamiltonians and electronic structure calculations. The model Hamiltonian of Su, Schrieffer and Heeger (SSH) combined with the Pariser-Parr-Pople (PPP) model is modified to include short-ranged site-type impurity potentials to represent the radical bonded to the main chain. The model Hamiltonian of SSH combined with the PPP model is modified to include shortranged site-type impurity potentials to represent the radical bonded to the main chain. We verify that the distributions associated with fourteen radicals $\left\langle\mathrm{NH}_{2}, \mathrm{CH}_{3}, \mathrm{I}, \mathrm{IH}_{2}, \mathrm{I}_{3}, \mathrm{NHCH}_{3}, \mathrm{NCH}_{2}, \mathrm{NO}, \mathrm{NO}_{2}\right.$, $\mathrm{CN}, \mathrm{SO}_{2}, \mathrm{Li}, \mathrm{Na}$ and K ) are quite different from that generated with model calculations. It is found that varying the site-type potential in model Hamiltonians does not lead to the representation of various radicals. The structural parameters of both undoped and doped PA were taken from optimized results by simiempirical (AM1 and PM3) and $a b$ initio (HF/3-21G and DFT- B3LYP/STO3G) methods using the Gaussian98 program. The doped PA band gap and charge distribution (see figure below) calculation that more closed to experimental data ( 1.4 eV ) was obtained by $\mathrm{I}_{3}$ impurity ( 1.8332 eV ) with DFT method. (CNPq)


## P208

## DYNAMICAL INTERACTION BETWEEN POLARONS AND TORSIONAL VIBRATIONS IN CONJUGATED POLYMERS

Alexandre N. de Brito (PG) and Geraldo Magela e Silva* (PQ)<br>magela@fis.unb.br

Instituto de Fisica, Universidade de Brasilia, CEP 70919-970 Brasilia - DF.
KEY WORDS: conduting polymers, polarons, dynamics
The break down of Born Oppenheimer approximation leads to electronic vibrational interactions in the quantum mechanical description of molecules and solids. The presence of torsional vibration modes on single chains of conjugated polymers has been investigated. This study was carried out through numerical calculations using a Hamiltonian where the hopping integral between pi-electrons belonging to carbon atoms of neighboring rings depends on the angle between these rings. We have used an electric field to put a charged defect in motion. The electric field is introduced in the model Hamiltonian as a timedependent vector potential in the phase of the transfer integral. The time dependent Schrodinger equation and the equation of motion for the time-dependent ring torsion angles and bond lengths form a coupled set that was numerically integrated over the time in a self-consistent way. An extension of the PPP model is numerically integrated using the Time-Dependent Hartree-Fock approximation. This model for the coupling between the rings of the polymer has the advantage of being quite simple and able to reproduce the principal features of torsional vibrations. The torsional vibrational modes interact with the solitons, polarons and bipolarons changing their mobility. That ring torsional motion induces a periodic interchange in the electronic and lattice potential energy and the lattice kinetic energy. The effect of each vibrational mode on the structural defects and their stability is determined. The results show that the bipolarons and polarons are trapped between the knots of the torsinal vibration modes, see figure below. (CNPq)


# Anảlise, através da função peso, do efeito relativistico em conjuntos de funções de base. 

José C. B. de Lima (IC), André L. F. P. Ramos (IC), Nelson H. Morgon (PQ) ${ }^{1, *}$<br>${ }^{1}$ Departamento de Química, Universidade Estadual de Campinas (UNICAMP) Caixa Postal 6154<br>- Campinas, SP. - morgon@iqm. unicamp.br

Palavras Chaves: bases atômicas, efeitos relatinísticos

Introdução: Apenas na década de 70 é que a total relevância dos efeitos relativísticos em elementos pesados começon a ser considerada. Os principais ofeitos relativísticos em orbitais atômicos são: (1) a contração radial relativistica e a estabilização energética dos orbitais s o $p$, (2) o acoplamento spin-órbita, o (3) a expansão radial relativística e a desestabilização onergética dos orbitais $d$ e $f$. Estes três offitos são da mesma ordem de magnitude e crescom fortemente com o número atômico ( $Z$ ). Neste trabalho verificour-se a importância em desenvolver bases atômicas (através do formalismo do MCG) no ambiento relativistico, utilizando-so o modelo proposto no programa Dalton. Estudos comparativos foram feitos para átomos dos 2 ㅇ $(C \cap O)$ e $4^{0}(G c$ e $K r)$ períodos.

Metodologia: Os conjuntos de funções de base atômicas foram gerados utilizando-se o Método da Coordenada Geradora (MCG). Para o desenvolvimento das bases sem efeito relatístico foi empregado o programa GALSSIAN/98, já para o effito relatístico considerou-se o modelo presente no programa Dalton, que utiliza correções de Darwin e de MassaVelocidade. Em ambos os programas, a obtenção do conjunto de parâmetros discretizados ótimos para os átomos se deu através do método de busca SIMPLEX. O MCG considera funções monoeletrônicas $\psi(1)$ como uma transformada integral do tipo $\psi(1)=$ $\int_{0}^{\infty} f_{1}(\alpha) \phi(\alpha, 1) d \alpha$, onde $f_{1}(\alpha)$ e $\phi(\alpha, 1)$ são as funções peso a geradora (por ex. funções gaussianas), respectivamente, integradas no espaço da coordonada geradora $\alpha$ ( 0 expoente em $e^{-a r^{2}}$ ).

## Resultados e Discussão:

Na Tabela 1, tem-se as energias eletrônicas totais para os átomos de $C$ e $K r$. Observa-se nitidamente o aumento dos valores dos expoentes ( $\alpha$ ) mais internos (maior contração no ambiente relativístico), efcito mais pronunciado no caso do orbital S em Kr . A análise das funções peso para o átomo de Ge (Fig. 1b) aponta nesta mesma direção. Fato interessante ó observar que o perfil das funções peso nas regiões intermediárias e de valência são semelhantes (Fig. 1a).


Figura 1. Funções peso para orbitais 1 S o 2 S do Ge.

Conclusōes: A análise da função peso mostra de maneira inequívoca, o deslocamento das funções mais intcrnas para a região do caroço. Conjuntos de bases tradicionalmente obtidos com Hartrec-Fock e. utilizados em cálculos relativísticos apresentam valores maiores de energia ( $\approx 6$ e $10 \mathrm{~kJ} / \mathrm{mol}$ para $C$ e $K r$, respectivamente) de quando comparados com aqueles obtidos diretamente a partir da otimização no próprio ambiente relativístico. As próximas etapas do trabalho consistirão em utilizar os conjuntos de base obtidos no estudo de propriedades moleculares.

Tabela 1. Energias eletrônicas (em hartreo) e Expoentes mais Internos ( $\alpha$ ) para os átomos do C e Kr obtidas em ambientes SEM © COM efoitos relativísticos.

| Átomo/Base | Orbital | HF | HF-Irel | HF+rel//HF[a] |
| :---: | :---: | :---: | :---: | :---: |
| C / [12s8p2d] |  | -37,7509 | -37,7657 | -37,76208 |
| Exp. 1 Inter. | S | 8.969,54 | 33.355,56 |  |
|  | P | 256,45 | 274,90 |  |
|  | D | 1,51 | 1,84 |  |
| $\mathrm{Kr} /[14 \mathrm{~s} 11 \mathrm{p} 5 \mathrm{~d}]$ |  | -2.751,6705 | -2.786,5703 | $\underline{-2.786,5} 0$ |
| Exp. + Inter. | S | 515.652,81 | 733.742,25 |  |
|  | P | 4.061,14 | 3.482,06 |  |
|  | D | 60,99 | 59,53 |  |

[a| Cálculo da energia eletrônica (não relativística + relativística), utilizando-se os njuntos de base gerado em ambiente, não relativístico.

# Estudo Teórico das Reações de Riveros em sistemas: $\mathrm{X}^{-}+$ $\mathrm{HCO}_{2} \mathrm{CH}_{3} \rightarrow\left[\mathrm{X} \cdots \mathrm{HOCH}_{3}\right]^{-}+\mathrm{CO}$, onde $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ e I. <br> Nelson H. Morgon (PQ) ${ }^{1, *}$ <br> ${ }^{1}$ Departamento de Química, Universidade Estadual de Campinas (UNICAMP) Caima Postal 6154 <br> - Campinas, SP. - morgon@iqm.unicamp.br 

Palavras Chaves: $C R-C C S D(T), M C G$, Reações de Riveros

Introdução: Sistemas envolvendo grupos com carbonilas (CO) são fundamentalmente importantes em química orgânica, bem como em sistemas biolơgicos. Caminhos de reações que ocorrem om soluções são bem conhecidos, bem como os effitos de estabilização do grupo carbonila que ocorrem em fase gasosa. No entanto, o que torna estas grupos reativos ainda é uma questão em aberto|1|. Riveros notou que muitas rotas mecanísticas sāo disponiveis em fase gasosa, e algumas delas não têm sido observadas em fase condensada|2|. Uma reação típica, onde o grupo carbonila está presente, observada em fase gasosa ocorre entre $\mathrm{F}^{-}$e $\mathrm{HCO}_{2} \mathrm{CH}_{3}$. Quando o mecanismo envolve a libcração de $C O$,
$\mathrm{F}^{-}+\mathrm{HCO}_{2} \mathrm{CH}_{3} \rightarrow\left[\mathrm{~F} \cdots \mathrm{HOCH}_{3}\right]^{-}+\mathrm{CO}$
a reação (A) é denominada de Reação de Riveros. Recentemente, Pliego e Riveros estudaram através de cálculos MP4/6-311+G(2df, 2 p ) reações em fase gasosa de Fluoreto e Cloreto com Metil Formiato| $3 \mid$.

Neste trabalho estudamos o perfil energético envolvido no mecanismo da reação (B)
$\mathrm{X}^{-}+\mathrm{HCO}_{2} \mathrm{CH}_{3} \rightarrow\left[\mathrm{X} \cdots \mathrm{HOCH}_{3}\right]^{-}+\mathrm{CO}$
onde $\mathrm{X}=\mathrm{F}, \mathrm{Cl} \mathrm{Br}$ e I , utilizando-se callculos CR$\operatorname{CCSD}(\mathrm{T})$ com bases adaptadas a pseudopotencial SBK.JC.

Metodologia:
Todos os cálculos foram feitos usando o programa GAMESS/2003 empregando-se conjuntos de funções bases obtidas através da versão DIO-MCG (Discretização Integral Otimizada do Método da Coordenada Geradora). Esta técnica tem-se mostrado bastante adequada para estudos envolvendo cálculos precisos de propriedades diversas|4|.

O procodimento geral envolvido na obtenção das propriedades estudadas neste trabalho consistilu-se de: (a) otimização da geometria molecular, cálculos das constantes de força, de ZPE e análise vibracional harmônica a $\mathrm{HF} / \mathrm{B} 0$; (b) reotimização da ge-ometria molecular a MP2/B0, partindo-se da estrutura otimizada o constantes de forças obtidas no cálculo anterior; (c) cálculo das energias na geometria otimizada, nos métodos CR-CCSD(T)/B0 e MP2/B1 nas geometrias MP2/B0; e (d) obtenção de energia $\mathrm{E}|\mathrm{CR}-\mathrm{CCSD}(\mathrm{T}) / \mathrm{B} 1|$ usando-se a Equação (1):
$E[C R-C C S D(T) / B 1] \approx E[C R-C \operatorname{CSD}(T) / B 0]$

$$
+E[M P 2 / B 1]-E[M P 2 / B 0]+Z P E \times 0.89 \quad(1)
$$

onde, B0 á um conjunto de base adaptado a pseudopotencial, © B1, trata-se do conjunto de base B0 acrescido de funções difusas e de polarização.

## Resultados e Discussão:

A partir das energias eletrônicas considerando a Eq. (1), obtidas para todas as espécies presentes na Eq. (B), construiu-se o diagrama de energias relativas, como mostra a Fig. 1


Ao longo da Coordenada de reação, observase a formação em todos os sistemas de complexos $\left[\mathrm{X} \cdots \mathrm{HCO}_{2} \mathrm{CH}_{3}\right]^{-}$. Posteriormente há a formação de estados de transição (estudo em andamento) e obtenção dos produtos $\left[\mathrm{X} \cdots \mathrm{HOCH}_{3}\right]^{-}+\mathrm{CO}$. Apsnas para o Iodo a reação nān é termodinamicamento favorecida.

Conclusỏes: Cálculos CR-CCSD(T) correspondem a uma melhora dos resultados de CCSD através da adição de correções não interativa. Tem sido observado que métodos como CR-CCSD(T) fornecem uma boa descrição de quebras de ligações simples. O estudo de alto nivel realizado neste trabalho investigon o effito de diferentes haletos no estudo de reações com formiato (Reações de Riveros). Os resultados usando CR-CCSD(T) e bases com psoudopotencial para haletos de Fe Cl forneceram os mesmos resultados obtidos por Pliego e Riveros $|3|$.
[1] Frink, B. T.; Hadad, C. I.; J. Chem. Soc., Perkin Trans. 2 1999, 11, 2397. [2| Riveros, J. M.; Jose, S.M.; Takashima, K.; Adv. 'hys. Org. Chem., 1985, 21, 197. |3| Pliego, J. Jr Riveros, J. M.; J. Phys. Chem. A, 2002, 106, 371 4| Morgon, N. H.; J. Phys. Chem., 1998, 102, 2050

# ESTRUTURADEUीオ-PEPTİDEOHiBRTDO-EECROPINA MAGAININA EM MEIO AQUOSO POR SIMULAÇÃO MOLECULAR. 

Léo Degrève (PQ) leo@obelix.ffclrp.usp.br, Marcos R. Lourenzoni (PG), Gláucia M. da Silva (PQ)

Grupo de Simulação Molecular, Departamento de Quimica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo

PALAVRAS-CHAVES: simulação molecular, estrutura de proteinas, biofisica
O peptideo hibrido incorporando os residuos 1 a 8 da cecropina A e 1 a 12 da magainina 2 (CA-M2) apresenta atividades antitumoral, antimicrobial, sem apresentar toxicidade para os eritrócitos humanos, e nenhuma atividade hemolítica. Este peptideo vem sendo usado no desenvolvimento de novos antibióticos eficientes, sem atividade hemolítica, que contornam a rápida perda de atividade causada pela resistència bacteriana variável. A estrutura do CA-M2, determinada por RMN do peptideo (em contato) dissolvido em micelas de dodecilfosfocolina (D. Oh et al, Biochemistry, 2000, 39, 11855) pode ser descrita por uma região em hélice (LYS1LEU4), uma articulação (PHE5-ILE8) e por uma hélice- $\alpha$ (GLY9-PHE20). Entretanto, uma boa compreensão da estrutura em meio não micelar é fundamental para se propor mutantes com a provável ação desejada de sorte que CA-M2 foi estudado, por dinâmica molecular (DM), nas condiçōes de um peptídeo em meio aquoso, sistema modelado pelo campo de força Gromos 96 , restriçōes NVT, T=300K, usando as condiçōes usuais de condições periódicas. Os dados foram reunidos durante 2 ns após um período de equilibração de mais de 2 ns . Determinou-se a estrutura das ligações de hidrogênio intra (LHI) e intermoleculares (LH) assim como o desvio quadrático médio (dqm) e por resíduo (dqmr) em relação à estrutura experimental. A simulação mostra que CA-M2 possui, em meio aquoso, uma folha $\beta$ (TRP2 até Gly9) com a dobra em PHE5, LYS6 e uma hélice- $\alpha$ que começa na Lys12 e termina na Lys19 ou seja a folha- $\alpha$ é mantida. O dqm global em relação à estrutura experimental oscila entre 0.4 e 0.45 nm enquanto que o dqm na região da hélice- $\alpha$ é de 0.176 nm . Os dqmr mostram uma maior liberdade dos resíduos terminais (dqmr $\approx 0.5 \mathrm{~nm}$ ) que a dos outros resíduos (dqmr $\approx$ 0.25 nm ). Foram encontradas 45 LH e 12 LHI sendo que a maioria dos átomos envolvidos são átomos da cadeia principal. Uma extensa hidratação dos grupos carregados foi observada. A folha $\beta$ é estabilizada por 9 LHI enquanto que a hélice- $\alpha$ o é por 16 ligações. Os resultados da simulação indicam que a estrutura experimental é fortemente induzida pelo meio micelar principalmente na região do $N$ terminal que não compreende a hélice- $\alpha$ bem estabilizada.
(CNPq, FAPESP)


# INFLUÊNCIA DE MUTAÇÕES ENI UM PEPTÍDEO HÍBRIDO CECROPINA/MAGAININA EM MEIO AQUOSO. 

Léo Degrève (PQ) ieoriobelix.ffcirp.usp.br, Niarcos R. Lourenzoni (PG), Giaucia M. da Silva (PQ)

Grupo de Simulação Molecular, Departamento de Quimica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo,

PALAVRAS CHAVES: simulação molecular, estrutura de proteinas, biofisica
A remoção da região GLY9, ILE10, GLY11, ou a substituição de TRP2 por Ala no peptídeo hibrido formado pelos residuos 1 a 8 da cecropina $A$ e 1 a 12 da magainina 2 (CA-M2), peptídeo que apresenta atividades antimicrobial e antitumoral sem atividade hemolitica, diminui fortemente o poder bactericida mas aumenta a atividade antitumoral destes mutantes, R1 e R2, em relação à CA-M2. A comparação entre as estruturas de CA-M2, R1 e R2 pode fornecer informaçōes relevantes quanto às diferenças de atividade entre esses peptideos. As estruturas de R1 e R2 dissolvidos em micelas de dodecilfosfocolina foram determinadas por RNM (D. Oh et al, Biochemistry, 2000, 39, 11855). Estas estruturas são comparadas através das ligações de hidrogênio intra (LHI) e intermoleculares (LH) assim como o desvio quadrático médio (dqm) em relação à estrutura experimental, resultados obtidos por simulações de dinâmica molecular (DM) aplicadas nas condiçōes de um peptídeo em meio aquoso, sistema modelado pelo campo de força Gromos96, restriçōes NVT, T=300K, usando as condiçōes usuais de condições periódicas. Os dados foram reunidos durante 2 ns após um periodo de equilibração de mais de 2 ns . A comparação entre as estruturas experimentais e de dinâmica molecular mostram alteraçōes principalmente na regiäo da dobra central ( Ile10,Gly11, Lys12) de ambos os peptídeos com dqm de $\approx 0.25$ (R1) e $\approx 0.5 \mathrm{~nm}(\mathrm{R} 2)$. As estruturas obtidas por DM de R1 e R2 têm semelhanças, conservam parcialmente as hélices- $\alpha$ encontradas experimentalmente. Elas diferem de CA-M2 pela perda total ou parcial da folha $\beta$. Além disso, R1 apresenta apenas 4 LHI enquanto que R2 apresenta 14 destas ligaçōes na hélice- $\alpha$ e entre a hélice e os resíduos Leu4 a lle8. Por outro lado, todos os átomos O eH (excluindo Lys18) de R1 formam LH. A solvatação da cadeia principal de R2 é menos intensa, principalmente em relação à $H$, uma vez que as LH são encontradas somente nas pontas e entre Gly9 e His15. Comparando-se as estruturas de R1 e R2, observa-se que estes peptídeos apresentam uma regiāo linear até o ponto de mutaçảo em R1 (Gly9) a partir do qual a ausência da Gly11 em R1 dificulta mas não impede a formação de uma hélice- $\alpha$ após a qual os peptídeos apresentam outra região linear. Deste modo, uma vez que as estruturas terciárias de R1 e R2 são similares assim como as suas atividades antibióticas e antitumorais, estas atividades devem estar mais intrinsicamente associadas à estrutura terciária que à secundária.
(CNPq, FAPESP)


# FORMAÇÃO DE ESTADO $S_{2}$ (TICT) APARTIR DA EXCITAÇÃO ELETRONICA DO CONIPOSTO 3-BENZOXAZOL-2-IL-7-(N,N-DIETILAMINO)-CROMEN-2-ONA 

Antonio Eduardo da Hora Machado (PQ), Rodrigo De Paula (PG), Juliana Ribeiro (PG) aeduardo@ufu:br Universidade Federal de Uberlândia - Instituto de Química - Laboratório de Fotoquímic̣a; Cx. Postal 593 CEP 38400-089- Uberlândia, MG

Palavras-chave: tict, b3lyp, método semi-empírico.
O composto 3-benzoxazol-2-il-7-(n,n-dietilamino)-cromen-2-ona é um derivado da cumarina que possui propriedades solvatocrômicas bem definidas, considerável estabilidade fotoquímica, além de rendimentos quânticos de fluorescência expressivos, que o fazem passível de uso como corante para lasers ou mesmo sonda fluorescente. O composto exibe fluorescência dual, a qual tem sido atribuída a um equilibrio entre os estados $S_{1}$ (LE) e $S_{2}$ (TICT). Na presente comunicação, apresentamos evidências acerca da existência do estado $\mathrm{S}_{2}$ (TICT) a partir de cálculos mecânico-quânticos.

A estrutura do estado fundamental fol modelada empregando o método da teoria do funcional de densidade (DFT, B3LYP/6-31G*), enquanto que a estrutura, além de outros parâmetros relativos aos estados $S_{1}, S_{2}$ e $S_{2}$ (TiCT), foi obtida por otimização, empregando o método ab initio Cl -Singles ( $\mathrm{RCIS} / 3-21 \mathrm{G}^{*}$ ). As energias dos estados e o espectro eletrônico da molécula foram calculados empregando a teoria do funcional de densidade dependente do tempo (TD-DFT, B3LYP/6-31G*) e o método semi-empírico PM3 (PM3-Cl):

Os momentos de dipolo para os estados $S_{1}$ e $S_{2}$ (TICT) sugerem que esses estados são mais polares que o estado fundamental, sendo $\mu\left(\mathrm{S}_{2}(\right.$ TICT $\left.)\right)>\mu\left(\mathrm{S}_{1}\right)$, mostrando-se bastante coerentes com o esperado. Os dados obtidos a partir de cálculos TD-DFT mostram que o estado $S_{1}$ possui energia ligeiramente superior à do $S_{2}$ (TICT), conforme se espera a partir das informações experimentais disponíveis, enquanto que a diferença de energia entre os estados $S_{2}$ e $S_{1}$ é suficientemente pequena para viabilizar o acoplamento vibrônico entre esses dois estados, viabilizando a formação do estado $S_{2}$ (TICT) e, conseqüentemente, o equilíbrio esperado. Este estado deve possuir o grupo dietilamino torcido cerca de $56^{\circ}$ em relação ao restante da molécula. O desacoplamento eletrồnico resultante dessa torção resulta no aumento de momento de dipolo esperado. Por limitações inerentes aos métodos semiempíricos, a diferença de energia entre os estados $S_{2}$ e $S_{1}$ e muito grande para justificar o fenômeno de fluorescência dual. No entanto, o nível de discrepância na previsã̃o da energia do estado $S_{1}$ é de cerca de $10 \%$, enquanto que na previsão do comprimento de onda máximo de absorção ( $\lambda_{\text {máx }}$ ) relativo à transição $S_{0} \rightarrow S_{1}$ é de cerca de $7 \%$. No caso do cálculo TD-DFT, a discrepância entre o teórico e o experimental é inferior a $2 \%$ para o $\lambda_{\text {máx, }}$ e a déscrição do espectro eletrônico é mais coerente com os obtidos experimentalmente em diferentes solventes. Ambos os métodos fornecem forças de oscilador para a transição $S_{0} \rightarrow S_{1}$ coerentes com o esperado para uma transição $\pi, \pi^{*}$, corroborando com os elevados valores de absortividade molar observados experimentalmente. (CNPq, FAPEMIG, CAPES, IQUFU)

# CARACTERIZAÇÃO FOTOFÍSICA, CRISTALOGRÁFICA E QUANTUM-MECANMCA DE DOIS ANÁLOGOS DE PSORALENOS 

Antonio Eduardo da Hora Machado ${ }^{1}(P Q)$, Silvana Guilardi ${ }^{1}$ (PQ), Jackson L.C. Resende ${ }^{1}$ (PG), Karynne C. Souza ${ }^{1}$ (IC), Grazielle B. de Oliveira ${ }^{1}$ (IC), Ana Maria<br>Ferreira de Oliveira-Campos ${ }^{2}$ (PQ)<br>aeduardo@ufu.br<br>${ }^{1}$ Universidade Federal de Uberlândia - Instituto de Quimica - Laboratório de Fotoquímica e Laboratório de Cristalografia e Química Computacional; Cx. Postal 593; CEP 38400-089 Uberlândia, MG ()<br>${ }^{2}$ Centro de Quimica, IBQF, Universidade do Minho, Campus de Gualtar, 4710 Braga, Portugal Palavras-chave: psoralenos, tfd, métodos semi-empíricos.

Benzopsoralenos pertencem à classe das furanocumarinas. Estas são freqüentemente drogas fotosensibilizadoras empregadas em fototerapia, no tratamento de afecções de pele caracterizadas por condições hiperproliferativas, infecções associadas à AIDS, e na descontaminação de sangue [1,2]. A introdução de um anel benzênico fundido ao furano, ou a adição de substituintes volumosos ou aceptores de elétron ao anel pirona tem sido propostos como meios capazes de inibir a formação de adutos com o DNA [3]. Adicionalmente, Gia et al [2] tem proposto que a introdução de um grupo ester ao benzopsoraleno pode fornecer derivados capazes de fotossensibilizar a geração de oxigênio singlete com elevada eficiência, o que tem sido confirmado, em trabalhos recentes, para os compostos apresentados nesta comunicação [4,5]. Na presente comunicação, são empregados cálculos mecânico-quânticos de modo a obter informações que possibilitem subsidiar a caracterização fotofísica de dois análogos de psoralenos. As estruturas dos compostos 3 -etóxicarbonil-benzofuro $[2,3-\mathrm{g}]$ cumarina e 3 -etóxicarbonilbenzofuro [2,3-h] cumarina foram otimizadas por PM3 e por um método da teoria do funcional de densidade (TFD, B3LYP/6-31G*), e comparadas com a descrição obtida por difração de raios-X. Esses compostos cristalizam em grupos espaciais diferentes ( PI e $\mathrm{P} 2_{1 / n}$, respectivamente). Interações intermoleculares do tipo $\mathrm{C}-\mathrm{H}$...O mantém o empacotamento cristalino e o grupo éster em plano próximo ao do esqueleto benzopsoraleno. Na sobreposição dos anéis, as moléculas otimizadas (moléculas isoladas) pela aplicação da TFD apresentam os menores desvios quadráticos médios com relação às estruturas cristalinas: Por outro lado, não há qualquer concordância quanto à disposição espacial do grupo éster. As estruturas otimizadas por DFT foram usadas na obtenção de dados relativos aos estados excitados (energias de estados, geometrias e espectros eletrônicos). As geometrias desses estados foram otimizadas empregando a abordagem Cl -Singles ( $\mathrm{RCIS} / 3-21 \mathrm{G}^{*}$ ), enquanto que as energias dos estados e os espectros eletronicos foram obtidos empregando a teoria do funcional de densidade dependente do tempo (TFD-DT, B3LYP/6-31G*) e os métodos semi-empíricos PM3 e ZINDO/S, e os resultados foram comparados com dados experimentais disponíveis. O cálculo das energias dos estados excitados, feita por TFD-DT, indica a existência de dois estados triplete com energia inferior à do $S_{1}\left(\pi, \pi^{*}\right)$, confirmando proposta feita anteriormente, baseada em estimativas obtidas por cálculo semi-empírico e suportadas experimentalmente, de que $T_{1}$ é também $\pi, \pi^{\star}[4,5]$. A discrepância entre os dados teóricos e experimentais é de, no máximo, $10 \%$, muito menor que a fornecida por métodos semi-empíricos. Conforme insinuado pela análise dos dados experimentais [5], a diferença de energias entre os estados singlete, obtida por TFD-DT, indica forte tendência de mistura de estados. Considerando-se os métodos semi-empíricos estudados, enquanto o ZINDO/S descreve melhor os espectros eletrônicos, o PM3 apresenta uma melhor descrição das energias dos estados. Todos os métodos fornecem, para os dois análogos, forças de oscilador para a transição $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$ compatíveis com transição $\pi, \pi^{*}$. (CNPq, FAPEMIG, CAPES, IQUFU)

[^21]
## ESTUDO AB INITIO E DFT DE AFINIDADES ELETRÔNICAS DE MOLÉCULAS DIATÔMICAS

João E. V. Ferreira (PG) ${ }^{1}$, José C. Pinheiro (PQ) ${ }^{1}$, Jardel P. Barbosa (PG) ${ }^{1}$, Ilfran $S$. Nava Júnior (IC) ${ }^{1}$, Oswaldo Treu Filho (PQ) ${ }^{2}$ e Rogério T. Kondo (PQ) ${ }^{3}$ joaoeliasferreira@bol.com.br

1- Departamento de Quimica, Universidade Federal do Pará, Belém, PA, Brasil.
2- Institutto de Química, Universidade Estadual Paulista, Araraquara, SP, Brasil.
3- Centro de Informática de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil. Palavras-chave: afinidade eletrônica, cálculos ab initio, conjuntos de base

A afinidade eletrônica é uma propriedade que caracteriza a estabilidade do ânion relativa ao sistema neutro, por isso ela é de grande importância, principalmente na química de íons em fase gasosa. Neste trabalho, afinidades eletrônicas para uma série de espécies moleculares constituídas por átomos do primeiro, segundo e terceiro períodos ( $\mathrm{NaCl}, \mathrm{PO}, \mathrm{P}_{2}$, ClO e $\mathrm{Cl}_{2}$ ) foram obtidas. Inicialmente, conjuntos de bases gaussianas foram construídos com a ajuda do Método da Coordenada Geradora Hartree-Fock (MCGHF) para os átomos constituintes das moléculas. Posteriormente, esses conjuntos de bases foram contraídos, segundo o esquema de Dunning, e suplementados com funções de polarização e difusas. Finalmente, cálculos com as espécies moleculares e iônicas foram desenvolvidos. Os cálculos foram feitos nos níveis ab initio (HF, MP2 e MP4) e DFT (B3LYP).

Na Tabela l são mostradas as afinidades eletrônicas obtidas com os métodos HF, MP2 e DFT e os valores experimentais reportados na literatura. Os valores absolutos dos desvios obtidos entre os nossos resultados e os dados experimentais também são dados nessa tabela.

A comparação entre os cálculos HF, MP2 e DFT e os valores experimentais para as afinidades eletrônicas das moléculas estudadas mostra que o método MP2 é quet apresenta melhor performance na descrição dessa propriedade.

Tabela I. Afinidades eletrônicas ( eV ) para as moléculas $\mathrm{NaCl}, \mathrm{PO}, \mathrm{P}_{2}, \mathrm{ClO}$ e $\mathrm{Cl}_{2}$ obtidas com a base molecular 7s5p3d incluindo duas funcões difusas de simetrias e $p$ para a espécie iônica

Método

| Moléculas | HF | $\left\|\Delta_{1}\right\|$ | $\mathrm{MP2}$ | $\Delta_{2} \mid$ | DFT | $\left\|\Delta_{3}\right\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NaCl | 0,8871 | 0,1602 | 0,7488 | 0,0218 | 0,6474 | 0,0796 |
| $\mathrm{PO}^{\mathrm{a}}$ | 0,7460 | 0,3440 | 1,253 | 0,1941 | 1,3245 | 0,2345 |
| $\mathrm{P}_{2}$ | $-0,5065$ | 1,0955 | 0,6887 | 0,0997 | 0,7699 | 0,1809 |
| $\mathrm{ClO}^{\mathrm{a}}$ | $-0,5863$ | 2,7563 | 1,945 | 0,225 | 1,7322 | 0,4378 |
| $\mathrm{Cl}_{2}$ | 3,0049 | 0,6249 | 2,263 | 0,1170 | 2,1701 | 0,2099 |

[^22]
## P216

# ESTUDO DA ESTRUTURA DE ÁGUA INTERCALADA EM 

# argilas sintéticas uthlzando "generalized SIMULATED ANNEALING-GSA" 

Geraldo J. da Silva ${ }^{* 1}$ (PQ); Kleber C. Mundim ${ }^{2}$ (PQ), Jon O. Fossum ${ }^{3}$ (PQ).<br>geraldo @ fis unb br<br>${ }^{1}$ Instituto de Física, Universidade de Brasilla, CP 04455, 70919-970, Brasilia-DF, Brasil.<br>${ }^{2}$ Instituto de Química, Universidade de Brasilia, CP 04478, 70919-970, Brasilia-DF, Brasil.<br>${ }^{3}$ Departament of Physics, NTNU, NO-7491, Trondheim, Norway.<br>Palavras-chave intercalação, argilas, gsa.

As argilas são nano-silicatos que entre os sólidos läminares apresentam a maior dureza assim como uma grande figidez contrária a distorções transversäis às suas camadás. Argilas apresentàm a propriedade única de serem 'empilhadas' devido à intercalação de fons, tornando seu estudo de fündamental importância dentro do contexto geral dos "nano-sanduiches" formando base para nanotecnologias: O tamanho pequeno das partículas e a estrutura de micro e nano poros das argilas dá a elas sua importante capacidade de absorver água. Uma argila hidratada é um sistema complexo, e as interações entre cátions das inter-camadas, moléculas d'ạgua e a superfície carregada do silicatos levam à propriedades estruturais e dinâmicas de hidratação ainda não muito bem entendidảs. A maioria das argilas naturais são misturas muito heterogêneas de vários minerais e isto causa dificuldades para o seu estudo tanto teórico como experimental. Entretanto, argilas bem puras podem ser sintetizadas agora, sob bom controle químico e estrutural, permitindo assim, uma investigaçáo detallhada incluindo os recentes avanços de medidas na escala atômica assim como ressonância magnética, síncrotron e outras técnicas modernas. A análise de dados destes éstudos geralmente requer procedimentos computacionais sofisticados culminando em refinamento e validação da estrutura. As funções utilizadas para estas otimizações normalmente dependem de vários parầmetros atồmicos como, por exemplo, de coordenadas atômicas. O grande número de parâmetros ajustados produz o que é chamado problema de múltiplos mínimos: onde a função a ser ajustada possui muitos mínimos locais em adição ao mínimo global. Estes minimo's locais teñdèm a mascarar resultados obtidos por técnicas de otimização tais como as de mínimos-quadrados ou de gradiente conjugado. Estés métodos são simplesmente incapazes de achar um modelo ótimo de conformação molecular se o ponto de partida está distante da correta estrutura. O método GSA [1], é uma técnica de otimização estocástica muito bem adaptada para lidar com este problema de múltiplos mínimos. Esta técnica é mais rápida para detectar mínimos que os métodos tradicionais e mesmo os considerados rápidos de "simulated annealing". Neste trabalho apresentamos resuitàdos de estudos de intercalação d'água na argila sintética expansível Fluorohectorita utilizando o método GSA (generalized simulated annealing). Esta argila tem suas plaquetas formadas por duas folhas tetraédricas invertidas de silício compartilhando seus oxigênios apicais com uma folha octaédrica entre elas. A Fluorohectorita tem fórmula química por semi-célula unitária $\mathrm{M}_{x}\left(\mathrm{Mg}_{3}-\mathrm{L} \mathrm{L}_{x}\right) \mathrm{Si}_{4} \mathrm{O}_{10} \mathrm{~F}_{2}$, onde $M$ se refere ao cátion da inter-camada. E também classificada com uma esmectita trioctaédrica com átomos de $\mathrm{Li}^{+}$substituindo átomos de $\mathrm{Mg}^{2+}$, e têm a folha octaédrica completamente cheia. A proporção " $x$ " dos átomos de Li detérminam a carga superficial das plaquetas que são mantidas unidas entre si em uma estrutura de pilhas pela presença do cátion M na inter-camada. Esta difere das Hectoritas naturais por ter o grupo OH trocados por $F$; além de apresentar dimensões superficiais de até $10 \mu \mathrm{~m}$. A água pode intercalar entre suas plaquetas fazendo com que estas se expandam mostrando a existência bem ordenada, ao longo da direção de empilhamento, de 1,2 ou mais camadas d'água intercaladas. Dados fornecidos pela técnica de difração de Raios-X [2], tais como parâmetros estruturais e distâncias existentes na direção de empilhamento como função dos estados de hidratação e do tipo de íon intercalante, nos permite estudar diferentes populações de água intercalada [3], neste tipo de argila. Refinamento para alguns potenciais de interação entre pares argila-água e argila-cátion são também obtidos. Nossos resultados mostram que o método GSA é uma poderosa ferramenta não só para a análise de dados experimentais como para a obtenção de parâmetros teóricos que alimentam novas simulações e estas por sua vez possam sugerir novos experimentos.

# DETERIMINAÇÃO DO ESTADO FUNDAMENTAL DAMOLÉCULA DE HIDROGÊNIO ATRAVÉS DA EQUAÇÃO DE HAMILTONJACOBI E INTEGRAIS DE AÇÃO. 

Daniel L. Nascimento (PG), Antonio L. de A. Fonseca (PQ) alaf@fis.unb.br<br>Instituto de Fisica - Universidade de Brasilia-C. Postal 04455<br>CEP 70919-970 - Brasilia -- DF<br>Palavras-chave: Molécula de hidrogênio, Hamilton-Jacobi, Integrais de ação:

É feita uma nova análise do problema da molécula de hidrogênio através da teoria clássica de Hamilton-Jacobi, combinada com as regras de quantização de Sommerfeld, onde se mostra que ela é capaz de prever aproximadamente o valor da energia de ligação da molécula no estado fundamental.

A determinação é feita de forma simples, utilizando uma Hamiltoniana simétrica nas posições dos elétrons para o problema de quatro corpos. Ela é expressa em termos da soma de uma Hamiltoniana de rotação mais uma Hamiltoniana de vibração. A Hamiltoniana de rotação corresponde a um próblema éfetivo de um corpo nas coordenadas de um elétron, onde os efeitos das outras variáveis ficam contidos dentro de uma função de carga efetiva do sistema. Já a Hamiltoniana de vibração é expressa nas coordenadas radial; polar e de separação entre os núcleos, de onde resultam, através da diagonalização da função de energia potencial do sistema, problemas de osciladores harmônicos em cada uma daquelas coordenadas.

O problema de rotação de um corpo é então resolvido pelo método de quadratura, com quantização realizada através da regra de Sommerfeld para uma órbita efetiva circular, de onde resultam expressões para a energia e o ráio orbital em função da carga efetiva. Uma vez resolvido o problema de vibração, o restante do cálculo é realizado por iteração sobre o valor de equilibrio do raio orbital do elétron considerado como referência. Os valores de equilibrio encontrados para os raios dos elétrons foram 0,874 ua e e valor de equilíbrio para a energia eletrônica do estado fúndamental foi encontrado próximo do valor experimental de $-31,94 \mathrm{eV}$. Para a energia de ligação foi obtido um valor próximo do valor experimental que e de $-4,74 \mathrm{eV}$. Obtém-se também, no limite quando a distância entre os núcleos é considerada infinita, o valor exato correspondente a energia de dois átomos de hidrogênio ìsolados e no limite quando ela tende a zero o valor correspondente à energia do estado fundamental do átomo de hêlio.

Concluímos, portanto que a teoria de Hamilton-Jacobi é capaz de fornecer uma solução estável para o problema do estado fundamental da molécula de hidrogènio, que não é exata devido às simplificações do modelo, e também é capaz de fornecer os limites assintóticos por um lado para o estado fundamental do átomo de hélio e por outro lado para dois átomos de hidrogênio isolados.

# DETERMINAÇÃO DO ESTADO FUNDAMENTAL DO ÁTOMO DE HÉLIO ATRAVÉS DA EQUAÇÃO DE HAMILTON-JACOBI. 

Antonio L. de A. Fonseca (PQ), Daniel L. Nascimento (PG)<br>alaf@fis.unb.br<br>Instituto de Física - Universidade de Brasilia - C. Postal 04455<br>CEP 70919-970 - Brasília -DF<br>Palavras-chave: Hélio, Hamilton-Jacobi, Integrais de ação.

Resolvemos o problema do átomo de Hélio através da teoria clássica de HamiltonJacobi onde se mostra que ela é capaz de prever corretamente o valor da energia de ligação do átomo no estado fundamental.

Deve-se lembrar a primeira tentativa de resolver esse problema foi realizada por Bohr em 1914, o que resultou numa energia de ligação de apenas -7,0eV e levou à conclusão de que a teoria quântica de Bohr era inapropriada para a análise de problemas de mais de uma partícula. O resultado de Bohr foi obtido por aplicação direta da formulação newtoniana, sem a minimização de energia, sendo considerado por ele desde o início a hipótese aparentemente trivial de que os raios dos dois elétrons deveriam ser iguais, o que o levou a uma energia eletrônica de apenas - $61,40 \mathrm{eV}$ e daí ao suposto colapso do modelo.

No nosso trabalho a determinação é feita de forma simples, expressando a Hamiltoniana do problema de três corpos como a Hamiltoniana de um problema efetivo de um corpo nas coordenadas de um elétron, ficando os efeitos das outras variáveis contidos dentro de uma função de carga efetiva do sistema. O problema de um corpo é então resolvido pelo método de quadratura, com quantização realizada através da regra de Sommerfeld para uma órbita efetiva circular, de onde resultam expressões para a energia e o raio orbital em função da carga efetiva. O cálculo é feito por iteração sobre o valor de equilíbrio do raio orbital do elétron considerado como referência. Os valores de equilíbrio encontrados para os raios dos elétrons foram 0,42ua e 0,60ua, sendo portanto diferentes. O valor de equilibrio para a energia eletrônica do estado fundamental foi de $-78,38 \mathrm{eV}$, contra $-78,90 \mathrm{eV}$ da experiência, e para a energia de ligação foi obtido - $23,98 \mathrm{eV}$, que é cerca de $2 \%$ inferior ao valor experimental que é de $-24,57 \mathrm{eV}$. Obtém-se também, no limite quando a distância de um dos elétrons ao núcleo é considerada infinita, o valor exato para a energia do íon de hélio que é $-54,4 \mathrm{eV}$ e o raio de equilíbrio de 0,5ua exatos.

Em resumo mostramos que a teoria de Hamilton-Jacobi combinada com a regra de quantização de Sommerfeld é capaz de fornecer uma solução estável para o problema do estado fundamental do átomo de hélio, que não é exata devido às simplificações do modelo, e também é capaz de fornecer o limite assintótico exato para o estado fundamental do íon de hélio.

# STRUCTURE OF THE 5a,6-ANHYDROTETRACYCLINEPLATINUM(II)DICHLORIDE COMPLEX: A THEORETICAL STUDY 

Hélio F. Dos Santos (PQ) ${ }^{1}$ and Wagner B. De Almeida (PQ) ${ }^{2}$<br>helius@quimica.ufjf.br<br>${ }^{1}$ NEQC: Núcleo de Estudos em Química Computacional Departamento de Química - ICE - Universidade Federal de Juiz de Fora:<br>${ }^{2}$ LQC-MM: Laboratório de Química Computacional e Modelagem Molecular<br>Departamento de Quimica - ILEx - Universidade Federal de Minas Gerais

Keywords: tetracyclines, antitumor drugs, cisplatin analogues.
Tetracyclines constitute a class of broad spectrum antibiotics widely used in the past. These molecules are well known by their ability to coordinate metal ions that represents important processes for the action mode and also for the side effects of this class of molecules. Aiming to understand the structure and properties of tetracycline at molecular level we have used theoretical methodology to analyze conformation ${ }^{1-2}$, complexation processes ${ }^{3-4}$, spectroscopic properties ${ }^{5-7}$ and inclusion compounds with cyclodextrin ${ }^{8}$. Our results have been useful for the experimentalists to characterize coordination modes with $\mathrm{Mg}(11)^{9}$ and $\mathrm{Pt}(11)^{10}$. Quite recently it has been observed that tetracyclines inhibit the growth of certain tumors ${ }^{10}$, by binding DNA by intercalation. This finding has motivated the synthesis of $\mathrm{Pt}(\mathrm{II})$ complexes with tetracycline aiming to obtain new compounds, analogues to cisplatin, with lower toxicity and drug resistence ${ }^{10}$. The $5 \mathrm{a}, 6$-anhydrotetracyclineplatinum(II)dichloride (AHTC-Pt) complex was synthesized by A. Vogler and coworkers ${ }^{8}$ from tetracycline in glacial acetic acid at $70^{\circ} \mathrm{C}$ in the presence of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$. The stoichiometry determined from elemental analysis was $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Cl}_{2} \mathrm{Pt}$ with the coordination mode assigned as ring A according to the UV/Vis spectrum. This proposal was based on our analysis for the Zn (II)-AHTC complexation process ${ }^{3}$.

In the present study, the structure $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Cl}_{2} \mathrm{Pt}\right)$ and relative stability of distinct coordination modes for AHTC-Pt (Fig. 1) were obtained in gas phase and solution. The geometries and thermodynamic properties were calculated in gas phase at HF/6$31 \mathrm{G}^{*}(\mathrm{~N} ; \mathrm{O} ; \mathrm{Cl}) / 3-21 \mathrm{G}(\mathrm{C} ; \mathrm{H}) /$ /LANL2DZ(Pt) level of theory. The solvent effect was including using the PCM-UAHF continuum model with the dielectric constant set to 6.15 (acetic acid).

(acetic acid global minimum)


Figure 1


III
(gas phase global minimum)

In gas phase the coordination mode IIIA was found to be more favorable (Fig. 1) and in solution the mode VA (Fig. 1) is preferred relative to IIIA by $2.5 \mathrm{kcal} / \mathrm{mol}$. Our results is in qualitative agreement with the experimental proposal that suggest the complexation at ring $A$. Work is in progress aiming to characterize the complex using NMR and IR spectroscopy.

[^23]
# SÍTIOS ÁCIDOS EM NB ${ }_{2} \mathrm{O}_{5}, \mathrm{Al}_{2} \mathrm{O}_{3}$ E SiO ${ }_{2}$ 

Tiago A. S. Fiaho(iC) ${ }^{1}$, João B. L. Martins(PO) ${ }^{1 *}$, Valdeilson S. Bragra(PG) ${ }^{1}$, S.C.L. Dias(PQ) ${ }^{1}$, J. A. Dias(PQ) ${ }^{1}$, Júlio R. Sambrano(PQ ${ }^{2}$<br>lopes@unb.br:<br>1. Universidade de Brasília, Instituto de Química, CP 04478, Brasilia, DF, CEP 90719-970<br>2. Laboratório de Simulação Moelcular-DM- Universidade Estadual Paullista, Unesp,Caixa Postal 473, Bauru, SP, 17033-369<br>Palavras-chave: $\mathrm{Nb}_{2} \mathrm{O}_{5}$, sítios ácidos; Oniom

A acidez de superfícies de óxido de nióbio pode ser modificada quando suportado em $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{SiO}_{2}$. Para muitas das reações químicas a acidez da superfície pode influenciar cátaliticamente. $\mathrm{Nb}_{2} \mathrm{O}_{5}$ é um isolante, apresentando modificações polimórficas de grande importância parà materiais piezzoelétricos,: além de interessantes aplicações em catálise. 0 pentóxido de nióbio ocorre em, no mínimo oito diferentes formas polimórficas dependentes da temperatura e pressão ${ }^{1}$. Em geral, regiões de fases de baixa temperatura como $\mathrm{B}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ e N $\mathrm{Nb}_{2} \mathrm{O}_{5}$ e de alta temperatura como $\mathrm{H}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ e $\mathrm{L}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ estão bem identificadas naliteratura ${ }^{1,2}$.
$\mathrm{Nb}_{2} \mathrm{O}_{5}$ tem sido utilizado como suporte, adicionado para modificar a superfície ou qưimicamente mistúrado em outros óxidos.. Em geral estas superficies apresentam acidez. Portanto, existe um grande interesse em entender mais sobre a estrutura do $\mathrm{Nb}_{2} \mathrm{O}_{5} . \mathrm{A}$ exposição a sítios ácidos de Lewis(átomos de metal) e Bronsted(grupos doadores de prótons OH ) em superfícies sólidas é uma das principais condições para aplicações que envolvam adsorção e catálise. O objetivo deste trabalho é determinar teoricamente os sítios ácidos da superfície de $\mathrm{Nb}_{2} \mathrm{O}_{5}$, através da adsorção de piridina, bem como relacionar o efeito dos outros dois óxidos $\mathrm{Al}_{2} \mathrm{O}_{3}$ e $\mathrm{SiO}_{2}$, os quais são utilizados como suporte.

Cálculos em nível ab initio de óxidos de metais de transição, como o $\mathrm{Nb}_{2} \mathrm{O}_{5}$, apresentam uma grande demanda computacional Desta forma, o uso de uma metodologia híbrida é bastante interessante, possibilitando descrever o sítio ácido com maior precisão. Neste trabalho foi utilizado o método híbrido ONIOM, com o nivel de Funcional de Densidade, BPW91 e base do ECP de Hay e Wadt, Lanl2dz, para o sítio ácido e o adsorvente piridina, enquanto que a mecânica clássica, com o campo de força UFF, foi utilizado no restante do aglomerado. As estruturas foram completamente otimizadas.
$\mathrm{Nb}_{2} \mathrm{O}_{5}$ apresenta várias modificações polimóficas. Neste estudo fol utilizada a fase denominada de $\mathrm{Z}-\mathrm{Nb}_{2} \mathrm{O}_{5}$, estável em temperaturas na faixa de $1100^{\circ} \mathrm{C}$. A estrutura cristaliza-se na forma monoclínica, com uma unidade básica com nióbio em coordenação 6 e os átomos de oxigênio em configurações octaédricas. Foram utilizados os parâmetros de rede da estrutura Z$\mathrm{Nb}_{2} \mathrm{O}_{5}$, grupo espacial C 2 , são $a=5,2193 \AA$, $b=4,6995 \AA, c=5,9285 \AA$, beta $=108,559^{\circ}$. Para $\mathrm{SiO}_{2}$ $\left(\mathrm{P6}_{2} 22\right)$ e $\mathrm{Al}_{2} \mathrm{O}_{3}(R \overline{3} c)$, foram utilizados os parâmetros de rede: $\mathrm{a}=5,01 \mathrm{~A} / \mathrm{b}=5,47 \AA$ e $\mathrm{a}=4.7602 \AA / \mathrm{c}=12,9933 \AA$, respectivamente ${ }^{3}$.

Resultados experimentais da interação de piridina em superfícies de óxidos são relacionados principalmente ao espectro de infra-vermelho ${ }^{4}$, mostrando uma interação do nitrogênio da piridina com o metal, sendo sugerida uma configuração perpendicular à superfície. Os estudos teóricos preliminares corroboram esta estimativa experimental, na qual a piridina em direção perpendicular à superfície é mais estável. Três tentativas de interação foram realizadas para determinar a acidez: piridina-metal, piridina protonada-oxigênio(óxido) e piridina-hidroxila(óxido). Os resultados são comparados com dados experimentais e teóricos da literatura: (Cenapad/SP, CNPq).

1- J. L. Waring, R.S. Roth, e H. S. Parker, J. Res. Nat. Bur. Stand., 77A (1973), 705
2- E.M. Kuznetsova, L.A. Reznichenko, O.N. Razumovskaya, L. A. Shilkina, Tech. Phys. Lett.; 27 (2001) 36

3- A. F. Wells, Structural Inorganic Chemistry, Oxford : clarendon, 1952, 2 ed.
4- C. Hernandez, A.C. Pierre, Langmuir, 16 (2000) 530

# ESTUDO TEÓRICO DA REGIOSELETIVIDADE DE REAÇÃO DE ACOPLAMENTO OXIDATIVO PARA A FORMAÇÃO DE EUSIDERINAS 

Fernando C. Rangel ${ }^{1 *}(I C)$, Raquel $F$. Santos ${ }^{1}(\mathrm{PQ})$, Pedro Ferri ${ }^{1}(\mathrm{PQ})$ e Elaine Maia ${ }^{2}$ (PQ)<br>fernando.cesario@zipmail.com.br<br>${ }^{1}$ Instituto de Química, Universidade Federal de Goiás, Campus II, Goiânia, GO, 74001-970<br>${ }^{2}$ Instituto de Química, Universidade de Brasilia, Campus Darci Ribeiro, Brasilia, DF, 70910-970

Palavras-chave: regiosseletividade, eusiderinas, AM1.
As eusiderinas (neolignanas benzodioxânicas), isoladas das espécies Eusideroxylon, Aniba e Licaria (Lauraceae) e Virola (Myristicaceae), possuem estruturas relativamente simples, o núcleo 1,4 benzodioxano é de considerável interesse devido a sua atividade biológica. A sua síntese foi proposta por Merlini, através de um mecanismo de acoplamento oxidativo de fenóis na presença de $\mathrm{Ag}_{2} \mathrm{O}$. Utilizando-se do procedimento de Merlini preparouse os diastereoisômeros do 3-(4-hidroxi-3-metoxifenil)-8-hidroxi-2-metil-2,3-dihidro-1,4benzodioxina usando-se pirogalol e isoeugenol conforme a reação:


Os produtos da reação foram os diastereoisômeros da espécie A na razão 21:1 de A1/A2 ( ${ }^{1} \mathrm{H}-\mathrm{RMN}$ ), este fato pode ser explicado por impedimento estérico da metila em $\mathrm{C}-2$. Os regioisômeros $B 1 / B 2$ não foram obtidos de acordo com os dados de R-X do derivado diacetilado A1/A2. Neste trabalho, obteve-se uma explicação para a formação preferencial e seletiva de A1, através do estudo quântico dos radicais pirogalil, 2-pirogalil e fenoxil: Minimizações de energia destes radicais foram feitas utilizando-se o métcdo UHF/AM1 em benzeno como solvente, implementado em TSAR 3.3 for Windows. Os resultados mostraram que a diferença nos calores de formação entre o pirogalil e o 2-pirogalil é da ordem de 2,60 $\mathrm{kcal} / \mathrm{mol}$, sendo o radical 2-pirogalil o mais estável. As isosuperfícies de spin ( 0,02 elétrons $/ \mathrm{A}^{3}$ ) , utilizando-se como propriedade o orbital SOMO, calculadas por TITAN 1.0 , contribuíram para a interpretação da reação preferencial do 2 -pirogalil frente ao pirogalil, resultado de uma densidade de spin do radical 2 -pirogalii $\left(0,082\right.$ elétrons $\left./ A^{3}\right)$ ser maior do que o pirogalii $\left(0,074\right.$ elétrons $\left./ \AA^{3}\right)$. Outro fator considerado importante para a elevada seletividade consistiu nos valores de energias dos orbitais SOMO das espécies radicalares, sendo que a do 2pirogalil ( $-9,29 \mathrm{eV}$ ) está mais próxima da energia do orbital SOMO do grupo fenoxil $(-8,80 \mathrm{eV})$, relativamente ao SOMO do pirogalil ( $-9,56 \mathrm{eV}$ ). Por outro lado, as espécies quinonóides intermediárias $A$ e $B$ foram também minimizadas por RHF/AM1 em benzeno como solvente, resultando nos calores de formação de $-722,96$ e $-2.874,80 \mathrm{kcal} / \mathrm{mol}$, respectivamente, o que contribuiria termodinamicamente para a formação da espécie B. Assim, sugere-se que o controle cinético da reação seja o responsável pela alta regiosseletividade observada. (CNPq, FUNAPE e ACCELRYS, Inc.).

# FORMAÇÃO DE ETANO EM SUPERFÍCIE DE Cu/ZnO 

João B. L. Martins(PQ), Carlton A. Taft $(P Q)^{2}$; Elson Longo $(P Q)^{3}$<br>lopes@unb.br<br>1. Universidade de Brasília, Instituto de Química, CP 04478, Brasilia, DF, CEP 90719-970<br>2. Centro Brasileiro de Pesquisas Físicas, DMF, R. Xavier Sigaud, 150, Rio de Janeiro, R.J. CEP 22290-180<br>3. Departamento de Química, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP, 13565-905

Palavras-chave: hidrogenação, ab initio, oniom


#### Abstract

A. hidrogenação de olefinas é uma classe de reações em superfícies bastante estudada; onde seus intermediários reativos foram observados espectroscopicamente. Estudos desta reação sugerem, que o mecanismo inclua os seguintes processos: | $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}(\mathrm{ad})$ |  |
| :--- | :--- |
| $\mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{ad})+\mathrm{H}$ | $\longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{ad}) \quad$ |
| $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad$ (etapa rápida) |  |
| (etapa lenta) |  |


Tal esquema é consistente com uma variedade de dados incluindo estudos cinétic̣os, de troca, quimissorção e infravermelho. Quando deutério reage com etileno sobre metais uma distribuição de etanos com fórmula $\mathrm{C}_{2} \mathrm{H}_{6-x} D_{x}(0<x<6)$ é formada. Experimentalmente a hidrogenação sobre um óxido é mais simples que em metais: a hidrogenação de eteno usando deutério em óxido produz apenas $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{D}_{2}$. Portanto, o primeiro passo desta reação deve ser irreversível. Esșa adição 1-2 de deuterio limpa para olefinas sobre óxidos não é encontrada a altas temperaturas. Dent e $K_{0 k e s}{ }^{2}$ mostraram dois tipos de adsorção de hidrogênio em superfície de ZnO : Tipo I rápido e reversível e Tipo II irreversível. O tipo II não participa da hidrogenação do etileno à temperatura ambiente, mas modifica o catalisador e aumenta sua atividade.

Eteno é normalmente adsorvido quase que exclusivamente através de uma fraca ligação, do complexo $\pi$. As espécies adsorvidas tem freqüência centradas ao redor de $1602 \mathrm{~cm}^{-1}$, podendo ser de uma completa hidrogenação [3]. Este pico foi interpretado como uma evidência de uma forma adsorvida quimicamente do etileno.

Foram realizados cálculos semi-empíricos e ab initio com pseudopotencial Lanl2dz, para o estudo da interação de etano e eteno em superfícies ( $10 \overline{1} 0$ ) de ZnO dopado com cobre substitucional. Foram utilizados os programas MOPAC7.0, Gaussian98 e Spartan. As súperfícies foram estudadas dentro de um modelo de aglomerado dividido em duas camadas: ab initio/LanL2dz e campo de força/Dreiding, utilizando um modelo de ( ZnO$)_{114}$ (Figura 1). A geometria dos modelos de ZnO foram obtidas dos dados cristalográficos, com relaxamento obtido de dados experimentais. A interação de etano e eteno em óxido de zinco com cobre substitucional foi estudada, com otimização completa do sítio de adsorção, na tentativa de descrever o sítio ativo mais estável para estas interações. Os resultados demonstraram que a carga na ligação C-C diminui com relação a espécie adsorvida em $\mathrm{ZnO}: \mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{5}>\mathrm{C}_{2} \mathrm{H}_{6}$. Este comportamento deve-se provavelmente a formação da interação do tipo $\pi \mathrm{com} 0 \mathrm{Zn}(2+)$, em concordância com sugestōes da literatura. A energia de adsorção para o eteno fol encontrada de $45 \mathrm{~kJ}^{\mathrm{J}} \mathrm{mol}^{-1}$, comparável com os valores experimentais [2]. O calor de hídrogenação semi-empírico de $136 \mathrm{~kJ} . \mathrm{mol}{ }^{4}$ e comparável ao valor experimental. CNPq; Cenapad/SP


# METANOL EM SUPERFÍCIE DE ZnO E Cu/ZnO 

João B. L Martins(PQ) ${ }^{1}$, Carlton $A \operatorname{Taft}(P Q)^{2}$, Elson Longo(PQ) ${ }^{3}$<br>lopes@unb.br<br>1. Universidade de Brasília, Instituto de Química, CP 04478, Brasilia, DF, 70919-970<br>2. Centro Brasileiro de Pesquisas Físicas - Departamento de Matéria Condensada e Física Estatística, R. Xavier Sigaud, 150, Rio de Janeiro, R.J., 22290-180<br>3. Departamento de Química - Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP, 13565-905<br>Palavras-chave: metanol, adsorção, ZnO .

Existe um interesse considerável em entender a interação de moléculas em superfícies de óxidos metálicos. O papel da adsorção em óxidos metálicos é de central importância em muitas das aplicações tecnológicas, tais como sensores de gases. Muito das interações entre metais e óxidos metálicos em sistemas suportados determinam uma parte importante das propriedades destes sistemas.

O óxido de zinco é o componente principal do conhecido catalisador Cu/ZnO para a síntese de metanol, a partir de misturas $\mathrm{CO} / \mathrm{H}_{2}$ e $\mathrm{CO} 2 / \mathrm{H}_{2}$. Pré-tratamentos com $\mathrm{CO} / \mathrm{H}_{2}$ podem influenciar a formação de metanol Espécies metóxido são formadas neste pré-tratamento, sendo rapidamente hidrolisada pela água adsorvida. A síntese do metanol requer temperaturas e pressõ̃es elevadas para atingir a reação em fase gás. A síntese com dopagem de cobre, $\mathrm{Cu} / \mathrm{znO}$, é ativa em condições de temperatura e pressão muito menos drásticas. A barreira de ativação é de apenas $18 \mathrm{kcal} / \mathrm{mol}$ com Cu/ ZnO contra $30 \mathrm{kcal} / \mathrm{mol}$ em presença de ZnO .

A interação de moléculas de $\mathrm{CO}, \mathrm{CO}_{2}$ e $\mathrm{H}_{2}$ em superfície de $\mathrm{ZnO}(10 \mathrm{I} 0)$ e $\mathrm{Cu} / \mathrm{ZnO}$ tem importante aplicações na formação catalítica do metanol. Desta forma, cálculos HartreeFock foram realizados no nível de função de base 3-21G, com o objetivo de estudar a formação de metanol. Modelos de aglomerados foram usados para descrever a superfície, em conjunto com modelos de pontos de carga, os quais foram usados para embeber o aglomerado e prevenir os efeitos devido ao tamanho finito do modelo. O tamanho do aglomerado usado foi de $(\mathrm{ZnO})_{16}$, imerso em um conjunto de 660 pontos de carga, para o cálculo ab initio e um aglomerado de ( ZnO$)_{60}$ para o estudo AM1. Foram otimizadas o valor das cargas utilizadas para o conjunto de pontos de carga. Os intermediários sugeridos na literatura foram testados. Os parâmetros geométricos dos intermediários foram completamente otimizados, tanto em nível AM1 quanto ab initio HF 3-21G. A estrutura geométrica, energias, orbitais SCF, densidade de estados, frequências vibracionais e população de Mulliken foram analisados.

A maior variação da energia de interação foi encontrada para a espécie - HCO Esta espécie é o primeiro intermediário do mecanismo proposto na literatura. A protonação do carbono na espécie -HCO mostrou-se também estável em concordância com o mecanismo proposto na literatura. (Cenapad-SP, LNCC e CNPq).


# O EFEITO DA PRIMEIRA CAMADA DE HIDRATAÇÃO EM INTERAÇõES CÓDONS ANTI-CÓDONS 

Pérycles T. V. Júnior ${ }^{1(\mathrm{pg})}$, Marçal de Oliveira Neto ${ }^{1(\mathrm{pq)}}$<br>perycles @unbbbr<br>1-Universidade de Brasília, Instituto de Química<br>Palavraş-chave: Interação Códon Anti-Códon, Hidratação

Introdução: É bem conhecido que as quatro letras da linguagem do DNA (as bases nucléicas $A, T, U, G$ ) são traduzidas na linguagem de 20 letras das proteínas, ou seja, os aminoácidos. No código genético existem mais códons (64) que os aminoácidos, ou seja, a maioria dos aminoácidos é representada por mais de um códon. O objetivo do presente trabalho é investigar se existe ou não uma possível correlação entre a combinação das três bases dos anti-códons dos ácidos ribonuclécos de transferência (t-ARN's) e as trếs bases nucléicas dos códons dos ácidos ribonucléicos mensageiros ( $\mathrm{m}-\mathrm{ARN} \mathrm{s}$ ) com determinados padrồes de energias de interação resultantes devido às interações pontes de hidrogênio formadas pelas bases na traduçã́o dos diversos aminoácidos.

No presente träbalho não somente as energias devido as interações entre as bases nucléicas foram calculadas, bem como o efeito da primeira camada de hidratação, ou seja, moléculas de água estruturais, sobre a energia total de interação foram igualmente considerada nos cálculos.

Inicialmente utilizamos como modelos as quatro interaçóes códon anti-códon (CUU,CUC,CUG,CUA) que traduzem o aminoácido Leucina, a interação códon anticódon(UGG) que traduz o aminoácido Triptofano, e uma interação que representa um dos três códigos de terminação na síntese de proteínas(códon UAG).

Metodologia: As estruturas do códon e anti-códon foram geradas nà conformação A do ARN e colocadas em uma caixa cúbica com as seguintes dimensões $30 \AA \times 30 \AA \times 35 \AA$ resultando em um total de 1040 moléculas de água. Foi utilizado o campo de fórça OPLS aplicando o seguinte protocolo: primeiro uma minimização de energia das moléculas de água seguido por uma Dinâmica Molecular de 5 ps a uma temperatura de 800 K , em seguida uma nova minimização de energia e posteriormente um cálculo de Dinâmica Molécular de 15 ps . Realiza-se unna ultima otimização de geometria das moléčulas de água em torno do substrato. Após a realização deste procedimento retira-se a cadeia fosfodiéster para a análise das interações códon anti-códon na ausência e na presença das moléculas do solvente para efeito de um estudo comparativo.

Resultados: A metodologia permitiu, neste estudo preliminar, um padrão de energia de interação distinto para a combinação dos códons anti-códons estudados sejam isolados sejam levando em consideração as águas estruturais. Para ós quatro códons referentes a Leucicina fol encontrado um padrão médio de energias positivas, para os sistemas isolados, em torno de $210 \mathrm{Kcal} / \mathrm{mol}$ e em torno de $140,0 \mathrm{Kcal} / \mathrm{mol}$ para os sistemas hidratados(ou seja, um abaixamento médio em torno de $70,0 \mathrm{kcal} / \mathrm{mol}$ devido as águas estruturais). Para o códon que traduz o Triptofano (UGG) e para o códon de terminação (UAG) as energias obtidas foram respectivamente $-94,13 \mathrm{Kcal} / \mathrm{mol}$ e $-95,04 \mathrm{Kcal} / \mathrm{mol}$, para os sistemas isolados. Na presença das águas estruturais, para estes dois sistemas, as energias resultantes são de $138,36 \mathrm{Kcal} / \mathrm{mol}$ e $-150,96 \mathrm{Kcal} / \mathrm{mol}$ respectivamente, ou seja, uma estabilização em torno de 48 $\mathrm{Kcal} / \mathrm{mol}$ em média para as energias totais de interação.

# ANÁLISE DA FOTOFRAGIMENTAÇÃO DO TIOFENO (C4H4 ${ }_{4}$ ) NAS BORDAS DO S 2P E C1S 

Maria Suely Pedrosa Mundim ${ }^{1}$ (PQ), Nilo Makiuchi ${ }^{1}$ (PQ), Alexandra Mocellin ${ }^{1}$ (PQ), Arnaldo Naves de Brito ${ }^{1,2}$ (PQ), Nestor Correia ${ }^{3}$ (PQ)<br>spedrosa@fis.unb.br<br>1- Instituto de Física - Universidade de Brasilia - Brasilia - DF<br>2- Laboratório Nacional de Luz Síncrotron (LNLS) - Campinas - SP<br>3- Universidade Estadual de Santa Cruz - Ilhéus - BA

Palavras-chave: Tiofeno, fotofragmentação, estrutura eletrônica
Este trabalho constitui parte inicial do estudo da estrutura eletrônica e geométrica da interface entre um metal e um polímero, tendo como caso especifico a interface entre o ouro e o politiofeno. Estes compostos apresentam interesse tecnológico em dispositivos eletrônicos moleculares e existem indícios de que possam apresentar supercondutividade à temperatura ambiente. O tiofeno é um dos oligômeros geradores da cadeia polimérica e constitui sistema modelo para o estudo experimental e teórico. Buscando estabelecer controle sobre a produção desses polimeros, é de interesse controlar os processos envolvidos na quebra das ligações químicas de seus precursores. Assim, o conhecimento da estrutura eletrônica dos oligômeros e sua correlação com as propriedades geométricas locais dos polimeros, em especial nas interfaces metal-polímero são de grande importância. Buscamos investigar tais correlações utilizando a espectroscopia de-fotofragmentação de caroço (camada interna) usando a radiação síncrotron como fonte de excitação. A espectroscopia de massas com variaçãão da energia do fóton, em particular na regiăo de excitaçăo de caroço, permitem selecionar canais de fragmentação específicós, identificando possíveis rotas e energia dos fragmentos gerados, devido ao caráter atômico dos orbitais moleculares. Investigamos esta seletividade para a molécula do tiofeno ( C 4 H 4 S ) através da espectroscopia de massa convencional e de coincidência PEPICO e PEPIPICO, utilizando como fonte de excitação a luz síncrotron nas regiöes de energia correspondentes às bordas de excitação do orbital 2p do enxofre e do orbital is do carbono.

Os experimentos foram realizados utilizando um espectrômetro de massa por tempo de vôo (TOF) instalado na linha SGM (Spherical, Gratting Monochromator); $230-310 \mathrm{eV}$. para excitar o carbono is e na linha TGM (Thoroidal Gratting Monochromator), $160-210 \mathrm{eV}$ para o estudo na regiăo de excitação do enxofre 2p, situados no Laboratório Nacional de Luz Síncrotron (LNLS).

O tiofeno apresenta três sitios não equivalentes para os átomos de carbono, C-C C - S e C= C em sua conformação de equilíbrio. Espectros de rendimento iônico total (NEXAFS) mostram estas possibilidades através de suas ressonancias principais. As figuras abaixo mostram estes espectros para os fragmentos mais abundantes da molécula nas regióes de excitação de interesse, $\mathrm{S} 2 \mathrm{p}^{\prime}$ e C ' 1 s .


Os espectros de NEXAFS na região do S 2 p e do C 1 s diferem significativamente quanto ao rendimento de produção dos ions. Enquanto no primeiro temos comportamentos distintos para os diferentes ions, o segundo mostra tendências comuns, retratando a pouca especificidade do sítio do carbono. Além desses padrōes, o enxofre mostra efeitos de polarização da luz nos espectros de massa. Nossas análises têm sido realizadas utilizando o programa IGOR ®e rotinas introduzidas para avaliar não só as coincidências simples, PEPICO, mas também as coincidências múltiplas, PEPIPICO. Estas informaçōes são importantes para definir comportamentos e tendências dos diversos canais de fragmentação. As análises de energia cinéticas dos íons gerados no processo são avaliadas através dos espectros de dupla coincidência.

Na parte teórica utilizamos o pacote de programas DALTON para realizar cálculos de estrutura eletrônica para o estado fundamental da molécula e estado de caroço excitado. Estes cálculos visam interpretar os resultados experimentais, identificando as transiçōes eletrônicas obtidas nos espectros de Rendimento lônico Total (NEXAFS), o qual, se assemelha ao espectro de fotoabsorção, para o caso de átomos leves. (LNLS, UnB e UESC)

# ESTABILIDADE DE CRIPTATOS 222 ALCALINOS EM SOLUÇÃO VIA SIMULAÇÃO DE MONTE CARLO 

Elisa Soares Leite ${ }^{1}(P G)^{*}$, Ricardo Luiz Longo ${ }^{1}(P Q)$, Luiz Carlos Gomide Freitas ${ }^{2}$<br>(PQ)<br>elisaleite@ufpe.br<br>${ }^{1}$ Departamento de Química, Universidade Federal de Pernambuco, Cidade Universitária, 50740-540 Recife, PE, Brazil<br>${ }^{2}$ Departamento de Química, Universidade Federal de São Carlos, CP676, 13565-905 São Carlos, SP, Brazil<br>Palavras-chave: reconhecimento molecular, simulação de Monte Carlo, energia de Gibbs de solvatação

Neste trabalho estudamos a estabilidade e seletividade de criptatos em fase gasosa e em solução, utilizando uma combinação de métodos quânticos e clássicos. Reproduzimos computacionalmente valores experimentais ${ }^{1}$ de constante de equilibrio de criptatos [complexos do criptando 222 com os cations $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}$e $\mathrm{Cs}^{+}$] numa mistura 80:20 (v/v) metanol:água a 298 K. Para isso, obtivemos a energia livre de complexação em solução dos criptatos a partir de: (a) cálculos de química quântica em fase gasosa / ab initio / com o programa GAUSSIAN 98, com os métodos MP2/6-31+G*//HF/6-31+G* e cargas atômicas CHELPG HF/6-31G do criptando e criptato; (b) cálculo de propriedades termodinâmicas para o sistema em solução utilizando o formalismo da Teoria de Perturbação Termodinâmica e o método de Metropolis Monte Carlo implementados com o programa DIADORIM, fornecendo a energia de Gibbs de solvatação ( $\Delta \mathrm{G}_{\text {sol }}$ ) do criptato e do cátion. A seguinte seqüencia de estabilidade em fase gasosa foi obtida: $\mathrm{Na}>\mathrm{K}>\mathrm{Rb}>\mathrm{Cs}$ para os criptatos $[\mathrm{M} \subset 222]^{+}$. Já em solução metanol/água (80:20) a seguinte seqüência foi obtida: $K>N a>R b>C s$ para $\left[M\right.$ C 222] ${ }^{+}$(solv) em concordância com os dados experimentais. Estes resultados súgerem que a metodologia é adequada e confiável. Os resultados obtidos oferecem também subsídios para uma compreensão detalhada dos fatores preponderantes para a estabilidade termodinâmica de cada criptato. Trabalhos experimentais ${ }^{2}$ discutem que a estabilidade dos criptatos depende fortemente da correlação entre o tamanho do cátion e o raio da cavidade do criptando, bem como da simetria do complexo formado. Resultados obtidos neste trabalho indicam que para a estabilidade dös complexos formados, a ação global do solvente é tão importante quanto efeitos estruturais. Portanto, concluímos que para estudar reconhecimento molecular de supermoléculas é preciso levar em consideração o solvente em que elas se encontram (FAPESP, CAPES, CNPq).

[^24]
# ESTUDO TEÓRICO DA ENANTIOSELETIVIDADE DA ADIÇÃO DE ORGANOZINCO A ALDEÍDOS. 

Frederico José de S. Pontes (PG), Ricardo de Carvalho Ferreira (PQ), Ricardo Luiz<br>Longo (PQ) pontes_fred@hotmail.com<br>Departamento de Quimica Fundamental- Universidade Federal de Pernambuco-UFPE<br>Palavras-chave: alquilzinco, autocatálise, enantioseletividade.

A adição de reagentes organometálicos de zinco a aldeídos fornece álcoois secundários opticamente ativos. A importância dos álcoois quirais está na quantidade de reações de formação de outros compostos como aminas, éteres, etc e de outros moléculas biológicas. A enantioseletividade dos produtos é aumentada substancialmente na presença de catalisadores quirais principalmente amino-álcoois quirais. Além disso, o comportamento autocatalítico foi observado em sistemas como:


Apesar do mecanismo desta reação ainda não estar elucidado, existem indícios de que ocorra a formação de dímeros do alcóxido de zinco, sendo que a estabilidade dos dímeros (RR, SS e $R S$ ) determina a estereosseletividade da reação e o grau de autocatálise.

A compreensão desse mecanismo autocatalítico também se mostra relevante quando se imagina um modelo que explique a origem da homoquiralidade na biota terrestre.

Inicialmente buscou-se validar os métodos ab initio (Hartree-Fock) e DFT (B3LYP) com uso de potencial efetivo de caroço (ECP), nos átomos de zinco e de 6-31G nos outros elementos, e de métodos semi-empíricos (AM1, PM3 e MNDO/d) com relaçáo a estrutura molecular dos compostos organozinco envolvidos, especificamente, $\mathrm{CH}_{3}-\mathrm{Zn}-\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{Zn}-\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{Zn}-\mathrm{C}_{3} \mathrm{H}_{7}$ e $\mathrm{C}_{5} \mathrm{H}_{5}-\mathrm{Zn}-\mathrm{CH}_{3}$. Os resultados indicam que o pseudopotencial SDD é o mais recomendado para estes compostos, e dentre os métodos semi-empíricos"o MNDO/d apresentou os menores erros. Comparações entre os métodos para as estruturas dos dímeros de organozinco indicam que os resultados fornecidos pelos métodos semi-empíricos são muito dependentes da estrutura inicial, além de apresentarem distorções estruturais significativas. Já existem trabalhos publicados sobre a determinação das estruturas de transição da reação de adição de organozinco a benzaldeído com o método PM3. Contudo, os resultados estruturais e energéticos obtidos com este método para os dimeros de organozinco, quando comparados com os resultados ab initio e DFT, colocam em dúvida a adequação, mesmo qualitativa, deste método.


Dímero RR - RHF/CEP-121G


Dímero RR - PM3

Com relação à energia desses dimeros os cálculos ab initio (CEP-121G) indicam diferenças: significativas entre os diastereoisômeros RR e RS, como se pode observar nos resultados a seguir:

Dimero RR $=-1749.0559054$
Dímero RS $=-1749.0558042$

Como perspectivas para o trabalho estão os cálculos de correlação eletrônica a nível MP2 nas geometrias, além de cálculos do BSSE. Irão também ser realizados cálculos de estrutura de transição a nível ab initio, e um estudo cinético da reação a partir da resolução numérica das equações de velocidade do mecanismo. (CNPq, FINEP, CENAPAD-SP, PADCT, RENAMI),

# POTENCIAL DE TORÇÃO ANOMERICO 

Alex Roariques de Andrade (iC) e Ciarissa O. da Silva (PQ)<br>alecses@brfree.com.br<br>Departamento de Qúmica - Universidade Federal RURAL do Rio de Jañeiro Rodovia BR 465 km 47, Seropédica, Ru,<br>BRASIL CEP 23890-000. Tel $+55-21-2682-2807$.<br>Palavras-chave: efeito anomérico, potencial de torção,metóxitetraidropirano

O efeito anomérico é apontado na literatura ${ }^{1}$ como aquele responsável pela conformação dos carboidratos, que é a classe de compostos mais abundante na natureza. Ele vem definido como sendo a preferência pela posição axial em relação àquela equatorial; para a seqüência de átomos $\sim C-X-C-Y \sim$, sendo $X=O, N, S$ e $Y=X$ ou halogênio. Embora este efeito se manifeste em quase todos os niveis de cálculo ab initio, sua origem não foi ainda esclarecida. Muitos campos de força tentam incorporar este efeito através de potenciais de torção ab initio, calculados para sistemas modelo ${ }^{2,3}$, tornando-se assim capazes de fornecer as estruturas mais estáveis destes compostos. Entretanto, os potenciais apresentados na literatura, geralmente obtidos para sistemas acíclicos, são simétricos, enquanto que nosso trabalho aponta um potencial de torção claramente assimétrico. Além disto, a intensidade do efeito anomérico varia bastante de composto para composto. A diferença entre as formas dos potencias se reflete diretamente na população obtida para os confôrmeros a 298K. Na figura abaixo ilustra-se o potencial de torção anomérico para o confôrmero axial do 2 metóxitetrahidropirano, sistema protótipo da molécula de glicose. Utilizou-se metodologia HF/6$31 \mathrm{G}^{* *}$ em todos os cálculos, Os confôrmeros mais estáveis são identificados na figura, e foram obtidos a partir de uma varredura no ângulo $\phi$, que define a orientação do grupo metóxilem relação ao anel. Este ângulo vem definido pelo efeito anomérico. Pretende-se ainda obter o potencial de torção para o confôrmero equatorial do mesmo sistema protótipo, e a partir das posições de mínimo encontradas para estas estrúturàs, ordenálas em ordem crescente de energia. Este seria o ponto de partida para a investigação quantitativa da extensã̃o da hiperconjugação, apontada como responsável pelo efeito anomérico. Espera-se que se realmente for por hiperconjugação a estabilização que atende pelo nome de efeito anomérico, ela provavelmente será mais intensa no confôrmero mais estável. (CNPq).


[^25]Amarílis de V. Finageiv Neder (PG), Marcal de Oliveira Neto (PQ)<br>marcal@unb.br<br>Instituto de Química, Universidade de Brasilia, Campus Darcy Ribeiro, C.P. 04478, Brasília, DF, CEP 70919-970

Palavras-chave: nucleic acids, hydration, molecular dynamics


#### Abstract

Although water is an ubiquitous molecule in the biological environment and is considered as an intrinsic component of the structure of nucleic acids, its role in some dynamical processes which occur inside a cell organelle is completely unknown. The codon-anticodon interaction is an example of a contact between fragments of two macromolecules, the messenger ribonucleic acid (m-RNA) and the transfer ribonucleic acid (t-RNA), which happens during the translation process when both macromolecules are attached to the ribosome, a poli-molecular aggregate of ribosomal nucleic acids (r-RNA) and proteins. Up to now, only low resolution crystallographic structures of some parts of the ribosome including interacting fragments of an anticodon loop and a codon are known and the investigation of the hydration pattern of $t$-RNA's anticodon loops and m-RNA codon nucleotides just before and during the codon-anticodon interaction remain unclear.

The aim of our work is to study the main features of the structure of first shell water molecules around the anticodon loop of two Saccharomyces cerevisae t-RNA's which crystallographic structures have been already determined: $t$-RNA ${ }^{\text {Phe }}$ (1TRA) and $t-R N A_{i}^{\text {Mel }}$ (1YFG). Both $t-R N A$ 's have in common the presence of a hypermodified base at position 37, adjacent to the 3 anticodon nucleotides, which exact function during translation is object of many experimental investigation. It is interesting to note that whenever a "hydrophilic" hypermodified base is found at position 37 of an anticodon loop, there is an uracile at position 36, and whenever a "hydrophobic" base is at position 37 , an adenine is its neighbor at position 36. Since hypermodified base of $t-R N A^{\text {Phe }}$, wybutosine $(\mathrm{Y})$ is considered "hydrophobic" and in $t-$ RNA $_{i}^{\text {Met }}$, position 37 is occupied by an adenine "hydrophobic" derivative ( t 6 A ), our first study focused on the general effect of these bases on the hydration of anticodon loop nucleotides from position 33 to 38; then we compared these two systems complexed to their respective codons (UUC and AUG); the same studies were repeated with a hypomodified base guanine, in place of Y37, and adenine, in place of t6A37. Based on the hypothesis of Woese [1] that ribosome should be relatively inaccessible to water and should have a quasi-solid characteristic, we assumed that any water molecule that remains bound to anticodon and codon nucleotides when they interact in the ribosome may be localized at the same hydration sites found in a crystal structure. In order to perform these studies we adjusted a simple low cost protocol involving mixed steps of molecular dynamics (MD) and energy minimization calculations which could reproduce the main hydration patterns of nucleic acids oligomers. This protocol based on "quenched dynamics" methodology was performed with water molecules explicit represented (TIP3P), in vacuum, without counter-ions in a total 20 ps simulation using OPLS-AA force field [2] implemented in Hyperchem program. Its validation was done comparing our results to high resolution crystallographic data of two DNA heteroligomers at B conformation (PDB codes: 1DPN and 1ENN), a DNA decamer at A conformation (PDB code: 1DPL), and two homoligomers $\mathrm{d}(\mathrm{CG})_{12}$ and $\mathrm{d}(\mathrm{AT})_{12}$ which first shell hydration characteristics were described by Auffinger and Westhof [3] using a much more sophisticated MD protocol and longer simulation ( $\sim 10-12 \mathrm{~ns}$ ).

According to our results, from a quali-quantitative point of view the codon-anticodon interaction did not change the hydration outline of hypermodified bases Y37 and 6tA37; in t-RNA ${ }^{\text {Phs }}$, even the nucleotides A35 and A36 kept their hydration features after the complexation, while in $t-R N A_{i}{ }^{\text {Mel }}$ a decrease in the number of water molecules was observed around A35 and U36. In comparison with the hypomodified systems, the presence of the hypermodified base did not affect the hydration patterns of neighbor nucleotides in a significant manner. In the simulation of t RNA ${ }^{\text {Pha }}$ fragment it was possible to recognize the universal structural anticodon loop signature which involves interaction of U33 ribose atoms with A35 and A36 base atoms; in t-RNA $A_{i}^{\text {Met }}$, the interaction between O2'(U33) and H6(A35) was intermediated by a water molecule. For t-RNA ${ }^{\text {Phe }}$ the complexation with codon nucleotides did not alter this general description, but for t-RNA $A_{i}^{\text {Met }}$ a new water molecule interaction was verified bridging O4(U33) and $\mathrm{O} 2 \mathrm{P}(\mathrm{U} 36)$. The calculation of the interaction energy of water molecules bound to Y 37 and t 6 A 37 atoms revealed that water molecules interacting with the side chain atoms of t6A release energy at the same magnitude level of those bound to phosphate oxygens while in the Y37 nucleotide, water molecules interacting with the side chain atoms release almost $50-80 \%$ less energy than those which interact with phosphate groups. These results are in accordance with the qualitative description of t6A as a hydrophilic base and Y 37 as a hydrophobic base.


[1] Woese, C.R.; RNA Z.,1055(2001); [2] Pranata J.; Wierschke, S.G.; Jorgensen,W.L.;J. Am. Chem. Soc.113, 2810 (1991); [3] Auffinger, P.; Westhof, E.J.;J.Mol.Biol.305, 1057 (2001).

## P230

# ESTABILIDADE RELATIVA DE RADICAIS DERIVADOS DA ARTEMISININA. 

Caroline A. da Silva ${ }^{1}$ (IC), Martha T. de Arauio ${ }^{1}$ (PQ), Alex G. Taranto ${ }^{2}$ (PG), José Walkimar de M. Carneiro ${ }^{2,3}$ (PQ) martha @gfq.uff.br<br>Departamento de Físico-Química ${ }^{1}$, Programa de Pós-Graduação em Química Orgânica ${ }^{2}$, Departamento de Química Geral e Inorgânica ${ }^{3}$, Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, 24020-150, Niterói, RJ, Brasil.<br>Palavras-chave: artemisinina, mecanismo de ação, cálculos mecânico-quânticos.

A malária é a uma doença de países subdesenvolvidos, matando muito mais do que qualquer outra doença infecciosa do mundo (cerca de 1,5-2,0 milhões de casos/ano). No Brasil são 300 mil casos/ano e estima-se que $50 \%$ da mortalidade da população indígena deve-se à malária. Recentemente, a organização internacional dos Médicos Sem Fronteira relatou que a resistência aos medicamentos tradicionais aumentou drasticamente, orientando os governos a usarem medicamentos derivados da artemisinina (figura 1) de modo a evitar que a epidemia se alastre e indicando, portanto, a necessidade do desenvolvimento de drogas alternativas.

O mecanismo de ação da artemisinina e outros endoperóxidos ainda é objeto de discussão, sendo que o mais aceito propõe uma reação de oxi-redução entre a artemisinina e o íon Fe (II) ou heme, quebrando a ligação endoperóxido e levando à formação de intermediários radicalares (radical centrado em O 1 ou O 2 ) que por rotas isoladas levam à formação de radicais centrados no carbono C4.

Neste trabalho, empregou-se os métodos AM1, PM3 e B3LYP/6-31G(d) para determinar a estabilidade relativa dos intermediários radicais de derivados da artemisinina do tipo 13-carbaartemisinina.


Os calores de reação para as equações isodésmicas mostram que a substituição do átomo O 13 pelo grupo $\mathrm{C}_{2}$ desestabiliza tanto o radical centrado em O1 quanto o radical centrado em C4 nas espécies aniônicas, por diferença de $8-10 \mathrm{kcal} / \mathrm{mol}$. Esta desestabilização deve-se, principalmente, à diferença de eletronegatividade entre o carbono e o oxigênio, pois o oxigênio tem maior capacidade de estabilizar a carga negativa. Os radicais neutros (obtidos por protonação do oxigênio) dos derivados da carbaartemisinina possuem essencialmente a mesma estabilidade do radical neutro da artemisinina. Os cálculos mostram também que derivados com estereoquímica invertida estão sob maior tensão, favorecendo a quebra da ligação peróxido.

Conclui-se que a relação entre a atividade biológica e a estabilidade relativa das espécies radicalares só pode ser especulada para um mecanismo envolvendo intermediários aniônicos e que a inversão de estereoquímica favorece a decomposição do peróxido.(CNPq e CAPES).

Ciro Simas Vivacqua ${ }^{1}$ (IC), Marina Pelegrini ${ }^{1}$ (PG), Orlando Roberto-Neto ${ }^{2}$ (PQ), Francisco B. C. Machado ${ }^{1}$ (PQ) cirovivacqua@ig.com.br<br>${ }^{1}$ Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brasil.<br>${ }^{2}$ Instituto de Estudos Avançados, Centro Técnico Aeroespacial, São José dos Campos, SP, Brasil.<br>Palavras-chave: ab initio, curvas de energia potencial, constantes espectroscópicas

Neste trabalho caracterizou-se o estado eletrônico fundamental $\left(X^{2} \Sigma^{+}\right)$e o estado excitado $\mathrm{A}^{2} \Pi$ das moléculas isovalentes $\mathrm{BeF}, \mathrm{MgF}$ e CaF . A caracterização destes estados eletrônicos foi realizada através da obtenção de curvas de energia potencial, constantes espectroscópicas, funções momento de dipolo, funções momento de transição, níveis vibracionais, probabilidades de transições vibrônicas, tempos de vida radiativa e das análises de suas respectivas funções de onda.

Os cálculos das funções de onda eletrônicas foram realizados utilizando o conjunto base 6-311G+(3df,3pd) e o método Interação de Configurações com excitações simples e duplas a partir de um conjunto de múltiplas referências (MRSDCI) e foram feitos em duas etapas. Numa primeira etapa, correlacionou-se apenas os elétrons de valência. Na segunda etapa de cálculo, correlacionou-se também os elétrons mais internos dos alcalinos terrosos, ou seja, 3s3p no Ca, 2s2p no Mg, e 1s no Be. Desta forma, foi possível verificar o efeito da correlação eletrônica dos elétrons mais internos. Outro aspecto deste trabalho é também fazer uma análise comparativa do caráter iônico destas espécies.

Para a molécula CaF, as curvas de energia potencial dos estados eletrônicos $X^{2} \Sigma^{+} e$ $A^{2} \Pi$ apresentam um "duplo poço" de potencial próximo à distância internuclear de equilibrio $\left(R_{e}\right)$, quando calculadas utilizando somente a correlação dos elétrons de valência. No entanto, quando correlacionou-se os elétrons 3 s 3 p no cálcio o duplo poço desaparece das curvas de potencial.

Como pôde ser verificado pela análise das funções de onda eletrônicas e funções momento de dipolo, os estados eletrônicos $X^{2} \Sigma^{+}$e $A^{2} \Pi$ da molécula CaF são predominantemente iônicos até próximo ao limite assintótico, onde estes estados dissociam em espécies atômicas neutras: $\mathrm{Ca}\left({ }^{1} \mathrm{~S}_{\mathrm{g}}\right)+\mathrm{F}\left({ }^{2} \mathrm{P}_{\mathrm{u}}\right)$. O caráter iônico, como esperado, cresce de $\mathrm{BeF}, \mathrm{MgF}$ a CaF .

Os resultados utilizando maior correlação eletrônica, mostram que os valores de $R_{e}$ aumentam na ordem de $\mathrm{BeF}, \mathrm{MgF}$ a CaF, $\mathrm{R}_{\mathrm{e}}(\mathrm{BeF}) \cong 2,5 \mathrm{a}_{0}, \mathrm{R}_{\mathrm{e}}(\mathrm{MgF}) \cong 3,3 \mathrm{a}_{0}$ e $\mathrm{R}_{\mathrm{e}}(\mathrm{CaF}) \cong 3,8$ $\mathrm{a}_{0}$. Este comportamento também foi verificado para outros conjuntos de moléculas diatômicas isovalentes, como $\mathrm{BeB}, \mathrm{MgB}$ e CaB [1], e para $\mathrm{BeC}, \mathrm{MgC} \mathrm{e} \mathrm{CaC} \mathrm{[2]}$.

O estado eletrônico fundamental da molécula CaF é bem caracterizado experimentalmente, e nossos resultados para energia de dissociação revelam que o uso de uma maior correlação eletrônica aproxima o valor teórico obtido neste trabalho com o experimental. O valor de $\mathrm{D}_{\mathrm{o}}$ (exp.) $=5,48 \mathrm{eV}$ [3], o resultado de $\mathrm{D}_{\mathrm{e}}$ obtido apenas com a correlação dos elétrons 4 s no Ca é igual a $4,09 \mathrm{eV}$, enquanto que o valor de $D_{e}$ com correlação 3 s 3 p e 4 s no Ca é aproximadamente igual a $5,13 \mathrm{eV}$. (FAPESP, CNPq, CENAPAD-SP).
[1]M. Pelegrini, O. Roberto-Neto, F. B.C. Machado, Int. J. Quantum Chem., 95 (2003), xxx.
[2]M. Pelegrini, Tese de Mestrado, "Caracterização do estado fundamental de moléculas diatômicas", Instituto Tecnológico de Aeronáutica, ITA, 2003.
[3]K. P. Huber, G. Herzberg, "Molecular Spectra and Molecular Structure: Constants of Diatomics Molecules", van Nostrand Reinhold, Nova York, 1979.

# ESTUDO DA GEOMETRIA E DAS FREQUÊNCIAS VIBRACIONAIS HARMÔNICAS DO RADICAL METIL 

Francisco B. C. Machado ${ }^{1}$ (PQ) e Orlando Roberto-Neto ${ }^{2}$ (PQ)<br>fmachado@ief.ita.cta.br<br>${ }^{1}$ Departamento de Química, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São<br>José dos Campos, 12228-900, São Paulo, Brazil;<br>${ }^{2}$ Divisão de Fotônica, Instituto de Estudos Avançados, Centro Técnico Aeroespacial,São José dos Campos, 12228-840, São Paulo<br>Palavras-chave: coupled cluster, radical $\mathrm{CH}_{3}$, estrutura

O metil $\left(\mathrm{CH}_{3}\right)$ é um radical comum em muitos processos fotoquímicos, cinéticos e de combustão. Devido à sua importância, vários estudos espectroscópicos foram realizados, e desta forma, seus parâmetros moleculares, como as freqüências fundamentais, comprimentos de ligação e constantes rotacionais foram determinas experimentalmente [1-2]. Teoricamente, apesar de sua importância e ser um molécula pequena e com poucos elétrons, os cálculos ab initio disponíveis do comprimento de ligação de equilíbrio $r_{e}(\mathrm{CH})$, das constantes rotacionais ( $A_{e}, B_{e}, C_{e}$ ) e de suas freqüências vibracionais harmônicas ( $\omega_{\mathrm{e}}$ ) não apresentam valores rigorosos e sistemáticos para todas essas observáveis mencionadas. Desta forma, neste estudo, realizou-se uma série de cálculos das estruturas e das freqüências vibracionais harmônicas usando o método $\operatorname{CCSD}(\mathrm{T})$. Foram empregados os conjuntos bases cc-pVDZ, ccpVTZ, cc-pVQZ e cc-pV5Z assim como os conjuntos bases cc-pCVDZ, cc-pCVTZ e cc-pCVQZ de Dunning. Utilizando o método de extrapolação para um conjunto base completo ("CBS limit") [3], os valores da geometria de equilibrio, freqüências harmônicas e constantes rotacionais foram extrapolados. Os efeitos da correlação dos elétrons do caroço nas propriedades espectroscópicas calculadas, também foram considerados nesse estudo.

Os comprimentos da ligação $\mathrm{r}_{\mathrm{e}}(\widetilde{\mathrm{C}} \mathrm{H})$ obtidos com as bases cc-pVQZ (caroço congelado) e cc-pCVQZ (todos elétrons correlacionados) são respectivamente iguais a 1,0777 $\AA$ e $1,0762 \AA$, ou seja, o comprimento de ligação é reduzido por $0,0015 \AA$ quando os elétrons do caroço eletrônico são correlacionados e utiliza-se uma conjunto base mais completo (ccpCVQZ). Usando a base cc-pV5Z e o limite CBS são obtidos valores de $r_{e}(\tilde{C} H)$ iguais a 1,0774 $\AA$ e $1,0776 \AA$. Esses valores teóricos são $0,0016 \AA$ a $0,0014 \AA$, respectivamente, menores do que o valor experimental $r_{0}(\tilde{C} H)(1,079 \AA)$ [1].

As freqüências vibracionais harmônicas calculadas usando o método $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}$ pV5Z são iguais a 3306 (e), $3122\left(\mathrm{a}_{1}\right), 1422$ (e) e $512\left(\mathrm{a}_{2}\right) \mathrm{cm}{ }^{1}$, enquanto que os valores obtidos para o limite CBS predizem valores iguais a $3304,3122,1424$ e $508 \mathrm{~cm}^{1}$, respectivamente. Esses resultados sugerem que os cálculos coupled cluster das freqüências harmônicas estão praticamente convergidos, dentro da aproximação do caroço congelado. Correlacionando todos os elétrons com a base cc-pCVQZ os valores obtidos para as freqüências são respectivamente iguais a $3312,3129,1425$ e $514 \mathrm{~cm}^{1}$. Nota-se que os valores das freqüências teóricas harmônicas ( $\omega_{e}$ ) estão em geral sobreestimados, como esperado, em relação às freqüências experimentais fundamentais (v), respectivamente iguais a 3171, 3004, 1403 e $606 \mathrm{~cm}^{1}$ [2]. As constantes rotacionais de equilibrio obtidos com o método $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-$ pV5Z são iguais a 9,600 e $4,800 \mathrm{~cm}^{1}$ para os eixos de rotação $A=B$ e C, respectivamente. Os valores experimentais são iguais a $A_{0}=B_{0}=9,57789$ e $C_{0}=4,74202$ [4]. (FAPESP, CNPq, CENAPAD-SP).
[1] G. Herzberg e J. Shoosmith, Can. J. Phys. 34, 523 (1956).
[2] Nist Chemistry WebBook, http://webbook.nist.gov/chemistry.
[3] D. E. Woon e T. H Dunning, J. Chem. Phys. 99, 1914 (1993).
[4] T. Amano, P.F. Bernath, C. Yamada, Y. Endo e E. Hirota, J. Chem. Phys. 77, 5284 (1982).

# CURVA DE ENERGIA POTENCIAL DE DIMERIZAÇÃO DO O 

Antonio C. Pavão ${ }^{1}(\mathrm{PQ})$, José C. F. Paula ${ }^{1}(\mathrm{PG})$, Rogério Custodio ${ }^{2}(\mathrm{PQ})$ e Carlton A. Taft ${ }^{3}(\mathrm{PQ})$ pavao@ufpe.br<br>${ }^{1}$ Departamento de Quimica Fundamental-Universidade Federal de Pernambuco<br>${ }^{2}$ Instituto de Quimica-Universidade Estadual de Campinas<br>${ }^{3}$ Centro Brasileiro de Pesquisas Físicas-CBPF

PALAVRAS-CHAVES: dimero de oxigênio, energia de ativação, cálculos CASPT2
Desde o estudo realizado por Lewis em 1924 até os dias atuais foram realizadas várias investigações experimentais e teóricas sobre o dimero de $\mathrm{O}_{2}$. Contudo ainda existem controvérsias acerca de sua geometria e energia de ligação. Neste trabalho realizamos cálculos de orbitais moleculares para a descrição da interação das duas unidades monoméricas considerando quatro geometrias de aproximação: $D_{2 h}, D_{2 d}, C_{2 v}$ e $D_{\text {wh }}$, de acordo com a figura ao lado. Utilizando um mecanismo de
 transferência de elétron para a formação do dimero que combina a Teoria da Ressonância Não-Sincronizada das Ligações Quimicas de Paúling (RVB) com cálculos CASSCF (Chem. Phys. Lett. 370 (2003) 789), construimos a curva de energia potencial para a dimerização das moléculas de $\mathrm{O}_{2}$ (mostrada ao lado). Assim caracterizamos o estado de transição para o processo e obtivemos uma energia de ativação de
 $152 \mathrm{cal} / \mathrm{mol}$. Estas informações são pioneiras e de grande importância, por exemplo, para o estudo da influência do $\mathrm{O}_{4}$ na quimica do oxigênio na atmosfera Através de cálculos CASPT2, funções base de Pople e inclusão de correção do erro de superposição de base (BSSE), foi possivel obter resultados bastante razoáveis para a energia de dissociação e distância de ligação do dimero, como mostrado na tabela abaixo.

| Método | R1(A) | R2(A) | De(kcal/mol) |
| :--- | :---: | :---: | :---: |
| Espectroscopia de IV (Long\&Ewing) | 1.20 | 3.41 | -0.53 |
| Espalhamento de Feixe Molecular (Aquilanti et al) | - | 3.56 | -0.39 |
| CASPT2(16,12)/6-311+G(2d)+BSSE | 1.22 | 3.75 | -0.61 |

# INFLUÊNCIA DO O ${ }_{4}$ NA FORMAÇÃO DE OZÔNIO ESTRATOSFÉRICO 

José Carlos F. DePaula ${ }^{1}$ (PG), Antonio C. Pavão ${ }^{1}(\mathrm{PQ})$ e Carlton A. Taft ${ }^{2}$<br>jcfpaula@dqf.ufpe.br<br>${ }^{1}$ Departamento de Química Fundamental, Universidade Federal de Pernambuco<br>${ }^{2}$ Centro Brasileiro de Pesquisas Físicas<br>Palavras-chave: mecanismo de Chapman, ozônio, tetracicloxigênio

O estudo da cinética de formação e decomposição do ozônio estratosférico teve início com o modelo pioneiro de Chapman em 1930, onde se considera que a formação e consumo de $\mathrm{O}_{3}$ se dá através de um mecanismo com quatro reações envolvendo as espécies $\mathrm{O}, \mathrm{O}_{2}$ e $\mathrm{O}_{3}$. A partir da segunda metade do século XX foram incluídas espécies como os $\mathrm{HO}_{\mathrm{x}}$, $\mathrm{NO}_{x}$ e $\mathrm{ClO}_{x}$ dentre outras, levando a mecanismos com quase cem reações químicas. Estes modelos mais completos fornecem uma boa descrição da concentração média do $\mathrm{O}_{3}$ na região da camada de ozônio ( $\sim 25 \mathrm{~km}$ de altitude), mas nenhum considera a participação do tetracicloxigênio na química do oxigênio da estratosfera. Neste trabalho estudamos a inclusão no modelo de Chapman da seguinte reação de decomposição do tetracicloxigênio $\left(\mathrm{O}_{4}\right): \mathrm{O}_{4}\left({ }^{1} \mathrm{~A}_{1}\right) \rightarrow \mathrm{O}_{3}+\mathrm{O}\left({ }^{1} \mathrm{D}\right)$. Utilizando o programa Chemical Kinetics Simulation (CKS), calculamos inicialmente a quantidade de ozônio estratosférico pelo mecanismo de Chapman. Obtivemos uma concentração final de $2,25 \times 10^{13}$ moléculas. $\mathrm{cm}^{-3}$ (figura do lado direito), um valor
 acima do valor experimental que é de $1.6 \times 10^{12}$ moléculas. $\mathrm{cm}^{-3}$. Utilizando parâmetros para a
 determinação da constante de velocidade da reação acima citada obtidos através de cálculos ab initio de orbitais moleculares para as espécies envolvidas na reação, foi possível calcular uma nova concentração de ozônio estratosférico. Com a inclusão do $\mathrm{O}_{4}$, a discrepância entre o modelo simplificado e o resultado experimental é reduzida em aproximadamente $30 \%$ em relação ao modelo de Chapman, chegando a $2.18 \times 10^{13}$ moléculas.cm ${ }^{-3}$ (figura do lado esquerdo). (CNPQ).

# A CONCLUSIVE SCRF AND PCIV STUDY OF THE HYDROLYSIS PROCESS OF AN IMPORTANT CISPLATIN ANALOGUE 

Luiz Antônio S. Costa ${ }^{1,2,3}(\mathrm{PG})$, Willian R. Rocha ${ }^{4}(\mathrm{PQ})$, Wagner B. De Almeida ${ }^{2}(\mathrm{PQ})$, Hélio F. Dos Santos ${ }^{1}$ (PQ)<br>|rcosta@netuno.qui.ufmg.br<br>1. Núcleo de Estudos em Química Computacional (NEQC), Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330<br>2. Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901<br>3. Escola Preparatória de Cadetes do Ar (EPCAR), Comando da Aeronáutica, Barbacena, MG, 36200-000<br>4. Depto de Química Fundamental, Universidade Federal de Pernambuco (UFPE), Recife, PE, 50960-910

Keywords: solvent effect, hydrolysis, cisplatin analogues
The cisplatin is one of the three most extensively used anticancer drugs in the world. Overall cisplatin remains the major front-line Pt containing drug, with carboplatin used primarily where there is a need to minimize the toxic side effects. The manipulation of the structure of the leaving groups and the modification of the carrier ligands have been widely studied by scientists around the world ${ }^{1}$. One important molecule is the cis-dichloro(ethylenediamine)platinum(II), also known as cisDEP. Quite recently the hydrolysis process of cis-DEP was fully investigated by our research group using theoretical methods ${ }^{2}$.

(a)

(b)

Figure 1. Intermediate species of the second hydrolysis of the cis-DEP (a) 12-1 and (b) 12-1'.
Solvation models based on self consistent reaction field (SCRF) and polarizable continuum dieletrics (PCM) were used to include the solvent effect on the thermodynamics and kinetics properties for the second step of the hydrolysis in aqueous medium. The activation Gibbs free energy ( $\Delta G_{2}^{\ddagger}$ ) in solution was calculated using a thermodynamic cycle depicted in figure 2. The $\Delta G_{2}^{\ddagger}$ is the important property to determine the rate constants through transition state theory using the Eyring equation ${ }^{3}$ (see some results in table 1). All calculations with the solvent effect were performed at HF , DFT and MP2 levels of theory with the basis-set $6-31 \mathrm{G}^{*}$ for all atoms except the Pt for which the LANL2DZ pseudopotential was applied.

Table 1. Rate constants at diferent solvation methods.


Figure 2. Thermodynamic cycle

| $k_{2}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ |  | B 3 P 86 | $\mathrm{MP2}$ |
| :--- | :--- | :---: | :---: |
| SCRF | $12-1$ | $9.57 \times 10^{-13}$ | $8.59 \times 10^{-12}$ |
| (quadrp) | $12-1$ | $2.06 \times 10^{-6}$ | $3.23 \times 10^{-5}$ |
| PCM | $12-1$ | $7.80 \times 10^{-8}$ | $7.88 \times 10^{-1}$ |
|  | $12-1$ | $4.20 \times 10^{-4}$ | $2.87 \times 10^{-5}$ |

Experimental value: $k_{2}=4.4 \pm 0.6 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}$

The data presented in this work are conclusive about the use of the PCM as the most suitable method to describe the hydrolysis processes of this kind of molecules in aqueous solution. (CNPq, FAPEMIG, FINEP, CENAPAD-MG/CO, EPCAR).
1-Hambley, T. W. Coordination Chemistry Reviews 166, 181 (1997). 2-Costa, L. A. S., Rocha, William R., De Almeida, Wagner B. and Dos Santos, Hélio F. Journal of the Chemical Physics 118, 23, 10584 (2003). 3-Connors, K. A. Chemical Kinetics - The Study of Reaction Rate in Solution, New York, 1990, p. 200.

# PROPRIEDADES ELETRÔNICAS DE CUBANOS DOPADOS 

Sueiy A. F. iviazzini ${ }^{1,2}$ (PG) e Pauio Mi. V. B. Barone ${ }^{1}$ (PQ)<br>suelymazzini@bol.com.br<br>${ }^{1}$ Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG<br>${ }^{2}$ Faculdade de Filosofia, Ciências e Letras "Santa Marcelina", Praça Irmã Anina Bisegna, 40, 36880-000, Muriaé, MG<br>Palavras-chave: cubano, octasilacubano, métodos semi-empíricos.

A síntese de moléculas poliédricas baseadas no carbono, como o cubano $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)$, tem sido alvo de interesse há muitos anos. A descoberta dos fulerenos ${ }^{1}$ renovou este interesse e introduziu muitas novas possibilidades para o design e a preparação de sistemas moleculares com propriedades complexas, aproveitando a versatilidade do carbono como elemento básico. Recentemente, a introdução de outros elementos, como boro, nitrogênio e silício, como dopantes substitucionais na estrutura de fulerenos e outros compostos de carbono, assim como a ligação de grupos laterais às estruturas, foi obtida em laboratório ${ }^{2-4}$. A substituição de um ou mais átomos de carbono por um heteroátomo nestas estruturas resulta em sítios atômicos que podem ser usados como centros reativos ou para controlar as propriedades eletrônicas dos compostos, enquanto que grupos laterais podem ser usados para injetar carga ou retirá-la do esqueleto molecular, produzindo efeitos potencialmente interessantes para aplicações em dispositivos moleculares.

Estes desenvolvimentos levantam diversas questões sobre as modificações das propriedades das estruturas básicas de moléculas piramidais baseadas no carbono como efeito da dopagem ou da ligação de grupos laterais. Neste trabalho, estudamos as propriedades eletrônicas de cubanos dopados com nitrogênio ( $\mathrm{C}_{6} \mathrm{~N}_{2} \mathrm{H}_{8}$ ) e ( $\mathrm{C}_{2} \mathrm{~N}_{6} \mathrm{H}_{8}$ ), um análogo do cubano (octasilocubano, $\mathrm{Si}_{8} \mathrm{H}_{8}$ ) e seus derivados insaturados. Investigamos os compostos puros e ligados a grupos laterais doadores e aceitadores de elétrons, bem como dímeros e trímeros. Analisamos as mudanças no gap eletrônico e a distribuição espacial dos orbitais de fronteira nos diferentes compostos, comparando com resultados anteriormente obtidos para cubanos e seus derivados insaturados.

Utilizamos os métodos semi-empíricos AM1 e PM3 para os cálculos de estrutura eletrônica, tendo em vista resultados prévios que mostram que os parâmetros estruturais e o calor de formação do cubano e do dicubano calculados com estes métodos estão em excelente acordo com os dados experimentais disponíveis na literatura.

Os resultados mostram que os compostos dopados com nitrogênio têm o gap eletrônico na faixa de 11 eV , enquanto que a substituição por silício reduz bastante o gap, para a faixa de 4 eV .

A ligação de grupos laterais doadores $\left(\mathrm{NH}_{2}\right)$ e aceitadores $\left(\mathrm{NO}_{2}\right)$ de elétrons foi estudada em função da posição de ligação para cada uma das estruturas dopadas. Para os compostos dopados com nitrogênio, observamos uma nítida distinção entre as distribuições espaciais dos orbitais HOMO, situado sobre o grupo doador, e LUMO, situado sobre o grupo aceitador. O mesmo ocorre com os oligômeros baseados nos cubanos dopados com nitrogênio. Portanto, a excitação eletrônica entre estes orbitais pode produzir transferência de carga intramolecular, em que o esqueleto cúbico funciona como ponte entre os grupos doador e aceitador de elétrons. Este efeito foi também observado em cubanos e derivados não dopados ${ }^{5}$. Já o octasilocubano apresenta os orbitais HOMO e LUMO em parte localizados no esqueleto cúbico e em parte nos grupos amino e nitro, respectivamente, e o deslocamento da densidade de carga eletrônica na excitação entre estes orbitais não seria muito expressivo. (CNPq, FAPEMIG, Instituto do Milênio de Nanociências.)

1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl e R. E. Smalley, Nature 318, 162 (1985).
2. C. Ray et al, Phys. Rev. Lett. 80, 5365 (1998).
3. J. L. Fye e M. F. Jarrold, J. Phys. Chem. A 101, 1836 (1997).
4. S. Nagase, M. Nakano e T. Kudo, J. Chem. Soc. Chem. Commun., 60 (1987).
5. Suely A. F. Mazzini e Paulo M. V. B. Barone, em preparação.

# THE PROTECTIVE ROLE OF TREHALOSE ON MEMBRANES EXPOSED TO HIGH TEMPERATURE 

Cristina S. Pereira ${ }^{1,2}(P G)$, Luiz C.G. Freitas ${ }^{2}(P Q)$, Roberto D. Lins ${ }^{1}$ (PQ), Philippe H. Hünenberger ${ }^{1}$ (PQ)<br>cris@qt.dq.ufscar.br<br>${ }^{1}$ Laboratory of Physical Chemistry - ETH-Zürich - Zürich - Switzerland<br>${ }^{2}$ Departamento de Química - Universidade Federal de São Carlos - São Carlos - SP

Keywords: trehalose, membrane stabilization, molecular dynamics
The disaccharide trehalose (TRH) has been identified as an effective protecting agent of biostructures under unfavorable thermodynamic conditions. The mechanisms by which TRH protects and stabilizes these systems remain not completely understood. In this work we have investigated the protective role of TRH on membranes exposed to high temperature. Dipalmitoylphosphatidylcholine (DPPC) bilayer ( $2 \times 64$ lipid units) solvated by 3339 SPC water molecules was used as a system model. Molecular dynamics simulations of the bilayer in the absence and in the presence of TRH (1M and 2M) were performed at 475 K . The analyses were done over 6 ns trajectories for each system. The results have shown that TRH effectively stabilizes the bilayer structure at high temperature by keeping it in the liquid crystalline phase (Fig.1). The observed stabilization is shown to be dependent on the TRH concentration (Fig 1-4). Direct hydrogen bonds between TRH molecules and DPPC head groups were observed. TRH presence affects the dynamic of the lipid chains. (CAPES, NCCR-Structural Biology, Swiss National Science Foundation).


Figure 1: Area per lipid as a function of time in the simulations with different concentrations of TRH


Figure 3: Snapshot of the membrane in the simulation with TRH 1M.


Figure 2: Snapshot of the membrane in the simulation without TRH.


Figure 4: Snapshot of the membrane in the simulation with TRH 2M

# CONVERGÊNCIA DA ENERGIA DE CORRELAÇÃO EM CÁLCULOS COM BASES CC-PVXZ 

Eduardo F. Laschuk (PG)<br>fischli@iq.ufrgs.br<br>Instituto de Química - Universidade Federal do Rio Grande do Sul<br>Av. Bento Gonçalves, 9500 - Porto Alegre, RS - CEP 91501-970, CP 15003<br>Palavras-chave: correlação eletrônica, convergência, extrapolações.

Foi estudado o comportamento de convergência da energia de correlação eletrônica em séries de cálculos com bases do tipo cc-pVXZ, $X=D, T, Q$ etc., aplicando métodos de correlação MP2, CCSD, CCSD(T), CC3 e CCSDT a diferentes sistemas moleculares. Formalmente, a energia de correlação calculada por meio de metodologias coupled cluster (CC) pode ser decomposta em uma soma de contribuições devidas a excitações simples ( $\mathrm{E}_{\mathrm{S}}$ ), duplas conexas ( $\mathrm{E}_{\mathrm{D}}$ ), triplas conexas $\left(E_{T}\right)$, etc.: $E_{\text {corr }}=E_{S}+E_{D}+E_{T}+\ldots$

Trabalhos recentes mostram que a contribuição das

Tabela: valores ótimos para extrapolação $\mathrm{X}^{-k}, \mathrm{X}=4,5,6$

| Sistema | $k_{C C S O(T)}$ | $k_{C C 3}$ |
| :--- | :--- | :--- |
| Ne | 4,14 | 3,84 |
| $\mathrm{~N}_{2}$ | 4,08 | 3,98 |
| HF | 4,31 | 3,72 |
| $\mathrm{H}_{2} \mathrm{O}$ | 4,19 | 3,94 |
| CO | 3,98 | 3,99 |
| $\mathrm{CH}_{2}$ | 3,81 | 4,35 |
| Média | 4,08 | 3,97 |



Gráfico 1. $y=\ln \left(E_{x}-E_{\text {int }}\right)$ em função de $x=\ln (X)$ para energias de triplas $\operatorname{CCSD}(\mathrm{T})$. As linhas tracejadas são retas do tipo $y=-4 x+b$ para auxiliar na visualização.
duplas $E_{D}$ pode ser dividida em duas partes, referentes a pares de elétrons singlete ( $s=0$ ) e triplete ( $s=1$ ), e que em uma expansão principal como a da série cc-pVXZ, $X=D, T, Q$ etc., estas parcelas da energia de correlação convergem com um comportamento do tipo $\mathrm{X}^{-(2 s+3)}: \mathrm{E}_{\mathrm{D}, \mathrm{X}}^{0}=\mathrm{E}_{\mathrm{D}, \text { inf }}^{0}+\mathrm{AX}^{-3} ; \mathrm{E}_{\mathrm{D}, \mathrm{X}}=$ $\mathrm{E}_{\mathrm{D}, \text { inf }}^{1}+\mathrm{BX}^{-5}$ [Klopper, W., Mol. Phys. 99, 481-507 (2001) e Klopper, W., J. Chem. Phys. 115, 761-765 (2001)]. Recentemente, Valeev et al. demonstraram a validade de fórmulas análogas para a energia de correlação MP2 utilizando até bases pV7Z. [Valeev, E. F. et al., J. Chem. Phys. 118, 8594-8610 (2003)].

No presente trabalho, procurou-se confirmar a validade das fórmulas de convergência citadas, e principalmente determinar se existe algum padrão de convergência semelhante para as excitações triplas, que são a mais importante parcela da correlação eletrônica depois das excitações duplas. Para tal, fizeram-se uma série de cálculos utilizando principalmente as metodologias $\operatorname{CCSD}(\mathrm{T})$ e CC3. Em ambos casos observou-se um comportamento de convergência do tipo $X^{-4}$, o que aponta a possibilidade de extrapolar a contribuição das excitações triplas ao limite de base completa (CBS).

Inicialmente, procuramos estabelecer com cálculos cc-pVXZ, $X=4,5,6$ um expoente ótimo para uma extrapolação do tipo $X^{-k}$ da contribuição das excitações triplas. Dados três pontos, existe necessariamente algum $k$ para o qual a extrapolação (4,5) concordará com a extrapolação $(5,6)$. Os valores de kótimos situam-se bastante próximos de 4 ( v . tabela), indicando que provavelmente há uma lei de convergência do tipo $\mathrm{X}^{-4}$ ao menos para triplas CC3 e CCSD(T).

Supondo que a contribuição de triplas à energia de correlação segue uma forma $\mathrm{E}_{\mathrm{x}}=$ $E_{\text {inf }}+A X^{-4}$, então o gráfico de $y=\ln \left(E_{x}-E_{\text {infit }}\right)$ contra $x=\ln (X)$ deve produzir uma reta $y=\ln A-4 x$. De fato, estimando Einf pela extrapolação $X^{-4} \operatorname{com} X=5,6$, encontramos para $y(x)$ os resultados mostrados nos gráfico 1 para triplas $\operatorname{CCSD}(\mathrm{T})$; as energias CC3 apresentam comportamento análogo. Conforme podemos ver, os pontos do gráfico tendem claramente a formar uma reta com inclinação -4, o que confirma a existência de uma lei de convergência do tipo $X^{-4}$ para excitações triplas.

# POTENCIAIS DE INTERAÇÃO AB INITIO DE DÍMEROS DE GASES NOBRES E APLICAÇÕES 

Eduardo F. Laschuk (PG)<br>fischli@iq.ufrgs.br<br>Instituto de Química - Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves, 9500 - Porto Alegre, RS - CEP 91501-970, CP 15003

Palavras-chave: potenciais ab initio, gases nobres, correlação eletrônica.
A determinação de potenciais de interação precisos para dímeros de gases nobres constitui um problema extremamente desafiador para os métodos de cálculo ab initio. A razão disto é que as forças atrativas entre dois átomos de gases nobres (forças de dispersão de London) originam-se de efeitos de correlação eletrônica. Conforme é sabido, uma descrição acurada dos efeitos de correlação eletrônica é bastante difícil de se atingir devido às

Tabela 1. Parâmetros de potenciais

| Dímero | $\sigma\left(a_{0}\right)$ | $r_{5}\left(a_{0}\right)$ | $D_{g}\left(\mu E_{n}\right)$ | $k\left(\mu E_{b} / a_{0}{ }^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{He}_{2}{ }^{\text {a }}$ | 4,98652 | 5,6036 | 35,006 | 85,15 |
| $\mathrm{He}_{2}{ }^{\text {b }}$ |  |  | 34,78 |  |
| $\mathrm{He}_{2}{ }^{\text {c }}$ |  | 5,6245 | 33,67 |  |
| $\mathrm{Ne}_{2}{ }^{\text {a }}$ | 5,23535 | 5,8592 | 128,56 | 302,6 |
| $\mathrm{Ne}_{2}{ }_{\text {c }}$ |  | 5,8559 | 130,33 |  |
| $\mathrm{Ne}_{2}{ }^{\text {d }}$ |  | 5,841 | 133,8 |  |
| $\mathrm{HeNe}^{\text {a }}$ | 5,10069 | 5,7247 | 66,14 | 156,5 |
| $\mathrm{HeNe}{ }^{\text {c }}$ |  | 5,7224 | 66,57 |  |
| $\mathrm{HeNe}{ }^{\text {e }}$ |  | 5,7362 | 66,15 |  |
| HeAr ${ }^{\text {a }}$ | 5,89302 | 6,6027 | 95,83 | 177,1 |
| HeAr ${ }^{\text {c }}$ |  | 6,5998 | 94,15 |  |
| HeAr ${ }^{\text {e }}$ |  | 6,5718 | 93,89 |  |

Tabela 2. Energia de transições rovibracionais no ${ }^{20} \mathrm{Ne}_{2}{ }^{\text {a }}$

|  |  | Observado ${ }^{\text {b }}$ | Calculado |
| :---: | :---: | :---: | :---: |
| $v$ | $J$ | $E_{v, J}-E_{0,0}$ | $E_{v, j}-E_{0,0}$ |
| 0 | 2 | 0,937(10) | 0,923 |
| 0 | 4 | 3,088(10) | 3,063 |
| 0 | 6 | 6,426(18) | 6,387 |
| 0 | 8 | 10,947(19) | 10,836 |
| 1 | 0 | 13,76(14) | 13,267 |
| 1 | 2 | 14,36(14) | 13,854 |
| 1 | 4 | 15,73(14) | 15,167 |
| 2 | 0 | 16,814 ${ }^{\text {c }}$ | 15,975 |

${ }^{\text {b }}$ Wüest, A. e Merkt, F., J. Chem. Phys. 118, 8807 (2003)
${ }^{\text {c }}$ Valor calculado a partir do potencial empírico obtido de dados rovibracionais observados. limitações intrínsecas das bases de um elétron usuais e ao elevado custo computacional do tratamento de excitações triplas e superiores. Uma solução possível, e que foi explorada no presente trabalho, é a utilização de métodos de extrapolação ao limite de conjunto de base completo (CBS) associados a expansões principais como a que é oferecida pela sucessão de bases do tipo cc-pVXZ, $X=D, T, Q$, etc.

No presente trabalho, determinamos potenciais de interação ab initio por meio de metodologias coupled cluster (CC) com bases tipo d-aug-ccpVXZ e extrapolação ao limite de conjunto de base completo. A tabela 1 apresenta dados preliminares dos potenciais obtidos de extrapolações com cálculos 4-zeta/5zeta.

Foram realizados cálculos de níveis de energia rovibracionais dos dímeros de gases nobres, que constituem um teste muito sensível para a qualidade dos potenciais calculados. A tabela 2 fornece dados referentes ao dímero ${ }^{20} \mathrm{Ne}_{2}$ que atestam a excelente concordância das transições calculadas com os valores observados experimentalmente.

[^26]
# desenvolvimento da superfície de energia POTENCIAL PARA O DÍMERO DE HDROGENIO $\left(H_{2}\right)_{2}$ 

Angelo M. Maniero (PQ), Luis S. Costa (PQ)<br>angelo@fis.unb.br<br>Instituto de Física, Universidade de Brasilia, Caixa Postal 04455, 70919-970 - Brasilia, Brasil<br>Palavras-Chaves: dímeros moleculares, superfície de energia potencial, método coupled-clusters

O hidrogênio molecular é a molécula mais abundante no meio interestelar com densidade típica de $10^{6} \mathrm{~cm}^{3}$ em nuvens moleculares densas. O dimero da molécula de hidrogênio, $\left(\mathrm{H}_{2}\right)_{2}$, e seus isótopos têm despertado grande interesse no estudo de moléculas fracamente ligadas devido a sua natureza fundamental, astrofísica, e por serem sistemas simples para cálculos em estrutura eletrônica. Tais cálculos têm sido utilizados para determinar, por exemplo, superfícies de energia potencial (SEP). As SEPs são normalmente funções analíticas multidimensionais com vários parâmetros ajustáveis. Esses parâmetros são ajustados para que a SEP reproduza os dados que caracterizam um determinado estado eletrônico. Esses dados podem ser resultados teóricos obtidos por métodos de primeiros princípios da estrutura eletrônica (ab initio). Podem ser também resultados experimentais (semi-empíricos obtidos da espectroscopia ou de experimentos de espalhamento de alta resolução); ou por ambos. Para o caso de métodos ab initio, para a geração de SEPs, devemos utilizar um método pós-Hartree-Fock que leva em conta efeitos de correlação eletrônica, especialmente para sistemas fracamente ligados. Dentre esses métodos podemos citar, teoria do funcional da densidade (DFT), teoria de perturbação de muitos corpos (MBPT), auto-consistente multi-configuracional (MCSCF), coupled-clusters (CC). Além da escolha do método pós-Hartree-Fock, é também importante que se avalie a qualidade da expansão em funções de base atômicas que será utilizada. Esta base deve ser adequada, juntamente com um dos métodos acima citados, para a inclusão de efeitos de correlação eletrônica. Neste trabalho, apresentamos a construção da superfície de energia potencial desenvolvida com o objetivo de detalhar o procedimento necessário para o estudo de sistemas com quatro átomos. Neste desenvolvimento empregamos o método ab initio $\operatorname{CCSD}(\mathrm{T})$ com a utilização de vários conjuntos distintos de bases atômicas entre eles, ccpCVDZ, cc-pCVTZ, cc-pCVQZ, e apresentamos resultados de forma comparativa entre as bases utilizadas. Além disso, comparamos com os resultados apresentados por Schwenke [4] que desenvolveu uma SEP para o mesmo sistema. Apresentamos abaixo alguns destes resultados obtidos para as diferentes bases citadas acima.

| Mínimo na.Configuração | cc-pCVDZ | cc-pCVTZ | cc-pCVQZ | Schwenke[4] |
| :---: | :---: | :---: | :---: | :---: |
| FormaT | -2.3256533 | -2.3438070 | -2.3468439 | -2.3448057 |
| Forma L | -2.3248253 | -2.3430213 | -2.3459703 | -2.3439591 |
| Forma X | -2.3266676 | -2.3445939 | -2.3475670 | -2.3455943 |
| Forma // | -2.3255799 | -2.3436439 | -2.3466968 | -2.3446655 |

Destacamos que além do estudo da estrutura eletrônica, apresentamos também resultados para os estado ro-vibracionais para o sistema $\left(\mathrm{H}_{2}\right)_{2}$ com momento angular total até $J=1$. Os resultados dos estados vibracionais são calculados por meio de um programa desenvolvido em coordenadas de Jacobi que utiliza o método de representação da variável discreta para a expansão da função de onda referente ao movimento dos núcleos. Este cálculo envolve a solução de um problema com quatro graus de liberdade, pois, consideramos as distâncias entre os monômeros fixas.
[1] J. Schaefer e W. Meyer J. Chem. Phys. 70, 344 (1979)
[2] G Danby e D. R. Flower J. Phys. B: At. Mol. Phys., 16, 3411 (1983)
[3] L. S. Costa e D. C. Clary J. Chem. Phys. 117, 7512 (2002)
[4] D. Schwenke J. Chem. Phys. 89, 2076 (1988)

# DETERMHNATIONOF ATOMHC-ANISOTROPIES FROMGAS= PHASE INFRARED INTENSITIES. 

Roberto L. A. Haiduke ${ }^{1}$ (PQ), Anselmo E. de Oliveira ${ }^{2}$ (PQ), Roy E. Bruns ${ }^{1,3}(\mathrm{PQ})$<br>bruns@iqm .unicamp.br<br>Instituto de Química, Universidade Estadual de Campinas, CP 6154 13083-970 Campinas, SP, 2)<br>Departamento de Química, Universidade Federal de Goiás, Goiânia, GO, 3) Instituto de Química<br>Universidade de São Paulo, CP 26077 05513-970 São Paulo, SP

Key-words: Polar tensors, Infrared intensities, Electronic structure.
Atomic anisotropies have been determined from the experimentally measured infrared intensities of thirty molecules. These include most of the molecules for which these intensities have been measured. Thirty-four carbon, nineteen hydrogen, nine fluorine, nine chlorine, three nitrogen, seven oxygen and two sulfur anisotropies are reported. The experimental values are compared with those obtained from Hartree-Fock (HF), density functional (B3LYP) and Möller-Plesset (MP2) calculations using $6-31+G(d, p)$ and 6$311++G(3 d, 3 p)$ basis sets. Although MP2 and B3LYP estimates are more accurate than the HF ones for carbon, fluorine, oxygen and sulfur anisotropies, hydrogen, chlorine and nitrogen anisotropy errors are not sensitive to changes of the calculational levels. The two basis sets result in very similar errors in the anisotropy values for each calculational level. Errors in atomic anisotropies of the carbon atom range from $2.2 e^{2}$ for HF results to $0.29 e^{2}$ for MP2 results. Errors in the hydrogen atom anisotropies are remarkably constant for all calculations, 0.018-0.019 $e^{2}$. Fluorine, chlorine and nitrogen anisotropies have relatively constant errors in the 0.112-0.189, 0.117-0.159, and 0.031-0.097 $e^{2}$ ranges, respectively. HF results have much larger errors for the oxygen (0.831-0.894 $e^{2}$ ) and sulfur (1.804-1.968 $e^{2}$ ) atomic anisotropies than do the MP2 (0.128-0.202 $e^{2}$ ) and B3LYP (0.211-0.314 $e^{2}$ ) results Except for the hydrogen atoms, the errors in the anisotropy values are significantly larger than the error range of $0.045-0.185 e$ found for mean dipole moment derivatives using these same calculational levels and wave functions for these same molecules (A. E. de Oliveira, R. L. A. Haiduke, R. E. Bruns, J. Phys. Chem. A 2000, 104, 5320-5327).

High anisotropy values are found for atoms in molecules having double bonds. High carbon anisotropies are found in $\mathrm{F}_{2} \mathrm{CO}, \mathrm{H}_{2} \mathrm{CO}, \mathrm{Cl}_{2} \mathrm{CO}, 1,1-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}, \mathrm{CO}_{2}, \mathrm{CS}_{2}$ and OCS. These atoms are situated in positions of highly asymmetric electronic densities. The linear molecules tend to have high oxygen and sulfur anisotropies. Atoms participating in CN triple bonds have very low anisotropies that are similar to the values found for atoms participating in single bonds.

Mean dipole moment derivative, anisotropic and rotational contributions to the intensity sums of all the molecules are reported for the first time. The anisotropic contributions are predominant for molecules like methane, ethane, acetylene, cyclopropane and other molecules containing atoms with small electronegativity differences. On the other hand, mean dipole moment derivative contributions are larger for the fluorochloromethanes.

These results can be interpreted using a charge-charge flux-overlap model. Molecules with high mean dipole moment derivative contributions to their intensity sums have large atomic charges and charge fluxes during vibrations. This is consistent with the common interpretation of the mean dipole moment derivatives as GAPT (Generalized Atomic Polar Iensor) atomic charges. On the other hand charge flux and overlap are important factors for electronic density changes with the vibrations of molecules having large anisotropic contributions to their intensity sums. (Fapesp, CNPq, CAPES).

# SIMULAÇÕES DE DINÂMICA MOLECULAR NA INTERFACE $\mathrm{H}_{2} \mathrm{O} / \mathrm{ZrO}_{2}$. 

Lucimara R. Martins ${ }^{1}$ (PG), Branka M. Ladanyi ${ }^{2}(P Q)$, Munir S. Skaf ${ }^{1}(P Q)$<br>lucimara@iqm.unicamp.br<br>${ }^{1}$ Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas<br>${ }^{2}$ Department of Chemistry, Colorado State University, Fort Collins (E.U.A.). Palavras-chaves: dinâmica de solvatação, zircônia, efeito isotópico.

A interação de líquidos com superficies sólidas é importante em diferentes áreas da química, como por exemplo, cromatografia, catálise heterogênea e captação de energia solar. Sendo assim, é interessante estudar tanto a estrutura de líquidos quanto os aspectos dinâmicos da interação desses com às superficies sólidas.

A dinâmica de moléculas de $\mathrm{H}_{2} \mathrm{O}$ e $\mathrm{D}_{2} \mathrm{O}$ interagindo com a superfície de nanopartículas de $\mathrm{ZrO}_{2}$ é interessante por servir de modelo para $\mathrm{TiO}_{2}$ que vêm sendo estudade para utilização em células fotoeletroquímicas de conversão de energia solar em energia elétrica. A eficiência da injecção de elétrons depende do acoplamento do corante com a nanopartícula e da habilidade do sistema em bloquear a transferência de elétrons reversa. Como o movimento de elétrons em solução é altamente sensível ao movimento do solvente, a dinâmica de solvatação nesse sistema tem sido estudada experimentalmente.

Dois pontos que chamam atenção nesses experimentos são o tempo global de solvatação mais curto na presença da $\mathrm{ZrO}_{2}$ do que em água pura e a ausência de efeito isotrópico.

Foram feitas simulações de equilíbrio no ensemble NVE da C343 no estado fundamental ( $\mathrm{S}_{0}$ ) em $\mathrm{H}_{2} \mathrm{O} / \mathrm{ZrO}_{2}$ e em $\mathrm{D}_{2} \mathrm{O} / \mathrm{ZrO}_{2}$, da C 343 no estado excitado ( $\mathrm{S}_{1}$ ) em $\mathrm{H}_{2} \mathrm{O} / \mathrm{ZrO}_{2}$ e da $\mathrm{C} 343^{-}$em $\mathrm{H}_{2} \mathrm{O} / \mathrm{ZrO}_{2}$. Partindo das simulações de equilíbrio da C343 no estado fundamental em $\mathrm{H}_{2} \mathrm{O} / \mathrm{ZrO}_{2}$, foram feitas simulações de não-equilíbrio.

Analisando a distância entre o centro de massa da C343 e a interface e a orientação de vetores no plano e perpendicular ao plano do anel benzênico da C343 em relação a um vetor perpendicular à superfície do sólido, podemos observar que a C343 se encontra próxima à interface e praticamente paralela à superfície em ambos os solventes. Por outro lado, a C343 se afasta mais do sólido e experimenta orientações diferentes. Embora a C343 não se afaste da superfície, apresenta uma mobilidade semelhante à C343* nas direções x e y (paralela à superfície). Poucas diferenças são observadas nas funções de distribuição de pares entre os sítios do solvente $\left(\mathrm{H}_{2} \mathrm{O}\right.$ e $\left.\mathrm{D}_{2} \mathrm{O}\right)$ e os sítios da C343 no estado fundamental e excitado.

Quanto ao solvente, podemos separar as moléculas de $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ em três tipos: camada de solvatação da $\mathrm{ZrO}_{2}$, camada intermediária (solvatam a C343) e camada central. As moléculas de água da camada de solvatação da $\mathrm{ZrO}_{2}$ apresentam menor difusão, uma relaxação reorientacional mais lenta e uma maior orientação do dipolo aproximadamente perpendicular à superficie. A partir da camada intermediária, o solvente já apresenta um comportamento semelhante ao da água pura (semelhante coeficiente de difusão, distribuição de ligações de hidrogênio e relaxação orientacional).

Esses resultados indicam que o diferente comportamento da dinâmica de solvatação da C 343 em $\mathrm{H}_{2} \mathrm{O} / \mathrm{ZrO}_{2}$ e em $\mathrm{D}_{2} \mathrm{O} / \mathrm{ZrO}_{2}$ está relacionado com uma menor quantidade de moléculas de solvente ao redor da C343 do que em água pura devido a sua orientação paralela à superfície do sólido e a pouca diferença nas estruturas de solvatação da C343 no estado fundamental e excitado. (FAPESP,CAPES).

# DINÂMICA DE SOLVATAÇÃO DA CUMARHNA C480 EMA ZEÓLITA NaX 

Lucimara R. Martins ${ }^{1}$ (PG), Munir S. Skaf ${ }^{1}$ (PQ)<br>lucimara@iqm.unicamp.br<br>${ }^{1}$ Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas<br>Palavras-chave: Dinâmica de solvatação, ambientes confinantes, zeólita NaX

Líquidos polares confinados em regiões microscopicamente heterogêneas tais como no interior de cavidades zeolíticas, matrizes poliméricas, interfaces, cavidades proteicas, micelas e outros ambientes de geometria restrita, apresentam movimentos rotacionais e translacionais distintos daqueles observados em fase homogênea e isotrópica. Estudos da dinâmica de solvatação, por espectroscopia de emissão resolvida no tempo, da cumarina 480 presente em uma cavidade de zeólita faujasita $13 X$ desidratada revela um decaimento multi-exponencial para a função resposta de solvatação com um componente lento da ordem de 64 ps atribuído qualitativamente aos movimentos reorientacionais da sonda no interior da cavidade com possíveis contribuições dos cátions trocáveis.

Foram feitas simulações de dinâmica molecular, no ensemble NVE, com a C480 no estado fundamental e excitado no interior da cavidade $\alpha$ da zeólita faujasita NaX desidratada ( $\mathrm{S} / / \mathrm{Al}=1.0$ ). A caixa de simulação é composta por 4 celas unitárias da estrutura experimental (raios-X) do retículo zeolítico, 96 cátions ocupando inicialmente os sítios cristalográficos de tipo 1 e ll e uma molécula de cumarina 480.

Podem ser identificados dois sítios de adsorção para a C480: o centro da cavidade $\alpha$ e o centro das janelas que conectam cavidades $\alpha$ vizinhas sendo a passagem de um sítio para outro muito rápido. Não é observada nenhuma alteração na ocupação dos sítios cristalográficos dos cátions nem nas propriedades dinâmicas desses.

A função de correlação de velocidades do centro de massa da C480 apresenta oscilações características do confinamento na cavidade zeolítica e o espectro de freqüências relacionado com os movimentos translacionais apresenta uma banda larga em $37 \mathrm{~cm}^{-1}$. Bandas nessa região têm sido descritas para benzeno em zeólita faujasita NaY. No entanto, a ocorrência de apenas uma banda sugeriu que, devido ao seu tamanho, o movimento translacional da C480 não é anisotrópico como o observado no caso do benzeno.

O tempo de relaxação de vetores no plano do anel aromático da C480 e perpendicular a esse plano é semelhante ao tempo de solvatação experimental mais curto indicando que a dinâmica de solvatação pode estar associada aos movimentos reorientacionais do soluto no interior da cavidade.

Outro indício da importânica da reorientação para a dinâmica de solvatação pode ser observado separando a função resposta de solvatação em duas componentes: estrutura zeolítica e cátions. Como o retículo zeolítico é considerado rígido, a componente da estrutura zeolítica é devida à reorientação da C480 em relação às paredes da cavidade.

Entre os dez sítios que mais contribuem para a dinâmica de solvatação, cinco são carbonos do anel aromático. As funções de distribuição de pares desses carbonos com oxigênios do tipo I e IV do retículo (localizados nas janelas) são as que sofrem maior alteração com a excitação da C480. (FAPESP).

# SELEÇÃO DE PARÂMETROS TEÓRICOS NO ESTUDO DA RELAÇÃO ESTRUTURA-ATIVIDADE DE FLAVONÓIDES 

Karen C. Weber ${ }^{1}$ (PG), Káthia M. Honório ${ }^{1}$ (PG), Saulo L. da Silva ${ }^{2}(\mathrm{PG})$, Albérico B. F. da Silva ${ }^{1}(P Q)$<br>karenweber@iqsc.usp.br<br>${ }^{1}$ Departamento de Química e Física Molecular, Instituto de Química de São Carlos, USP<br>${ }^{2}$ Departamento de Bioquímica, Instituto de Biologia, UNICAMP

Palavras-chave: flavonóides, quimiometria, AM1


#### Abstract

Os compostos flavonóides têm sido amplamente estudados devido às diversas atividades farmacológicas que possuem. Dentre elas, destaca-se a atividade antioxidante, relacionada à prevenção e ao tratamento de tumores e doenças cardiovasculares. Vários estudos foram realizados na tentativa de se encontrar relações entre a estrutura dos flavonóides e a atividade antioxidante. Os resultados desses estudos indicam que características estruturais, como o número de hidroxilas e a presença de certos substituintes em determinadas posições, seriam responsáveis pela atividade, de acordo com os mecanismos propostos para a reação com radicais livres. Entretanto, os resultados não são conclusivos e, em alguns casos, apresentam aspectos conflitantes.

O presente estudo teve como objetivos selecionar as propriedades relevantes e encontrar uma relação entre estrutura e atividade antioxidante de uma série de 25 flavonóides por meio de métodos quimiométricos. Inicialmente, realizou-se uma análise conformacional dos compostos pelo método de mecânica molecular MM+ contido no programa HyperChem 4.5. Em seguida, as propriedades eletrônicas das moléculas foram calculadas pelo método semi-empírico AM1 do programa Ampac 6.5. As cargas do potencial eletrostático foram calculadas pelo programa Spartan 5.0.

De posse da matriz de dados contendo os valores das propriedades que descrevem os compostos, partiu-se para a aplicação dos métodos de quimiometria. A Análise de Componentes Principais (PCA) e a Análise Hierárquica de Agrupamentos (HCA) resultaram na separação dos compostos em duas classes (ativos e inativos). As propriedades responsáveis pela separação foram: $\mathrm{QH}_{\mathrm{f}}$ (diferença entre os calores de formaçăo da molécula neutra e do radical), QC3 (carga sobre o carbono 3), QSub5 (carga do substituinte 5) e QSub13 (carga do substituinte 13).

Estudos anteriores mostraram boa correlação entre $\circ \square \mathrm{H}_{\mathrm{t}}$ e as constantes de velocidade de reaçōes radicalares de compostos flavonóides, o que indica que essa é uma propriedade adequada para descrever a atividade antioxidante. Quanto menor o $\square_{f}$, mais estável o radical formado e, assim, mais ativo o antioxidante. A relevância da carga sobre o carbono 3 deve-se ao fato de que o substituinte ligado ao mesmo determina o ângulo entre os anéis fundidos e o anel livre que compõem a estrutura básica de todos os flavonóides. Esta característica está relacionada à delocalização eletrônica, uma vez que a planaridade permitirá conjugação e, conseqüentemente, a formação de radicais mais estáveis, favorecendo a reação de captura do radical livre. O papel do substituinte do carbono 5 na separação é bastante claro: os compostos ativos não possuem substituintes nessa posição. Embora a contribuição do carbono 5 para a atividade antioxidante de flavonóides ainda não tenha sido estudada suficientemente, sabe-se que a hidroxila nessa posição participa da reação de captura de radicais livres apenas quando o anel B não tem substituições (posições 13 e 14). Finalmente, de acordo com estudos anteriores, a oxidação dos flavonóides se dá preferencialmente no anel B, o que explica a importância da carga do substituinte 13.

Assim, as variáveis encontradas como sendo responsáveis pela separação são consistentes com os dados experimentais e, dessa maneira, fornecem subsídios para a utilização de parâmetros teóricos na busca por novos compostos antioxidantes. Além disso, é importante salientar que os estudos anteriores levavam em conta apenas a presença ou ausência de certos grupos, sem considerar as possíveis interações entre os mesmos. A vantagem de se empregar métodos de quimiometria em estudos de relação estrutura-atividade para esse sistema está no fato de que os mesmos tratam adequadamente as correlações entre as variáveis. (CAPES, CNPq).


# INFLUENEEOF MOLECULAR PROPEPTIES-OF FLAVONOID COMPOUNDS IN THE INHIBITION OF THE XANTHINE OXIDASE 

Karen C. Weber ${ }^{1}$ (PG), Saulo L. da Silva ${ }^{2,3}$ (PG), Káthia M. Honório ${ }^{1}$ (PG), Adriano da Silva ${ }^{2}$ (PQ), Sérgio Marangoni ${ }^{3}$ (PQ), Marcos H. Toyama ${ }^{3}$ (PQ), Albérico B. F. da Silva ${ }^{1}$ (PQ)<br>karenweber@iqsc.usp.br<br>${ }^{1}$ Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo.<br>${ }^{2}$ Universidade Comunitária Regional de Chapecó (UNOCHAPECÓ)<br>${ }^{3}$ Departamento de Bioquímica - IB - Universidade Estadual de Campinas (UNICAMP)<br>Palavras-chave: flavonoids, xanthine oxidase, atomic and molecular properties.

Xanthine Oxidase ( XO ) is an enzyme with capacity of catalyzing the transformation of hypoxanthine in xanthine and, afterwards, the xanthine is transformed in urate which in high levels is responsible for several diseases, such as gout, renal diseases and stone formation in the urinary system. Allopurinol is a powerful inhibitor of the XO enzyme as it links in the site occupied by the hypoxanthine. The allopurinol is used as a routinely medication in cases where it is necessary to inhibit the XO enzyme action, and in the literature several flavonoid compounds have been described as inhibitors of the XO enzyme in similar levels to the ones presented by allopurinol.

In this work, a study on the influence of structural, electronic and hydrophobic properties of some flavonoid compounds with capacity to inhibit the XO activity was carried out by using molecular mechanics (MM+) and semi-empirical (AM1) methods. From the results obtained we were able to correlate some properties of the flavonoid compounds studied with the inhibition of the XO.

The results of this work showed that geometric properties of the flavonoids compounds under study are the most important ones for the inhibition of the XO enzyme. When the $D_{3}$ torsion angles of the compounds are larger than 27 degrees, they become inactives, i.e. they are not able to inhibit the XO enzyme, as they destabilize the formation of the F-XO complex.

Another relevant aspect in the inhibitory activity of the flavonoid compounds studied is associated with their sizes. The calculated molecular properties POL, MR, A and VOL showed the higher the values for these four properties, the lowest the inhibitory activity of the molecule. This behavior can be explained, possibly, by the fact that when the size of the flavonoid compound increases, also increases the probability to occur repulsive interactions between the compounds and the aminoacid residues of the active site inhibiting, consequently, the F-XO complex formation. The hydrophobic character (Log P) was another molecular property related to the inhibition of the XO enzyme. The flavonoid compounds with low Log $P$ values are not good inhibitors of the XO enzyme, as small Log $P$ values imply that the compound has a lesser probability to interact with the XO enzyme.

Finally, the molecular electrostatic potencial maps (the MEPM) showed the existence of several regions where hydrogen bonds could be formed stabilizing the formation of the F-XO complex. Summarizing, a flavonoid compound will be a good XO inhibitor when it presents a combination of a $D_{3}$ torsion angle around 26 and 27 degrees, a small size and a high hydrophobic character. (CNPq).

# ESTUDO TEÓRICO DA SOLVATAÇÃO HIDROFÍLICA DO ÂNION CARBOXILATO 

Tatiane F. Moraes ${ }^{1}$ (IC), Kaline Coutinho ${ }^{1}$ (PQ) e Sylvio Canuto ${ }^{2}$ (PQ)<br>${ }^{1}$ Universidade de Mogi das Cruzes, CP 411, 08701-970, Mogi das Cruzes, SP, Brasil.<br>${ }^{2}$ Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo, SP Brasil<br>Palavras-chave: solvatação aquosa, simulação computacional, cálculos quânticos

As ligações de hidrogênio são um tipo de interação intermolecular muito importante na área bioquímica, pois estão presentes em várias reações químicas que envolvem processos biológicos. Como essas reações químicas geralmente ocorrem no meio aquoso, é de fundamental interesse determinar os efeitos do líquido nas ligações de hidrogênio para que se tenha uma melhor compreensão desses processos.

Neste projeto, escolhemos o ânion carboxilato $\left(\mathrm{HCOO}^{-}\right)$, que interage fortemente em meio aquoso através de ligações de hidrogênio e está presente em todos os aminoácidos. Estudamos a solvatação desse ânion em meio aquoso e comparamos os nossos resultados com os obtidos para os aglomerados $\mathrm{HCOO}^{-} \ldots \mathrm{H}_{2} \mathrm{O}$ isolados.

Inicialmente estudamos o ânion isoladamente através de cálculos quânticos, onde analisamos a geometria otimizada e seu potencial eletrostático. Em seguida, realizamos simulações computacionais do ânion carboxilato embebido em 1000 moléculas de água, a temperatura e pressão ambientes. Ao final da simulação, várias configurações foram geradas e com elas analisamos o comportamento médio das propriedades geométricas e energéticas das ligações de hidrogênio formadas entre o ânion e as moléculas de água.

Com a analise dos resultados, observamos que cada oxigênio do ânion faz ligações de hidrogênio com cerca de 3 moléculas de água simultaneamente, ao compararmos a energia da ligação de hidrogênio dos aglomerados isolados e em líquido, cerca de $23 \%$ dela foi perdida devido aos efeitos da temperatura e do meio solvente. Além disso, para os aglomerados foi observado uma situação preferencial para a conformação bifurcada (uma única molécula de água fazendo duas ligações de hidrogênio com o ânion) e para o meio líquido não foi observado nenhuma preferência de conformação. Desta forma, concluímos que nem todos os resultados obtidos para os aglomerados podem ser transferidos ou diretamente extrapolados para o meio líquido, uma vez que as situações estudadas são diferentes. (Financiamento: FAPESP e CNPq).


# ESTUDO TEÓRICO DE MOLÉCULAS ESTRUTURALMENTE ANÁLOGAS AO RETINAL 

Ranylson M. L. Savedra (IC), Melissa F. S. Pinto (PG), Milan Trsic (PQ)<br>marcello@grad.iqsc.usp.br, melissa@iqsc.usp.br, milan@iqsc.usp.br Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brasil.

Palavras-chave: retinais sintéticos, AM1, PM3.
Os olhos são órgãos receptores altamente especializados e complexos do sistema nervoso. A retina é um envoltório situado na parte mais interna do globo ocular e possui uma estrutura complexa de várias camadas.

Os cones e os bastonetes são neurônios de importância singular para o ato da visão e são encontrados na retina. Os bastonetes são extremamente sensíveis à luz e são receptores para visão noturna. Os cones são responsáveis pela visão à luz intensa, bem como das cores ${ }^{1}$.

As moléculas de retinal são aldeídos derivados da vitamina A (retinol). A combinação do cromóforo 11-cis-retinal com a proteína opsina, existente nos bastonetes da maioria dos vertebrados, leva à formação do pigmento visual denominado rodopsina, por meio de umà base de Schiff protonada com a lisina (Lis-296), da proteína opsina ${ }^{2,3}$.

Neste trabalho foram analisadas algumas propriedades físico-químicas de algumas moléculas estruturalmente análogas à molécula de retinal, que foram sintetizadas e propostas pela literatura ${ }^{4}$, com o intuito de contribuir para o progresso do entendimento a respeito das características estruturais do retinal necessárias para que ocorra a fotoativação da molécula de rodopsina, já que a absorção de luz por esta molécula pode dar início a uma série de processos foto-físicos e físico-químicos, que eventualmente levariam à percepção visual.

Para esta finalidade, foram utilizados os métodos semi-empíricos AM1 e PM3 para obtenção das propriedades físico-químicas das moléculas em estudo. Serão calculados ainda espectros de absorção teóricos destas moléculas utilizando o método de interação de configurações, para analisá-los comparativamente com os espectros experimentais, com o intuito de verificarmos seu comportamento diante das mudanças estruturais feitas na molécula de retinal. Desse modo, avaliaremos se a introdução de grupos alquil reduz a estabilidade e a fotoativação do retinal, dessa forma a velocidade de incorporação do retinal à opsina seria reduzida. (CNPq, CAPES).

[^27]
# DISCUSSÃO DE UM POSSÍVEL MECANISMO DE GERAÇÃO DA INFORMAÇÃO VISUAL COM O ESTUDO DA RODOPSINA 

Melissa F. S. Pinto (PG), Milan Trsic (PQ)<br>melissa@iqsc.usp.br, milan@iqsc.usp.br Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brasil.

Palavras-chave: rodopsina, fotorresistor, informação visual.
Quando a luz é absorvida pelos pigmentos visuais contidos na retina ocorre a geração de impulsos nervosos que são transmitidos ao cérebro. Desse modo, o cérebro capta estes impulsos tornando possível o ato da visão ${ }^{1,2}$. Neste trabalho foi feito um estudo assaz detalhado das propriedades físico-químicas de um dos mais importantes pigmentos visuais denominado rodopsina, existente nos bastonetes.

As propriedades físico-químicas das principais conformações da rodopsina foram estudadas utilizando-se modelos de grupos prostéticos (base de Schiff protonada formada pela união da molécula 11-cis-retinal com a proteína opsina), denominados de 11 -cisrodopsina e todo-trans-rodopsina, utilizando-se vários procedimentos teóricos. Este estudo foi feito para as moléculas nos estado fundamental, no primeiro estado excitado singlete e ainda no estado excitado de Frank-Condon. Com o intuito de contribuir para a compreensão do mecanismo visual de vertebrados, os resultados obtidos neste trabalho foram relacionados com um possível mecanismo para a informação visual.

Para uma descrição mais compreensiva do sistema em estudo, cálculos de interação de configurações foram feitos para a obtenção dos espectros de absorção das duas formas isoméricas da rodopsina estudadas, com a utilização do programa $\mathrm{ZINDO} / \mathrm{Cl}$. Os resultados teóricos mostraram-se quase idênticos às medidas experimentais, cujos desvios devem-se ao fato de que os cálculos foram realizados como se a molécula estivesse no vácuo; sendo que, através de cálculos de interação do íon $\mathrm{SH}^{-}$e a molécula 11-cis-rodopsina, foi observado que as interações existentes entre os íons contidos na proteína opsina apresentam certa influência no deslocamento do espectro de absorção da molécula.

Os resultados obtidos para os estados fundamental e excitado indicaram certo decréscimio na conjugação neste último estado; analisando ordens das ligações, distâncias atômicas e cargas atốmicas, implicando em uma pobre condutividade elétrica após a absorção da luz. Estes resultados dão suporte ao que foi proposto por Trsic $^{3}$, neste trabalho ele avalia se a rodopsina poderia ser considerada um fotorresistor. O presente estudo teórico leva em consideração que o ordenado sistema fundamental conjugado é melhor condutor elétrico do que espécies com defeito em suas estruturas. Os experimentos de Mergulhão et al. ${ }^{4}$, mostraram um comportamento semelhante para as polianilinas protonadas, na qual um impulso elétrico produz um decréscimo na corrente, com a possível criação de espécies excitadas estruturalmente defeituosas. (FAPESP, CNPq)

[^28]
# THEORETICAL STUDY OF TRANSITION METALS COORDINATION COMPOUNDS WITH CROCONATE ION 

Dalva E. C. Ferreira (IC) ${ }^{1}$, Geórgia M. A. Junqueira (PG) ${ }^{1,3}$, Willian R. Rocha (PQ) ${ }^{2}$, Wagner B. De Almeida (PQ) ${ }^{3}$ and Hélio F. Dos Santos(PQ) ${ }^{1}$<br>ester@ neqc2.quimica.ufjf.br<br>${ }^{1}$ NEQC: Núcleo de Estudos em Química Computacional, Dep. Química, ICE, UFJF, 36036-330, Juiz de Fora, MG, BRASIL.<br>${ }^{2}$ Dep. Química Fundamental, CCEN, UFPE, CEP 50750-901, Recife, PE, BRASIL<br>${ }^{3}$ LQC-MM: Laboratório de Química Computacional e Modelagem Molecular, Dep. Química, ICEx, UFMG, CEP 31270-901, Belo Horizonte, MG, BRASIL

Keywords: oxocarbons, ab initio, transition metals

Oxocarbons constituted a class of compounds firstly identified by West in $1960^{1}$ with general formula $\left(C_{n} O_{n}\right)^{2}$. The main representatives of this series are deltate $(n=3)$, squarate $(n=4)$, croconate ( $n=5$ ) and rhodizonate ( $n=6$ ). (Figure 1)





Figure 1
Many questions involving the coordination chemistry of oxocarbon ions have been subject of researchers mainly regarding to their structural, electrochemical, semicondutor and magnetic properties ${ }^{2}$. Several compounds have been reported involving coordination of $\mathrm{Cr}(\mathrm{III}), \mathrm{Mn}(\mathrm{II}), \mathrm{Fe}(\mathrm{II}), \mathrm{Fe}(\mathrm{III}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ with squarate and croconate ions ${ }^{3}$.

In the present work, we analysed the complexation process of $\mathrm{Zn}(I I), \mathrm{Fe}(I I), \mathrm{Cu}(I I)$, $\mathrm{Ni}(\mathrm{II}), \mathrm{Mn}(\mathrm{II})$ and $\mathrm{Co}(\mathrm{II})$ with croconate dianion. Structural, spectroscopic and magnetic properties of $\left[\mathrm{M}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ complexes are reported. The geometries of complexes were fully optimized at the Hartree-Fock (HF) and density functional theory (BP86 and B3P86) levels of theory using the $6-31 \mathrm{G}(\mathrm{d})$ basis set to $\mathrm{C}, \mathrm{O}$ and H and LANL2DZ pseudopotential to the metal atoms. According to DFT level, the coordination of $\mathrm{Zn}(I I), \mathrm{Cu}(I I)$ and $\mathrm{Fe}(I I)$ in the complexes were found to be respectively tetrahedral, square planar and octahedral (Figure 2). (FAPEMIG, CNPq, FINEP ).




Figure 2: Optimized geometries at B3P86 level ot theory.

[^29]
# ESTUDO CONFORMACIONAL DO ETILENO GLICOL POR CÁLCULOS QUÂNTICOS E DINÂMICA MOLECULAR 

Osmair Vital de Oliveira (PG)* e Luiz Carlos Gomide Freitas (PQ)<br>osmair@qt.dq.ufscar.br<br>Departamento de Química - Centro de Ciências Exatas e de Tecnologia - Universidade Federal de São Carlos

Palavras-chave: dinâmica molecular, cálculos quânticos, analise conformacional
Etileno glicol (ETG) tem sido utilizado, principalmente, como liquido criogênico, agente anti-congelante e outros. Devido a baixa toxicidade do ETG, que é crucial em criopreservação de células e tecidos, torna-o de grande importância. Outro aspecto relevante deste solvente em biologia é a prevenção da desnaturalização de proteínas, que adota uma estrutura mais ordenada em solventes poliois ou soluções aquosas de poliois (Padro, 2001).

A característica do ETG em formar conformação gauche, torna-o de grande interesse em estudos teóricos, sendo este considerado o modelo mais simples para o estudo de carboidratos. Na literatura existem vários trabalhos, tanto teóricos e experimentais concernente ao ETG puro, porém ainda não se encontram trabalhos experimentais que sejam conclusivos no que tange as propriedades estruturais do ETG.
Devido a utilização do ETG em criopreservação de células é de grande importância estudar os efeitos deste liquido na conformação de peptídeos. Assim, a primeira parte deste trabalho procura caracterizar o ETG em fase gasosa por cálculos quânticos e o liquido por mecânica estatística.

Cálculos quânticos foram feitos no programa Gaussian 98, utilizando os métodos B3LYP/6-311g(3df,3pd) e MP2/6-31g(d) e de mecânica estatística no GROMACS 3.1.4, ambos em estação Linux processador $1,2 \mathrm{GHz}$. Cálculos de dinâmica molecular foram feitos em condições NPT, T=298K e $\mathrm{p}=1,0 \mathrm{~atm}$. A $0,1 \mathrm{ps}$ de simulação foram armazenados os dados, o tempo total de simulação foram de 1000 ps .

Os cálculos obtidos pela dinâmica molecular mostram que há a formação de ligação de hidrogênio intramolecular durante toda a simulação, quando há a quebra da ligação intramolecular, há a formação da intermolecular (ambas em $0,18 \mathrm{~nm}$ ), o que esta de acordo com os dados de difração de raios-x e nêutron (Bako, 2003). Para que haja esta ligação com este comprimento, é preciso admitir que a ligação intramolecular O---O seja aproximadamente $0,24 \mathrm{~nm}$, valor encontrado na simulação, entretanto, este comprimento de ligação é interpretado como a interação de parâmetros não ligantes, $\mathrm{C}-\ldots-\mathrm{H}_{0}, \mathrm{H}_{0}-\cdots \mathrm{H}_{0}$ e $\mathrm{O}--\mathrm{H}_{0}$ por Bako.

Neste trabalho, o ângulo diedral O-C-C-O foi de $37,4^{\circ}$, enquanto que nos cálculos quânticos foram de $62,4^{\circ}$ e $59,9^{\circ}$ empregando o método B3LYP e MP2, respectivamente e de outros cálculos de dinâmica molecular reportados na literatura de $70-74^{\circ}$, experimentalmente vários trabalhos mostram que o diedro esta em torno de $70^{\circ}$. Na literatura apenas um trabalho experimental em N.M.R. reporta um ângulo de 38ㅇ, entretanto, o RMS de acoplamento é mais alto que 1,6 e é desprezado. Podemos concluir que apesar de todos os resultados obtidos, sejam teóricos ou experimentais, ainda não temos conhecimento total das propriedades estruturais do ETG e que a interpretação dos resultados podem levar a diferentes conclusões. (CAPES).

- Padro, J. A, Saiz, L., Guardia, E., Structure of liquid ethylene glycol: A molecular dynamics simulation study with different force fields, J. Chem. Phys. 114(7), 3187, 2001.
- Bako, I., Grosz, T., Palinkas, G., Ethylene glycol dimers in the liquid phase: A study by x-ray and neutron diffration, J. Chem. Phys., 118(7), 3215, 2003.
- Chidichimo, G., Imbardelli, D., Longeri, M., Saupe, A., Conformational of ethylene glycol dissolved in a nematic-lyotropic solution: An N.M.R. analysis, Mol. Phys., 1988


# ENERGY SPECTRUM OF A PARTICLE WITHIN A CONFINED DOUBLE WELL OSCILLATOR: FROM JAHN-TELLER EFFECT TO CHAOS 

José Luis Marín Flores (PQ), Germán Campoy Güereña* $(\mathrm{PQ})$, Raúl Riera Aroche* (PQ)

jmarin@cajeme.cifus.uson.mx
Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-088, 83190 Hermosillo, Son. MÉXICO.
Keywords: confined double well, Jahn-Teller effect, quantum chaos
The effect of confinement on the spectrum of a particle within a double well potential is studied in this work. When no confinement is present it is well known that, as the separation between minima of the wells increase, the energy levels approach to the typical two-fold degeneracy corresponding to the decoupled wells. When the confinement is imposed on the system, there is a regular association of the energy levels pair-wise, if the confining barriers are symmetrically located and a Jahn-Teller-like behavior is observed. When the confinement is asymmetric, the regular association of the levels disappears and, in spite that the Jahn-Teller-like behavior is still present, the levels associate in pairs irregularly, except for some special commensurate ratios between location of confining barriers. This irregular behavior can be interpreted as a sort of chaotic Jahn-Teller-like effect. Moreover, since crossing potentials are widely used in the study of many practical applications ranging from molecular to quantum computer physics, system like that studied here-in would represent an attractive topic because of the wide possibilities of technological applications. We discuss the preliminary results of the work and present a few situations that can mimic some real systems. (This work was supported in part by Consejo Nacional de Ciencia y Tecnología (C.O.N.A.C.Y.T. México) under contract 35220-E)

# THEORETICAL ANALYSIS OF THE INCLUSION COMPOUNDS INVOLVING TETRACYCLINES AND GYCLODEXTRINS 

Clebio S. Nascimento, Jr (PG), Marta A. F. O. Britto (IC), Hélio F. Dos Santos (PQ) clebio@acad.ufjf.br<br>NEQC: Núcleo de Estudos em Química Computacional. Universidade Federal de Juiz de Fora, Campus Martelos, Instituto de Ciências Exatas ICE, Departamento de Química

Keywords: Tetracyclines, Cyclodextrins, PM3
The structural arrangement of the glucose molecules in cyclodextrins (CD's) (fig.1a) confers to these molecules the characteristic to act as "host" in the inclusion compounds formation. Different justifications can be presented to make clear the importance of CD's in the development of new medicines: (i) increase in the stability of the "guests" molecules against hydrolysis and oxidation; (ii) increase in the solubility of the drugs; (iii) improvement in the bioavailability. Tetracyclines (TC's) (fig.1b) are broad-spectrum antibiotics that act blocking the protein synthesis. The use of these molecules in human therapeutics has been limited due a series of side effects and development of resistance mechanisms. Most of those processes involve the interaction of the drugs with metal ions. In this way, it is possible that the tetracyclines administration as inclusion form may reduce the complexation processes with metal ions present in the organism, facilitating the absorption of the TC's and reducing the side effects related to the gastro-intestinal irritations.


(a)
(b)

Figure 1: (a) Structure of cyclodextrins: $n=1$ ( $\alpha-C D), 2(\beta-C D)$ and $3(\gamma-C D)$. (b) Tetracycline.
In the present work, we studied, through different theoretical methodologies, the inclusion processes involving the tetracycline (TC) and its respective derivatives with cyclodextrins (CD's). In a first moment, a structural analysis of the CD's was carried out, aiming to evaluate the quality of the semiempirical methods for the description of cyclodextins structures. In order to compare the structures of the $\alpha-C D, \beta-C D$ and $\gamma-C D$ optimized at molecular mechanics and quantum mechanical levels, several torsion and bond angles were measured. The results suggest that semiempirical methods are appropriate for the structural description of the CD's, being the method PM3 better than AM1 regarding to the hydrogen bonds description.In the second step, structures and thermodynamic properties related to the inclusion processes involving 16 tetracycline and $\beta$ and $\gamma$ CD were calculated at the semiempirical PM3 level and discussed as function of the physical and chemical properties of this class of antibiotics. The thermodynamic analysis showed that the formation of the inclusion compounds with $\gamma-C D$ is significantly more favorable than with $\beta-C D$, being the average value of the stabilization enthalpy $\left(\Delta H_{E}\right)$ equal to: $-6 \pm 3(\beta-C D)$ and $-22 \pm 6 \mathrm{kcal} / \mathrm{mol}$ $(\gamma-C D)$. The intermolecular hydrogen bonds between the amida group of TC's and the secondary hydroxyl groups of CD's play a fundamental role on the stability of the compounds with $\gamma-C D$.

Molecular dynamics (MD) studies were carried out in order to analyze the dynamic character of the inclusion compounds structures. The results showed the inclusion compounds structures are slightly flexible, however the MD simulation lead to more stable structures. It was verified by selecting distinct configurations on the equilibrium and used for QM calculations. For the parent compound tetracycline the $\left\langle\Delta H_{E}\right\rangle$ was equal to $-15.4 \pm 0,6$ (with $\beta-C D$ ) and $-32 \pm 2 \mathrm{kcal} / \mathrm{mol}$ (with $\gamma$-CD) that significantly lower than our previous results: -8.2 (with $\beta-C D$ ) and -15.2 (with $\gamma-C D$ ). (CNPq - CAPES - FAPEMIG - FINEP - CENAPA-MG/CO-NAR-UFJF).

# PARAMETRIZATION OF INTERMOLECULAR POTENTIALS FOR PLATINUM (II) COMPOUNDS 

Juliana Fedoce Lopes (PG) ${ }^{1}$, Willian R. Rocha (PQ) ${ }^{2}$, Hélio F. Dos Santos (PQ) ${ }^{1}$, juliana@neqc2.quimica.ufjf.br<br>${ }^{1}$ NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, Instituto de<br>Ciências Exatas ICE, Universidade Federal de Juiz de Fora(UFJF), Campus Martelos, CEP: 36036-330, Juiz de Fora, MG, Brasil.<br>${ }^{2}$ Departamento de Química Fundamental. Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, CEP:50740-250, Recife, PE, Brasil.

Keyword: ab initio calculation, intermolecular potential, cisplatin
The cisplatin and its derivatives have been widely due their antitumoral activity. The hydrolysis of these complexes in the intracellular medium has been considered an important step for the action mechanism of this class of molecules. For a correct description of this process it is necessary to include the medium effects that can be done using either continuum models or simulation procedures (Monte Carlo and Molecular Dynamic).

The objective of the present work is the parametrization of the Lennard-Jones (1) intermolecular potential to describe the interaction of cisplatin and its analogues with water, intending to study the hidrolysis process in aqueous solution using computational simulation. The parametrization procedure can be divided in two main steps: (i) construction of potential energy surfaces (PES) for distinct orientation of the systems $A$ and $B$ and (ii) adjustment of the parameters $\varepsilon, \sigma$ and q in the eq. (1). The latter is done by minimizing the function $f$ represented in eq. (2), where $U^{G}$ is the quantum mechanical interaction energy calculated for the configuration $G$ and $U_{\text {int }}$ is the respective value predicted classically by eq. (1).

$$
\begin{align*}
& U_{\mathrm{intl}}=4 \varepsilon_{i j}\left[\left(\frac{\sigma_{i j}}{r_{i j}}\right)^{12}-\left(\frac{\sigma_{i j}}{r_{i j}}\right)^{6}\right]+\frac{q_{i} q_{j}}{r_{i j}}  \tag{1}\\
& f\left(\sigma_{i j}, \varepsilon_{i j}, q_{i j}\right)=\sum_{G}\left(U^{G}-U_{\mathrm{int}}\right)^{2} \tag{2}
\end{align*}
$$

In the present study the the results of step (i) are reported for the interaction of water with cisplatin (cis-DDP) and its analogues cis-dichloro(ethylenediammine)platinum(II) (cis-DEP), cisdichloro(propylenediammine)platinum(II) (cis-DPP) and cis-dichloro(phenilenediammine)platinum(II) (cis-FDPT). All the calculations were carried out at $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and MP2/6-31G(d,p) levels of theory. In both levels the pseudopotential LANL2DZ was used to the Pt atom.

Figure 1

cis-DDP cis-DEP

cis-DPP


Analyzing the results, it was observed a totally repulsive behavior for some approximation of water $\left(\mathrm{Pt} . . . \mathrm{OH}_{2}\right)$ in the plane of cis-DDP. The results also showed that the stabilization of the complexes is underestimated at HF level that is an evidence of the relevancy of the electronic correlation. The greatest stability was found for the complexes with Pt... HOH interactions for all compounds analyzed (see Table 1). In this structure, the Pt atom acts as a hydrogen acceptor. Aiming to understand this behavior at molecular level, an atomic charge analysis (Mulliken and NBO) were performed for these orientations throughout the reaction path. (CNPq, CAPES, FAPEMIG, FINEP, LQC-MM, CENAPAD-MG/CO).

Table 1:

|  | cis-DDPMP2/6-31G(d,p)/LANL2DZ |  | cis-DEPMP2/6-31G(d,p)/LANL2DZ |  | $\begin{gathered} c i s-\mathrm{DPP} \\ \mathrm{MP} 2 / 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) / \mathrm{LANL} 2 \mathrm{DZ} \end{gathered}$ |  | $\begin{gathered} \text { cis-FDPT } \\ \text { MP2/6-31G( } \mathrm{d}, \mathrm{p}) / \mathrm{LANL} 2 \mathrm{DZ} \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Delta E$ ( $\mathrm{kcal} / \mathrm{mol}$ ) | $\mathrm{r}(\mathrm{Pt} . . . \mathrm{O} / \mathrm{A}$ | $\Delta \mathrm{E}$ ( $\mathrm{kcal} / \mathrm{mol}$ ) | $\mathrm{r}(\mathrm{Pt} . . \mathrm{O} / \mathrm{A}$ | $\Delta E$ (kcal/mol) | $\mathrm{r}(\mathrm{Pt} . . . \mathrm{O} / \mathrm{A}$ | $\Delta E$ ( $\mathrm{kcal} / \mathrm{mol}$ ) | r (Pt...O/A |
| Pt...OH2 | -1.117 | 3.3 | -3.471 | 3.4 | -1.928 | 3.4 | -1.252 | 3.3 |
| Pt.. HOH | -8.723 | 3.3 | -6.697 | 3.0 | -11.253 | 3.6 | -9.247 | 3.2 |

# THEORETICAL ANALYSIS OF THE OXOCARBONS: STRUCTURAL AND SPECTROSCOPIC PROPERTIES OF RHODIZONATE ION 

Geórgia M. A. Junqueira (PG) ${ }^{1,3}$, Willian R. Rocha (PQ) ${ }^{2}$,<br>Wagner B. De Almeida (PQ) ${ }^{3}$ and Hélio F. Dos Santos $(P Q)^{1}$<br>georgia@netuno.qui.ufmg.br<br>${ }^{1}$ NEQC: Núcleo de Estudos em Química Computacional, Dep.Química, ICE, UFJF, 36036-330, Juiz de Fora, MG, BRASIL.<br>${ }^{2}$ Dep. Química Fundamental, CCEN, UFPE, CEP 50750-901, Recife, PE, BRASIL<br>${ }^{3}$ LQC-MM: Laboratório de Química Computacional e Modelagem Molecular, Dep. Química, ICEx, UFMG, CEP 31270-901, Belo Horizonte, MG, BRASIL<br>Keywords: oxocarbons, ab initio, computational simulation

Oxocarbons are compounds identified by West in $1960^{1}$ with general formula $\left(\mathrm{C}_{n} \mathrm{O}_{n}\right)^{2-}$. The main representatives of this series are deltate ( $n=3$ ), squarate $(n=4)$, croconate $(n=5)$ and rhodizonate ( $n=6$ ).





The minimum geometry of these compounds is planar with $D_{n h}$ symmetry ${ }^{2}$, except for rhodizonate ion. For the six-member ring ion, the most stable structure has $C_{2}$ symmetry, being the $D_{6 h}$ geometry a transition state ${ }^{3,4}$.

The interesting aspect concerning the electronic spectra of the oxocarbons in solution is the presence of two absorption bands that have been attributed to the Jahn-Teller distortion of the first excited state. Recently, our group has analyzed molecular properties of the croconate, deltate, and squarate ions in gas phase and aqueous solution ${ }^{5}$, being the experimental electronic spectra ${ }^{2}$ only reproduced when the combined effects of the solvent and counter ion were taken into account.

In the present work we studied molecular properties of the two rhodizonate forms, $C_{2}$ and $D_{6 h}$ at distinct $a b$ initio levels of theory. The electronic spectra of $C_{2}$ and $D_{6 n}$ rhodizonate species was calculated in gas phase and aqueous solution, using a sequential Monte Carlo/Quantum Mechanical approach ${ }^{6}$, taking into account the solvent and counter ion effects. In order to include these effects on the spectroscopic properties of the rhodizonate ion, three complexed forms with stoichiometry $\left[\mathrm{Li}_{2}\left(\mathrm{C}_{6} \mathrm{O}_{6}\right)\right]$ were proposed and studied. Finally, a detailed analysis of additional solvent molecules and of hydrogen bonds was made showing these contributions to the blue shift of transitions HOMO $\rightarrow$ LUMO and HOMO $\rightarrow$ LUMO +1 in electronic spectra of rhodizonate ions in aqueous solution. (FAPEMIG, CNPq, FINEP, CENAPAD-MG/CO).

Table 1: Electronic transitions calculated for the $\mathrm{D}_{6 \mathrm{~h}}\left(\mathrm{C}_{6} \mathrm{O}_{6}\right)^{2-}$ ion in gas phase and water. The values in parenthesis are to $\mathrm{C}_{2}$ form.

|  | Electronic Transitions $/ \mathrm{nm}[f]$ |  |
| :---: | :---: | :---: |
| $\left(\mathrm{C}_{6} \mathrm{O}_{6}\right)^{2-}$ | $625[0.5](600[0.5])$ | $625[0.5](600[0.5])$ |
| $\left[\left(\mathrm{C}_{6} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}_{30}\right]^{2-}\right.$ | $630[0.6](599[0.5])$ | $616[0.6](589[0.5])$ |

[^30]
# PARAMETRIZATION OF THE PCM FOR CALCULATING SOLVATION FREE ENERGY IN OCTANOL 

Gilson R. Ferreira (PG) ${ }^{1}$ and Hélio F. Dos Santos $(P Q)^{1}$<br>gilson@neqc2.quimica.ufjf.br<br>'NEQC: Núcleo de Estudos em Química Computacional, Dep. Química, ICE, UFJF, 36036-330, Juiz de Fora, MG, BRASIL.

Keywords: ab initio, continuum models, octanol

Many biological, biochemical and pharmacological processes are related to the solubility of solutes in aqueous and organics solvents. The hidrophobicity of a molecule can be quantified by its partition coefficient between water and an organic phase. Numerous organic solvents have been used, such as oils, chloroform and alkanes. However the octanol is clearly the most popular organic solvent for the study of hidrophobicity properties of molecules [1].

Several theoretical methodologies have been developed to predict the solvent effect and determine the octanol/water partition coefficients. The most used are Molecular Dynamics, Thermodynamic Perturbation Theory and continuum solvation models. Continuum Models present some advantage because the low computational cost and are parameterized for numerous solvents. However the PCM developed by Tomasi and co-workers was not parametrized for octanol so far. In the present work an attempt to parametrize the PCM model was done for distinct cavity shape (UAHF, Bondi and Pauling) [2].

The first step was the selections of 23 organic neutral compounds with free energy of solvation in octanol experimentally avaliable. All the compounds were completely optimized of HF/6-31G* level and their gas phase geometries used for the calculations in octanol. The total free energy of solvation are defined according eq (1).

$$
\begin{equation*}
\Delta G_{P C M}^{\text {solv }}=\Delta G^{\text {solv,el }}+\Delta G^{\text {solv,nel }} \tag{1}
\end{equation*}
$$

Where $\Delta G^{\text {solv,el }}$ and $\Delta G^{\text {solv,ne }}$ are the electrostatic and non electrostatic contribuitions.
For the octanol, the non-electrostatic contribuitions can not be calculated due the lack of some parameters using to define the SAS, as the solvent radii (Rsolv). Calculations of Gibbs free energy were carried out for values of Rsolv on the range of $2.23-3.73 \AA$. For each value of Rsolv, the RMS of the solvation energy was calculated for the set of molecules. The results are shown below.

The minimum in the function above was obtained at Rsolv=3.09 $\AA$ for PCM-Pauling, Rsolv=3.08 $\AA$ for PCM-Bondi and Rsolv=3.06Å for PCM-UAHF being close values to the observed

value (Rsolv=3.42A) [1]. Studies are in progress aiming to evaluate the quality of the adjustment of Rsolv. (FAPEMIG, CNPq, NAR-UFJF, CENAPAD-MG/CO).

[^31]
# SIMULAÇÃO DE ESPECTROS DE IV DA GIBBSITA E DA CAULINITA VIA MÉTODOS DE MECÂNICA QUÂNTICA 

Alexandre Camilo $\mathrm{Jr}^{1}(\mathrm{PQ})^{\star}$, Marciano A. Carneiro ${ }^{2}(\mathrm{PG})$, André M. Brinatti ${ }^{1}(\mathrm{PQ})$, Yvonne P. Mascarenhas ${ }^{3}$ (PQ)<br>acamilo@uepg.br<br>${ }^{1}$ Departamento de Física, Universidade Estadual de Ponta Grossa, Ponta Grossa/PR, CEP:84.030900 (<br>${ }^{2}$ Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora/MG, CEP:36036-330<br>${ }^{3}$ Instituto de Física de São Carlos, USP - Campus de São Carlos/SP, CEP:13.560-970

Palavras-chave: minerais, métodos semi-empíricos, infra-vermelho

Métodos de Mecânica Quântica tem sido usados com sucesso na descrição das propriedades estruturais e eletrônicas de polímeros condutores e compostos de interesse biológico, entre outros. Apresentamos a simulação de espectros de infravermelho (IV) de dois minerais : caulinita e gibbsita. Partindo de estruturas conhecidas desses minerais foram realizadas simulações, via métodos semi-empíricos, do espectro de IV. Os cálculos de otimização foram realizados utilizando-se o Hamiltoniano semi-empírico PM3 (otimização completa) do programa MOPAC 6.0 rodando em um micro-computador padrão IBMPC/Pentium4 em ambiente LINUX. Os espectros de IV experimentais, que serviram para comparação com os simulados, foram obtidos de um solo da região de Ponta Grossa/PR, na fração argila cujo tamanho de partículas é menor ou igual a $2 \square \mathrm{~m}$. Essa análise de IV, juntamente com a difração de Raios $X$ (DRX), revelou a presença dos minerais caulinita e gibbsita, entre outros. Essas análises e caracterizações foram realizadas no IFSC/USP e no Grupo de Física Aplicada a Solos e Ciências Ambientais (FASCA) do Depto de Física-UEPGPonta Grossa. Foram realizadas comparações entre os espectros simulados com os experimentais e com dados da literatura, apresentando razoável concordância. Da comparação com os dados da literatura, os espectros simulados apresentaram alguns desvios em relação ao centro das bandas. Com relação aos espectros experimentais, percebeu-se que a região das bandas características dos dois minerias esta presente, mas também estão deslocadas. O espectro experimental da gibbsita, por exemplo, apresenta picos fracos na região de $410,425,920$ e $1630 \mathrm{~cm}^{-1}$, picos médios em 455,585 e $980-58 \mathrm{~cm}$ ${ }^{1}$, fortes em 670-60, 749-40, 800, 3390-60 e $3617 \mathrm{~cm}^{-1}$ e muito fortes em 515, 562-40, 1030-$18,3445-28$ e $3520 \mathrm{~cm}^{-1}$. No espectro simulado, os picos fracos em 410 e $425 \mathrm{~cm}^{-1}$ não são observados com clareza. Em $450 \mathrm{~cm}^{-1}$, observam-se picos médios. Nas regiões entre 515 a $1150 \mathrm{~cm}^{-1}$, há uma alternância de picos médios, fortes e muito fortes, e inclusive alguns fracos, exatamente como ocorre experimentalmente. Diferentemente do esperado, aparecem picos médios e fortes nas regiões entre 1700 e $2000 \mathrm{~cm}^{-1}$. Entre 3350 e $3620 \mathrm{~cm}^{-1}$ experimentalmente aparecem picos fortes e muitos fortes, no simulado observa-se apenas um pico forte. A dificuldade de comparar as simulações com os dados experimentais reside no fato da fração argila ser uma mistura de vários minerais, havendo superposição das bandas características. O fato das estruturas geradas para os cálculos não possuírem um tamanho significativo para uma boa representação da estrutura real é uma possível explicação para os deslocamentos dos centros das bandas, observados nos espectros simulados.

# ESTRUTURA ELETRÔNICA DE OLIGÔMEROS DE POLIACETILENO SUBSTITUIDOS POR ÁTOMOS DE BORO 

Alexandre Camilo Jr (PQ)<br>acamilo@uepg.br<br>Departamento de Física, Universidade Estadual de Ponta Grossa, Ponta Grossa/PR, CEP:84.030900<br>Palavras-chave: métodos ab-initio, boro, poliacetileno

Em anos recentes, tem-se estudado a possibilidade de se obterem novos polímeros condutores através da mudança seletiva da estrutura eletrônica. Tanaka e colaboradores $[1,2]$ mostraram que é possível o desenvolvimento de polímeros condutores com propriedades metálicas usando seletivamente heteroátomos incorporados no esqueleto de polímeros tipo poliacetileno [1] e em polímeros heterocíclicos [2], modulando o número de elétrons $\pi$, que estão diretamente relacionados com as propriedades metálicas. Aqui apresentamos resultados de um estudo, via cálculos ab-initio, da estrutura eletrônica de uma série de oligômeros do tipo poliacetileno substituídos por átomos de Boro. Simulamos estruturas onde o átomo de Boro substitui um ou dois átomos de Carbono na cadeia e estruturas onde, além do Boro, existe um defeito tipo soliton. Os resultados obtidos (estrutura geométrica e população do orbital $\pi$ ) para as diversas estruturas propostas são apresentados e comparados, inclusive com cálculos semi-empíricos (AM1) [3]. Nossos resultados mostram que as populações dos orbitais $\pi$ são bastante diferenciadas com relação à posição que o Boro ocupa na cadeia, bem como pela presença de solitons, como obtido pelos cálculos semi-empíricos. Os cálculos foram feitos usando-se o programa GAMESS em um microcomputador padrão IBM-PC/Pentium4 em ambiente LINUX. Os resultados são discutidos em termos de como melhorar a condutividade desses materiais, bem como a possibilidade de uma transição isolante-metal similar à observada em outros polímeros condutores. (Este trabalho foi financiado pela Fundação Araucária)
[1] - K. Tanaka et al.; Physical Review B, 32(6), 4279-4281 (1985)
[2] - K. Tanaka et al.; Synthetic Metals, 46, 221-225 (1992)
[3] - A. Camilo Jr, J.M.O.Marques, D.S.Galvão; não publicado

## P258

# ESTUDO DA CONFORMAÇÃO DE CARBOIDRATOS EM SOLUÇÃO AQUOSA 

André O. Menezes (IC), Clarissa O. da Silva (PQ)<br>o.andre@bol.com.br<br>Departamento de Química - Universidade Federal RURAL do Rio de Janeiro, Rodovia BR 465 km 47, Seropédica, RJ,<br>BRASIL.CEP 23890-000. Tel. $+55-21-2682-2807$.<br>Palavras-chave: mapas conformacionais, estrutura de dissacarídeos, confôrmeros

Dissacarídeos são estruturas formadas por 2 unidades monossacarídicas, unidas através de uma ligação glicosídica. Na determinação da conformação dos dissacarídeos, a primeira informação importante é a orientação relativa das unidades monossacarídicas, que vem definida através dos valores dos ângulos $\phi$ e $\psi$. Na busca do par de ângulos $\phi$ e $\psi$ que confere maior estabilidade ao sistema, foram calculados mapas conformacionais ab initio HF/6-31(d,p), a partir de
 varredura com passo de $30^{\circ}$ em cada um destes
 ângulos, para os seguintes dissacarídeos: $\beta 1,4-$ lactose ${ }^{1}, \alpha 1,1$-trealose e $\beta 1,4$ celobiose, tanto no vácuo quanto em soluçăo aquosa (através de modelo de contínuo polarizável) ${ }^{2}$. Tais mapas foram obtidos utilizando-se duas técnicas distintas: de resíduo rígido (onde a energia do sistema vem calculada a cada passo sem que haja otimização de geometria) e relaxada (onde a cada passo o sistema vem otimizado). Buscou-se com este procedimento identificar as conformações mais estáveis destes compostos nas duas fases distintas. Ambos os procedimentos são comparados neste trabalho. As estruturas de mais baixa energia para cada composto, selecionadas em solução, são identificadas na tabela abaixo, através dos valores dos ângulos diedro:

| Dissacarídeo | A |  | B |  | C |  | D |  | E |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\phi$ | $\psi$ | $\phi$ | $\psi$ | $\phi$ | $\psi$ | $\phi$ | $\psi$ | $\phi$ | $\psi$ |
| $\beta 1,4$ - lactose | $256^{\circ}$ | $64^{\circ}$ | $263^{\circ}$ | $218^{\circ}$ | $283^{\circ}$ | $235^{\circ}$ | $71^{\circ}$ | $89^{\circ}$ | $62^{\circ}$ | $242^{\circ}$ |
| $\alpha 1,1$-trealose | $320^{\circ}$ | $90^{\circ}$ | $170^{\circ}$ | $150^{\circ}$ | $100^{\circ}$ | $290^{\circ}$ | $65^{\circ}$ | $70^{\circ}$ | - | - |
| $\beta 1,4$ celobiose | $288^{\circ}$ | $113^{\circ}$ | $280^{\circ}$ | $179^{\circ}$ | $255^{\circ}$ | $229^{\circ}$ | $133^{\circ}$ | $238^{\circ}$ | $49^{\circ}$ | $237^{\circ}$ |

O mapa conformacional relaxado, em fase gasosa, para a $\beta 1-4$ celobiose é reportado na figura ao lado. A grande maioria dos mapas conformacionais disponíveis para estes compostos são obtidos através de metodologias clássicas, como mecânica molecular. Nestes cálculos, são utilizados campos de força onde o efeito anomérico nem sempre vem apropriadamente descrito ${ }^{3}$. Por esta razão, as estruturas assim obtidas fornecem propriedades que não se comparam satisfatoriamente com os respectivos valores experimentais ${ }^{4}$. Este quadro vem revertido quando são utilizadas estruturas provenientes dos mapas conformacionais ab initio, como
 pode ser observado para o caso da constante de acoplamento heteronuclear ( ${ }^{3} J_{H, C}$ ), para os átomos da ligação glicosídica, segundo os dados da tabela abaixo ${ }^{4}$, obtidos para a $\beta 1-4$ lactose :

|  | This work | Exp.1 | Exp. H | MM3 $^{\text {a }}$ | PEF95 $^{\text {b] }}$ | PEF95G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H} 1, \mathrm{C} 4$ | 4.1 | 3.8 | 3.7 | 3.5 | 3.8 | 3.6 |

a) 34.443 confôrmeros b) 24.925 confôrmeros c) 5 confôrmeros
${ }^{1}$ Clarissa O. da Silva, M. A. C. Nascimento, Carbohyd. Res. (submetido)
${ }^{2}$ Mennucci, B.; Cancès, E.; Tomasi, J. J. Chem. Phys., 1997, 107, 3032-3041.
3. Pérez, S.; Imberty, A.; Elgensen, S. B.; Gruza, J.; Mazeau, K.; Jiménez-Barbero, J.; Poveda, A.; Espinosa, J-F.; van Eyck, B. P.; Johnson, G.; French, A. D.; Kouwijzer, M. L. C. E.; Grootenius, P. D. J.; Bernardi, A.; Raimondi, L.; Senderowitz, H.; Durier, V.; Vergoten, G.; Rasmussen, K. Carbohyd. Res., 1998, 314, 141-155.
${ }^{4}$ Elgensen, S. B.; Rasmussen, K., J. Carbohyd. Chem., 1997, 16, 773-788.

# THEORETICAL INVESTIGATION OF THE ABSORPTION SPECTRUM OF DMACA IN WATER 

Herbert de C. Georg ${ }^{1}$ (PG) e Kaline Coutinho ${ }^{2}$ (PQ)<br>hcgeorg @if.usp.br, kaline@umc.br<br>${ }^{1}$ Instituto de Física/USP, C.P. 66318, 05315-970 São Paulo - SP.<br>${ }^{2}$ CIIB/Univ. Mogi das Cruzes, C.P. 411, 08701-970 Mogi das Cruzes - SP.<br>Keywords: absorption spectroscopy, sequential MC/QM, DMACA.

Amino-benzene derivatives like dimethylamino-cinnamaldehyde (DMACA, see figure 1), -cinnamic acid (DACA) and -benzonitrile (DMABN) show interesting spectroscopic properties: the anomalous dual fluorescence due to the phenomenon of TICT, which can be used to examine microscopic molecular environment; and the absorption spectra which is still subject of some analysis in literature (in the case of DMACA the origin of a band in the region of 390 nm is not well explained).


Figure 1: Schematic illustration of DMACA.

In the present work, we show statistically converged results for the absorption spectrum of DMACA in aqueous solution. To do so, we have performed Monte Carlo Metropolis simulations followed by quantum mechanics calculations for the normal and zwitterionic (charge separated) states of the molecule. Geometry optimizatons were performed with hybrid functional B3PW91. The simulations were carried out using LennardJones plus coulombic interaction potential. For the Lennard-Jones potential we used OPLS/AA parameters and for the coulombic potential we used partial charges obtained by fitting MP2/6-311++G(d,p) electrostatic potential. The absorption spectra calculations were performed with semiempirical INDO/CIS method with spectroscopic parameterization.

We found the intense transition of DMACA to be in $402.0 \pm 4.9 \mathrm{~nm}$ in very good agreement with the experimental result of $398.1 \pm 1 \mathrm{~nm}$. Our results show excelent resemblance with experimental results and therefore we could confirm the origin of that band as being due to zwitterionic formation of DMACA in water. (CNPq, Fapesp).

## P260

# ESTUDO TEÓRICO DE ALGUNS INTERMEDIÁRIOS RADICALARES E NEUTROS DA ARTEMISININA 

Mírian S. Costa (PG), Márcia M. C. Ferreira (PQ)<br>marcia@iqm.unicamp.br<br>Instituto de Química / Universidade Estadual de Campinas - Unicamp / Campinas - SP / CEP: 13083-970

Palavras-chave: artemisinina, radicais, cálculos ab initio.
O mecanismo de ação de qualquer fármaco é de suma importância para o desenvolvimento do mesmo. O objetivo deste trabalho foi estudar teoricamente alguns dos intermediários de reação da artemisinina, a qual possui atividade antimalárica contra Plasmodium falciparum. Existem vários estudos experimentais sobre o mecanismo de ação desta droga como: (1) reações de alquilação de proteínas especificas do parasita, (2) hidroxilação de biomoléculas por radicais de oxigênio derivados do hidroperóxido (formado pela abertura do anel da artemisinina), (3) alquilação do heme (ou modelos de heme) dentre outros. A artemisinina possui uma função endoperóxido a qual tem se mostrado essencial para a atividade antimalárica, onde esta droga age principalmente dentro dos eritrócitos. Empregou-se o método ab initio HF/6-31G** para a otimização das geometrias da artemisinina e de alguns prováveis intermediários de ação desta droga e para o cálculo das energias eletrônicas e livres destes intermediários em questão. Dentre os radicais calculados ao longo do caminho de decomposição redutiva da artemisinina, a diferença de energia livre entre o radical centrado no átomo de oxigênio $1 \mathrm{a} / 1 \mathrm{~b}$ (Figura) e o radical secundário 3 é de $-12,06 \mathrm{kcal} \mathrm{mol}^{-1}$ e de $-15,92 \mathrm{kcal} \mathrm{mol}^{-1}$ entre o radical primário 6. Isto indica que a cisão homolítica da ligação $\mathrm{C}_{3}-\mathrm{C}_{4}$, isto é, a passagem de 1 b para 6 , é preferencial do ponto de vista energético. Observou-se, através da análise das energias eletrônicas e energias livres, que a formação do intermediário 20 é favorável energeticamente, além de ser o mais estável. A análise das energias eletrônicas mostra que há a liberação de $-72,18 \mathrm{kcal} \mathrm{mol}^{-1}$ para a formação deste intermediário, enquanto que a análise da Energia Livre de Gibbs fornece $\Delta G$ Total no valor de $82,24 \mathrm{kcal} \mathrm{mol}^{-1}$ para a formação do mesmo intermediário. Através da análise de ambas as energias (eletrônicas e livres), chega-se à mesma conclusão de que a rota para a formação do intermediário de reação 20 é preferencial.


Figura: Mecanismos de ação da artemisinina propostos por Posner ${ }^{1}$ (rota A), por Jefford ${ }^{2}$ (rota B, levando ao intermediário 7) e por $\mathrm{Wu}^{3}$ (rota B , levando aos intermediários 18 e 20).
${ }^{1}$ Posner, G. H.; Cummings, J. N.; Ploypradith, P.; Oh, C. H., J. Am. Chem. Soc., 117, 5885, 1995. /
${ }^{2}$ Jefford, C. W.; Vicente, M. G. H.; Jacquier, Y. Favarger, F.; Mareda, J.; Millasson-Schmidt, P.; Brunner, G.; Burger, U., Helv. Chim. Acta, 79, 1475, 1996. $/^{3}$ Wu, W. -M.; Wu, Y.; Wu, Y. -L.; Yao, Z. -J.; Zhou, C. -M.; Li, Y.; Shan, F., J. Am. Chem. Soc, 120, 3316, 1998.

# AVALIAÇÃO DOS EFEITOS ELETRÔNHEOS, ESTÉRICOS E HIDROFÓBICOS NA PSICOATIVIDADE DE CANABINÓIDES 

Káthia M. Honório (PG), Albérico B. F. da Silva (PQ)<br>kathia @iqsc.usp.br<br>Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo.<br>Palavras-chave: canabinóides, psicoatividade, AM1.


#### Abstract

O estudo sistemático da planta Cannabis sativa e de seus componentes, os canabinóides, iniciou-se na década de 60, principalmente como resultado das sérias implicações sociais relacionadas à esta planta. Vários estudos têm sido realizados com o objetivo de identificar possíveis relações entre a estrutura química e a atividade biológica (psicoatividade) apresentada por estes compostos. Embora os canabinóides exerçam efeitos diretos sobre um determinado número de órgãos, incluindo os sistemas imunológico e reprodutivo, os principais efeitos farmacológicos observados estão relacionados ao sistema nervoso central. Alguns exemplos das aplicações terapêuticas dos canabinóides são: efeito analgésico, controle de espasmos em pacientes portadores de esclerose múltipla, tratamento de glaucoma, efeito broncodilatador, etc. Alguns efeitos colaterais podem acompanhar os efeitos terapêuticos citados acima, tais como: alterações na cognição e memória, euforia, depressão, efeito sedativo, e outros. Assim sendo, este trabalho tem como objetivo principal relacionar psicoatividade e algumas propriedades moleculares de um conjunto de 29 compostos canabinóides, com o intuito de melhor entender quais destas propriedades são as de maior relevância para explicar a atividade apresentada pelos compostos.


Neste trabalho, três classes de propriedades moleculares foram estudadas: eletrônicas, estéricas e hidrofóbicas, pois estas classes de propriedades caracterizam os possíveis mecanismos de interação droga-receptor. Para obtenção das estruturas mais estáveis de cada composto realizou-se uma análise conformacional, utilizando o método de mecânica molecular MM+. O método semi-empírico AM1 (Austin Model 1), contido no programa Ampac 6.5, foi utilizado para o cálculo das propriedades moleculares do conjunto de canabinóides em estudo. A seguir, alguns métodos quimiométricos foram utilizados com o objetivo de selecionar as propriedades mais relevantes a serem correlacionadas com a psicoatividade dos compostos canabinóides, e os métodos utilizados foram: análise de componentes principais (PCA), análise hierárquica de agrupamentos (HCA) e método do vizinho mais próximo (KNN).

Os resultados obtidos utilizando as técnicas PCA e HCA classificaram os compostos estudados em dois grupos: psicoativos e psicoinativos. As variáveis consideradas importantes na discriminação entre compostos ativos e inativos foram: $E_{L}$ (energia do primeiro orbital molecular desocupado), $\mathrm{E}_{\mathrm{H}-1}$ (energia do penúltimo orbital molecular ocupado), VC4 (volume do substituinte na posição C4) e Log P (logaritmo do coeficiente de partição). É interessante notar que estas quatro variáveis representam os três tipos de interação droga-receptor que podem ocorrem (eletrônica, estérica e hidrofóbica). A partir destes resultados, pode-se dizer que a proposição de novos compostos psicoinativos deveria levar em consideração que compostos que apresentem substituintes volumosos na posição C4 (alto valor de VC4), caráter eletrofílico (baixos valores de $\mathrm{E}_{\mathrm{L}} \in \mathrm{E}_{\mathrm{H}-1}$ ) e um pronunciado caráter hidrofilico (baixos valores de Log P ). Os resultados obtidos com o método KNN foram similares ao encontrados utilizando PCA e HCA, ou seja, as três técnicas quimiométricas classificaram os 29 canabinóides da mesma maneira). Utilizando os resultados citados acima, foi possível formular mecanismos de interação canabinóide-receptor.

A partir dos resultados obtidos utilizando as técnicas PCA, HCA e KNN, pode-se concluir que a região C 4 , o caráter eletrônico e hidrofílico são propriedades-chave para o entendimento da psicoatividade apresentada pelos compostos canabinóides. Além disso, pode-se observar que o modelo de classificação obtido fornece informações confiáveis e pode ser utilizado para classificação de novos canabinóides. (CNPq).

# ESTUDO TEÓRICO DAS PROPRIEDADES MOLECULARES DO AJOENE 

Agnaldo Arroio ${ }^{1}$ (PG), Káthia M. Honório ${ }^{1}$ (PG), Paula Homem-de-Mello ${ }^{1}$ (PG), Karen C. Weber ${ }^{1}$ (PG), Albérico. B. F. da Silva ${ }^{1}$ (PQ)<br>agnaldo@iqsc.usp.br<br>Grupo de Química Quântica, Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo.<br>Palaveras-chave: Ajoene, AM1, PM3.

O alho tem sido utilizado na medicina popular há mais de 5000 anos, sendo considerado uma das plantas medicinais mais versáteis e eficazes. Inicialmente acreditava-se que algo que tivesse um cheiro tão forte certamente deveria conter um grande poder curativo. Entre os efeitos benéficos que se atribuem ao alho, contam-se: diurético, expectorante, anti-gripal, anti-inflamatório, antibiótico, anti-séptico, vermífugo, ação contra ácido úrico, proteção contra derrame, trombose coronária e arteriosclerose, dentre outras.

Pesquisas recentes atribuem essas propriedades à habilidade de inibição da agregação das plaquetas sanguíneas, sendo o composto ajoene o mais potente agente trombótico derivado do extrato do alho. Além de reduzir a pressão sanguínea, o composto ajoene também apresenta atividade anti-oxidante, efeito este sinergístico ao do óxido nítrico.

O presente trabalho tem como objetivo principal uma investigação teórica das estruturas dos dois confôrmeros da molécula de ajoene (cis e trans) baseando-se nas propriedades físicoquímicas e estruturais deste composto.

Os dois confôrmeros nas formas carregadas (carga $=+1$ e -1 ) e neutra foram préotimizados utilizando o método de mecânica molecular MM+, contido no programa HyperChem. A seguir, foram utilizados os métodos semi-empíricos AM1 e PM3 do pacote computacional AMPAC para a otimização das estruturas e cálculo das propriedades eletrônicas e moleculares. Foram, então, utilizados os programas Spartan 5.0, para a obtenção dos mapas de potencial eletrostático (MEP), e ZINDO, para a obtenção dos espectros teóricos.

A partir dos valores de calor de formação, energia eletrônica e energia total, utilizando os métodos AM1 e PM3, observa-se que a molécula de ajoene na forma neutra e trans possui maior estabilidade química do que a forma cis. Comparando-se os valores de calor de formação, energia eletrônica e energia total da molécula de ajoene com carga +1 e -1 verifica-se um ganho de estabilidade para a molécula carregada negativamente, tanto na forma trans quanto cis, indicando um pronunciado caráter aceptor de elétrons desta molécula. A partir destes resultados, a


Figura 1. Representação do LUMO da molécula de eajoene na forma neutra representação gráfica do orbital molecular desocupado de mais baixa energia (LUMO) da molécula neutra na forma trans foi obtida verificando-se as possíveis regiões eletroaceptoras, as quais estão localizadas predominantemente sobre a ligação entre os átomos de enxofre, como ilustra a Figura 1. Analisando-se também o mapa de potencial eletrostático da molécula neutra, observa-se que a região de carga negativa concentra-se sobre o átomo de oxigênio, enquanto que a região positiva está localizada sobre a ligação entre os átomos de enxofre, evidenciando esta região como possível aceptora de elétrons. Um outro aspecto estudado foi a diferença nos espectros de absorção da molécula de ajoene nas formas cis e trans e a influência da carga nos respectivos espectros.

Os resultados desta investigação teórica poderão colaborar na elucidação da relação estrutura-atividade deste composto para a atividade anti-coagulante e anti-oxidante, fornecendo assim subsídios no tratamento de doenças cardiovasculares. (CNPq, FAPESP, CAPES).

# PROPREDADES ESTRUTURAIS E DINÂAHEAS DE MHSTURAS CONTENDO METANOL E DIMETILSULFÓXIDO 

Sérgio Modesto Vechi (PG)*, Munir S. Skaf (PQ)<br>smvechi@netscape.net<br>Instituto de Química - UNICAMP<br>Palavras-chave: dinâmica molecular, estrutura e dinâmica de líquidos, misturas metanoldimetilsulfóxido.


#### Abstract

Em trabalho recente (J. Chem. Phys., 110, 6412), identificou-se a partir de simulações computacionais de Dinâmica Molecular (DM), a existência de um complexo 2DMSO: $1 \mathrm{H}_{2} \mathrm{O}$ para misturas ricas em dimetilsulfóxido (DMSO). Um dos resultados importantes deste trabalho foi a identificação de uma dinâmica libracional distinta das moléculas de água na presença de tal agregado, o que sugere sua detecção experimental por espectroscopia no infravermelho longínquo. Metanol e água são solventes dipolares próticos, mas substancialmente diferentes: a água forma uma estrutura de rede tetraédrica, enquanto o metanol forma estruturas lineares que contêm em média 6 moléculas de metanol podendo apresentar ainda um certo grau de ramificação lateral. O fato de que misturas binárias de metanol e DMSO devem apresentar interações semelhantes às soluções aquosas de DMSO, motivou o estudo destas misturas com o intuito de observar se em tais sistemas ocorre a formação de agregados similares aos encontrados anteriormente. Algumas medidas experimentais têm sido realizadas em misturas DMSO-metanol sem, no entanto, analisar as interações intermoleculares presentes nestes sistemas.


Neste trabalho, estudou-se misturas binárias de DMSO-metanol varrendo toda a faixa de composição por simulação de DM. Utilizou-se o modelo OPLS para o DMSO e metanol líquidos. As simulações foram realizadas no ensemble NVE com número total de 500 moléculas inseridas em caixas cúbicas de dimensões escolhidas para reproduzir as densidades experimentais das misturas à temperatura de 298 K e 1 atm . Às forças de Lennard-Jones aplicou-se um corte esférico de raio igual a metade do lado da caixa de simulação; às forças de Coulomb aplicou-se o método da soma de Ewald. As equações do movimento foram integradas utilizando o algoritmo leap-frog com SHAKE, sendo o intervalo de tempo igual a 6 fs. A energia total foi conservada dentro de $0,2 \%$ no decorrer de simulações de 24 ps . Aproximadamente 20 destas simulações foram utilizadas para cada mistura para análise dos dados, sendo que entre cada uma destas era realizada uma simulação de 4 ps na qual as velocidades eram reescalonadas para ajustar a temperatura em 298 K. A abordagem é similar àquela empregada nos sistemas aquosos, procurando fornecer uma primeira análise microscópica das propriedades estruturais e dinâmicas e suas relações com associações moleculares que podem estar presentes nestes sistemas. Investigou-se propriedades termodinâmicas, estruturais e dinâmicas tais como energia interna de excesso, funções de distribuição radial de pares, distribuição de ligações de hidrogênio, coeficiente de difusão, funções de correlação de pares e os respectivos espectros de freqüência.

A estrutura do DMSO e do metanol puros, dadas pelas funções de distribuição radial, praticamente não foi alterada na mistura, em contraste com o que ocorre em misturas DMSO-água. Foram detectados agregados moleculares de estequiometria 1DMSO:1metanol estabilizados por ligações de hidrogênio. Para misturas ricas em metanol, apenas uma pequena fração ( $\sim 10 \%$ ) de DMSO forma agregados de estequiometria 1DMSO:2metanol, similares aos agregados predominantes em misturas DMSO-água. Uma vez que o DMSO atua apenas como receptor em ligações de hidrogênio, ele pode causar interrupções na estrutura de cadeias lineares observadas no metanol puro. A dinâmica translacional do DMSO, dada pelo coeficiente de difusão, torna-se mais rápida quando se adiciona metanol ao sistema, é possível que este comportamento esteja associado ao menor empacotamento das moléculas nas misturas do que no DMSO puro. A dinâmica reorientacional dos dois líquidos estudados torna-se mais lenta na mistura, como evidenciado pelas funções de correlação reorientacionais e respectivos espectros de freqüência. Em termos gerais, a evidência das associações intermoleculares entre DMSO e metanol é comprovada pelas modificações nas propriedades termodinâmicas, estruturais e dinâmicas calculadas. Entretanto, em comparação com as misturas aquosas, os sistemas DMSO-metanol exibem desvios da idealidade menos proeminentes.

# NONLINEAR OPTICAL SPECTROSCOPY OF AQUEOUS DMSO: MOLECULAR DYNAMICS OF THE KERR EFFECT 

Sérgio M. Vechi (PG), Munir S. Skaf (PQ)<br>smvechi@netscape.net<br>Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas

Key-words: Kerr effect, DMSO/water mixtures, Molecular Dynamics
The characteristics of the intra- and intermolecular dynamics of molecular liquids and mixtures is a long-standing problem in theoretical and experimental physical chemistry. In recent years, the subject has experienced considerable progress from the experimental side due to the development of new time-resolved laser spectroscopy techniques. Among these, nonlinear optical spectroscopy based on the optical Kerr effect (OKE) has proven a remarkable tool to explore the dynamics of molecules in a variety of condensed phase environments. In particular, OKE spectroscopic measurements have been reported very recently on DMSO-water mixtures, a system which this group has been working on for a number of years.

The present work is largely motivated by these experimental OKE analysis. The results reported here provide a complementary view on the mixtures dynamics observed in the OKE measurements, specially with respect to the intermolecular motions and the separate contributions from each co-solvent to the system's total Kerr response.

A molecular dynamics simulation study is presented for the relaxation of the Kerr effect dynamical variable (the system's polarizability anisotropy) of liquid dimethylsulfoxide (DMSO) and DMSO-water mixtures of DMSO mole fractions $x_{D}=0.05,0.10,0.25,0.50$, and 0.75 . The system's collective polarizability is computed through a dipolar induction mechanism involving the intrinsic polarizability and first hyperpolarizability tensors for water and DMSO, obtained from ab initio quantum chemical calculations at the MP2/6-311++G(d,p) level. The rotational-diffusion components of the anisotropy relaxation of the pure liquids increase upon mixing to a maximum near $25 \%$ DMSO, showing consistency with other dynamical properties of these mixtures. Features of the optical Kerr effect (OKE) nuclear response of liquid water, previously ascribed to hydrogen bonding distortions, show significant enhancement upon addition of DMSO due to the formation of strong DMSO-water H -bonds. The OKE spectrum for DMSO is in close agreement with experimental measurements, but there are discrepancies for pure water in the vicinity of $60 \mathrm{~cm}^{-1}$, pointing to the existence of inaccuracies in our description of OKE sensitive polarizability fluctuations of water. The mixtures OKE spectra feature an enhancement in the high frequency water librational band. (FAPESP).

# SYNTHESIS, EXTRACTION, AND THEORETICAL MODELLING OF XANTHONE DERIVATIVES 

Rodrigo M. Canavieira ${ }^{1}$ (IC), Renato Rosseto ${ }^{2}$ (PQ), Lucimar Pinheiro ${ }^{2}$ (PG), Diógenes A. G. Cortez ${ }^{3}$ (PQ), Jordan Del Nero ${ }^{1}$ (PQ) rodrigom@ufpa.br<br>${ }^{1}$ Departamento de Física - UFPA - CEP: 66075-110 - Belém - PA (Brazil)<br>${ }^{2}$ Instituto de Química - UNICAMP - CEP: 13083-970 - Campinas - SP (Brazil)<br>${ }^{3}$ Centro de Ciências Exatas - UEM - CEP: 87030-121 - Maringá - PR (Brazil) Keywords: Drugs, Synthesis, Extraction.

The great interest on xanthones is due to their important biological activities, can act as inhibitors of enzymes, anti-inflammatory, anti-oxidant, anti-thrombotic, antiviral, besides showing neuropharmacological effects. Very many different routes to synthesize xanthones are known, including general classic synthetic approaches that involve the connection of two aryl fragments to form the internal pyranone ring, and others as cyclodehydration of benzophenones and cycliacylation of benzoic acids [1]. Natural xanthones have been isolated from plant species (eg. Clusiaceae, Gentianaceae, Hipericaceae family) found, especially, in tropical areas. In this work, the xantones 1-3 (Figure 1) were obtained according to the synthetic procedure previously described [1], and the compounds 4-6 were isolated from Kielmeyera variabilis Mart. (Clusiaceae).


Figure 1. Xanthones evaluated in this work.
Since experimental data are not available for the geometries of the molecules investigated (Figure 1), systematic geometry optimizations were required. Sophisticated semiempirical methods such as AM1 (Austin Method 1), and PM3 (Parametric Method 3) provide a good balance between quality and computational effort to treat organic compounds. While geometric and basic electronic features, such as bond lengths, dihedrals angles, heats of formation, dipole moment values, etc., are well described at AM1 and PM3 levels, excitation electronic energies are usually overestimated, as expected from zero differential overlap (ZDO) methods that do not include configuration interaction (CI) corrections. To obtain a more realistic description of the electronic transitions, it is necessary to use methods specially developed to handle these aspects, and we have adopted the INDO/S-Cl (intermediate neglect of differential overlap / spectroscopic - configuration interaction) method in this investigation. We have carried out INDO/S-Cl calculations using on the average 200 configurations (singlet/triplet) with the geometries obtained from PM3 calculations. As an example of a new effect predicted to occur in xanthone we present results for a specific family of these compounds. (PROINT-UFPA, CAPES).

# ESTUDO TEÓRICO DA ATIVIDADE ANALGÉSICA DE COMPOSTOS CANABINÓIDES 

Agnaldo Arroio ${ }^{1}$ (PG) e Albérico B. F. da Silva ${ }^{1}$ (PQ)<br>agnaldo@iqsc.usp.br<br>Grupo de Química Quântica<br>Departamento de Química e Física Molecular<br>Instituto de Química de São Carlos - USP<br>Palavras-chave: atividade analgésica, canabinóides, AM1

Uma classe de compostos que há milênios são consumidos pelo homem são os canabinóides obtidos a partir de preparados da planta Cannabis Sativa tais como a maconha e o haxixe. Estudos mostram uma possível atividade destes compostos como tendo propriedades anti-glaucoma, anti-emética, anti-alérgica e principalmente analgésica, a propriedade escolhida para o nosso estudo. Porém diversos compostos canabinóides que produzem algum tipo de propriedade terapêutica também apresentam propriedade psicotrópica, limitando seu uso como medicamento.

Estudos da Relação Estrutura-Atividade (SAR) têm sido realizados no intuito de modificar a estrutura química a fim de suprir seus efeitos colaterais, neste caso a propriedade psicotrópica. A questão da legalização ou da discriminação do consumo da planta recai sobre a dúvida a respeito dos efeitos provocados a curto e médio prazos a seus usuários. O objetivo deste trabalho é estudar as possíveis relações estrutura-atividade analgésica para uma série de compostos canabinóides sintéticos, a partir de propriedades moleculares (descritores) calculadas por métodos teóricos.

Utilizando técnicas de mecânica molecular, química quântica e quimiometria, com o auxilio dos programas Hyperchem, Ampac e Spartan, foram otimizadas as estruturas geométricas dos compostos em questão. Após esta análise conformacional, foram calculadas as propriedades moleculares.

Os programas Excell e MiniTab foram utilizados para as análises quimiométricas baseadas nas técnicas de componentes principais (PCA), análise hierárquica de cluster (HCA) e análise de discriminante (DA).

Com o intuito de melhor representar os parâmetros estéricos, eletrônicos e hidrofóbicos dos compostos estudados, foram calculados 23 descritores (variáveis) utilizando técnicas de química quântica.

As análises quimiométricas a partir das técnicas HCA, PCA e DA mostraram que os descritores (variáveis) estéricos (Polarizabilidade Molecular, Volume, Peso Molecular, Área e Refratividade Molecular) são os responsáveis pela separação entre as moléculas ativas e inativas com relação à atividade analgésica. Portanto, estes parâmetros são descritores significativos nas estruturas destes compostos, podendo ser relacionados com a atividade analgésica apresentada pelos canabinóides estudados. (CNPq).

# ESTUDO SEMI-EMIPIRICO DAS PROPRIEDADES MOLECULARES DO BENZOATO DE BENZILA E DA CUMARINA 

Agnaldo Arroio ${ }^{1}$ (PG), Káthia M. Honório ${ }^{1}$ (PG), Albérico. B. F. da Silva ${ }^{1}$ (PQ)<br>agnaldo@iqsc.usp.br<br>Grupo de Química Quântica<br>Departamento de Química e Física Molecular<br>Instituto de Química de São Carlos - USP

Palavras-chave: cumarina, benzoato de benzila, acaricida
As cumarinas constituem uma classe de metabólitos secundários derivados do ácido cinâmico, amplamente distribuídos no reino vegetal, podendo também ser encontrados em fungos e bactérias. A esses compostos atribui-se uma grande variedade de atividades biológicas, tais como antimicrobiana, anti-viral, anti-inflamatória, anti-espasmódica, anti-tumoral, anti-oxidante. Vários estudos têm sido realizados para o entendimento do mecanismo de ação das cumarinas, o que pode levar ao desenvolvimento de medicamentos para o tratamento e profilaxia de doenças, além de ser útil na indústria alimentícia e cosmética. Estudos recentes comprovaram atividade acaricida para a cumarina com $\mathrm{EC}_{50}$ de $0,032 \mathrm{~g} / \mathrm{m}^{2}$, sendo este valor muito próximo do $\mathrm{EC}_{50} 0,025$ $\mathrm{g} / \mathrm{m}^{2}$ para o benzoato de benzila, um dos composto mais potente e largamente usado como produto acaricida.

Neste trabalho, procurou-se estabelecer uma comparação entre as estruturas das moléculas estudadas, baseando-se nas propriedades físico-químicas e estruturais destes compostos. As estruturas dos compostos estudados foram pré-otimizadas com o método de mecânica molecular $\mathrm{MM}+$, contido no programa HyperChem 7.0. Os métodos semi-empíricos AM1 e PM3, presentes no pacote computacional AMPAC 6.5, foram utilizados para a otimização das estruturas e cálculo das propriedades eletrônicas e moleculares. Os mapas de potencial eletrostático (MEP) foram obtidos com o programa Spartan 5.0.

Analisando os valores de calor de formação, energia eletrônica e energia total é possível verificar que estas duas moléculas apresentam conformações estáveis. As outras propriedades estudadas, tais como energias do HOMO e LUMO e momento dipolar, também possuem valores muito próximos, podendo assim ser estabelecida uma correlação com a atividade biológica em questão. Baseando-se nos mapas de potencial eletrostático verificou-se que as regiões negativas concentram-se sobre os átomos de oxigênio, tanto para a molécula do benzoato de benzila quanto para a molécula de cumarina, para ambos os métodos (AM1 e PM3). De acordo com os resultados obtidos, pode-se verificar que apesar das estruturas químicas dos dois compostos estudados serem diferentes, suas propriedades eletrônicas apresentam valores semelhantes, bem como as regiões de concentração de carga observadas nos mapas de potencial eletrostático. Com base nas propriedades eletrônicas estudadas pode-se propor que o mecanismo de interação destes compostos seja o mesmo, indicando a relevância dos parâmetros eletrônicos na atividade antiacaricida.



Figura 1. Mapas de potencial eletrostático para (a) cumarina e (b) benzoato de benzila.
Com os resultados obtidos pode-se auxiliar na elucidação do mecanismo de ação destes compostos bem como implementar modificações estruturais a fim de melhorar a potência da atividade acaricida apresentada pela cumarina. (CNPq).

# ESTUDO TEÓRICO DA SOLVATAÇÃO DE ANTIBIÓTICOS BLACTÂMICOS 

Emmanuela F. de Lima (PG) ${ }^{1}$, Silvana Mattedi (PQ) $)^{1,2}$ e Luiz C. G.Freitas (PQ) ${ }^{1}$. silvana@ufba.br<br>1- Departamento de Química, Universidade Federal de São Carlos (UFSCar) C. P. 676 -13565-905, São Carlos-SP- Brasil<br>2- Departamento de Engenharia Química, Escola Politécnica, Universidade Federal da Bahia (UFBA), Rua Aristides Novis 2, Federação 40210-630 - Salvador -Ba -Brasil. Palavras-chave: antibióticos, solvatação, Mecânica Quântica

Antibióticos $\beta$-lactâmicos semi-sintéticos estão entre os fármacos de maior uso em escala mundial. Seu uso em medicina humana e veterinária está em contínua expansão. Exemplos de penicilinas e cefalosporinas semi-sintéticas existentes no mercado são amoxicilina, ampicilina, cefalexina, cefadroxil, cefazolina, dentre muitos outros. Todos têm em comum a presença de um anel $\beta$-lactâmico, responsável por sua atividade antimicrobiana. Os processos clássicos de fabricação desses produtos empregam rotas químicas para condensação dos antibióticos e para síntese de suas cadeias laterais, e são processos de alto impacto para o meio ambiente. A partir da década de 90, intenso esforço de pesquisa acadêmica e industrial vem sendo dirigido para a busca de rotas enzimáticas "limpas", que atendam a critérios ambientais cada vez mais rigorosos. O estudo do comportamento dos antibióticos em soluções aquosas e hidrofóbicas é importante para a viabilização comercial desta alternativa.

O objetivo deste trabalho é estudar as propriedades termodinâmicas e estruturais da amoxicilina e ampicilina em solução aquosa e em outros solventes orgânicos utilizando métodos quânticos e dinâmica molecular.

As estruturas iniciais da amoxicilina e da ampicilina (figura1) foram retiradas de Dobashi (2003), e otimizadas no vácuo com o programa Gaussian v.98, utilizando a Teoria de Funcional de Densidade (B3LYP) com funções de base 6-31G com polarização nos átomos pesados. Foram calculadas as energias de solvatação em diferentes meios a 298 K , com o modelo PCM (polarizable continuum model) e as cavidades de solvatação foram construídas através do modelo topológico UAHF(United Atom Topological Model). Os resultados estão mostrados na Tabela 1.


Figura 1. Estrutura dos antibióticos estudados, derivados do ácido 6 -aminopenicilânico (6-APA)

Tabela 1. Energias de Solvatação calculadas

| Solvente | $\varepsilon$ | $\Delta \mathrm{G}_{\text {sol }}$. <br> Amox | $\Delta \mathrm{G}_{\text {sol }}$-Amp |
| :---: | :---: | :---: | :---: |
| Agua | 78,39 | $-14,88$ | $-12,32$ |
| DMSO | 46,70 | $-3,810$ | $-3,100$ |
| Metanol | 32,63 | $-21,61$ | $-16,63$ |
| Acetona | 20,70 | $-6,570$ | $-4,840$ |
| $1,2 \mathrm{DCE}$ | 10,36 | $-3,850$ | $-2,610$ |
| $\mathrm{CHCl}_{3}$ | 4,900 | $-2,060$ | $-1,380$ |
| $\mathrm{CCl}_{4}$ | 2,228 | $+2,280$ | $+2,190$ |

* $\varepsilon=$ constante dielétrica, Amox=amoxicilina,

Amp=Ampicilina, $\mathrm{DMSO}=$ =DimetilSulfóxido, 1.2-DCE=1.2 dicloroetano

Os resultados mostram que a ampicilina e a amoxicilina são mais solúveis em água do que em outros solventes exceto para metanol. Este resultado para metanol contraria os dados experimentais (Zhu e Grant, 1996) de solubilidade da ampicilina. Para estudar as conformações destas substâncias em água e em um meio hidrofóbico, será feita uma Dinâmica Molecular das moléculas dissolvidas em caixas com água e com clorofórmio. (FAPESP, FEP)

[^32]
# ESTUDOS CONFORMACIONAIS DE POLIOXIETILENO EM SOLUÇÃO AQUOSA 

Luciano Tavares da Costa ${ }^{1}$ (PG), Silvana Mattedi ${ }^{1,2}$ (PQ) e Luiz Carlos Gomide Freitas ${ }^{2}$ (PQ).<br>silvana@ufba.br<br>1- Departamento de Engenharia Química, Escola Politécnica, Universidade Federal da Bahia (UFBA), Rua Aristides Novis 2, Federação 40210-630 - Salvador -Ba -Brasil.<br>2- Departamento de Química, Universidade Federal de São Carlos (UFSCar) C. P. 676 -13565-905, São Carlos-SP- Brasil.

Palavras - chave: dinâmica molecular, simulação computacional, polioxietileno.
Predições de propriedades de equilibrio de polímeros em solução requer um entendimento da estabilidade conformacional destas macromoléculas e, junto a isto, polioxietileno tem sido extensivamente investigado devido suas propriedades peculiares em solução aquosa (Jaffe et.al., 1993; Tasaki, 1996). O objetivo deste trabalho foi estudar as interações existentes no sistema POE-água, bem como suas propriedades conformacionais. Todas as simulações foram realizadas em um ensemble $N p T$, com passo de integração de 1.0 fs e etapa de produção de 2.0 ns. Os resultados para o sistema POE12-água mostram que o oligômero prefere uma conformação gauche em torno da rotação da ligação C-C (Figura 1). A população gauche total é de 0,54, superior a população trans. Os ângulos médios para as conformações $g^{+}$e $g^{g}$ são $\left\langle\phi_{g}{ }^{+}>=64,00^{\circ}\right.$ e $\left\langle\phi_{9}\right\rangle^{\circ}>=293,79^{\circ}$, respectivamente. Para a conformação trans encontrou-se um ângulo médio de $\langle\phi\rangle=180,28^{\circ}$. Em algumas etapas da trajetória ocorre inversão da conformação de gauche para trans em torno da rotação da ligação C-C, porém com população média total bem inferior ao confôrmero gauche, com fração populacional de 0,02. As simulações evidenciam que POE12 apresenta uma maior flexibilidade e uma maior desvio estrutural durante a trajetória no vácuo, em relação à estrutura obtida no início da etapa de equilibrio e se comparado com o comportamento de POE12 no meio solvente implícito e explícito (Figura 2).


FIGURA 1: Distribuição conformacional relativo à rotação em torno da ligação C-C da estrutura de POE12 para o sistema POE12-água durante $1,0 \mathrm{~ns}$ de equilibrio.


FIGURA 2: Desvios médios quadráticos entre as estruturas de POE12 durante a simulação e a estrutura inicial em cada uma das simulações no vácuo, meio dielétrico contínuo e solvente explícito (água).

Esta estabilidade de POE12 em solução aquosa pode ser explicada pela maior população da conformação gauche para a estrutura do oligômero, que apresenta uma configuração mais favorável à formação de pontes de hidrogênio entre o POE e água. Este comportamento é importante para auxiliar o desenvolvimento de modelos com o objetivo de predizer propriedades físico-químicas de POE em solução aquosa. (FAPESP, CAPES, FEP)

Tasaki, K. J. Am. Chem. Soc., 118: 8459, 1996.
Jaffe, R.L., Smith, G.D \& Yoon, D. Y. J. Phys. Chem. 97: 12745, 1993.

# THE EFFECT OF THE SODIUM ION PARAMETERS IN THE STRUCTURE OF ANIONIC MICELLES IN AQUEOUS SOLUTION 

André Farias de Moura (PG) and Luiz Carlos Gomide Freitas (PQ)<br>andre@qt.dq.ufscar.br<br>Departamento de Química - Centro de Ciências Exatas e de Tecnologia - Universidade Federal de São Carlos - São Carlos - SP - Brasil<br>Key words: molecular dynamics simulation, micellar systems, forcefield parameters

Molecular Dynamics simulation may be regarded at present as the method of choice to study complex liquids in atomic detail, yielding both structural and dynamical information of systems ranging from micelles to large biomolecules and polymers in solution. Model systems as large as $10^{4}-10^{5}$ particles may be tackled with single CPU machines and it is possible to treat larger system if parallel processing is available.

Several forcefields have been developed up to now, but it is a common practice to use parameters that reproduce quantum chemical calculation of dimers in vacuum and the thermochemistry of dilute solutions. Nonetheless, complex liquids are generally concentrated solutions and it is not clear whether or not the usual forcefield parameters are adequate to simulate such systems.

Micellar systems have been studied by means of computer simulations in the last 30 years. There has been no systematic evaluation of the interaction parameters used so far. In the present work, we report some structural results of Molecular Dynamics simulations on the sodium octanoate micelle in aqueous solution using different Lennard-Jones parameters for the sodium counter-ion: the OPLS and the Aqvist's parameters.

The model system consisted of 15 octanoate anions, which were previously assembled into a spherical aggregate, surrounded by 15 sodium counter-ions and 2190 water molecules. The interaction parameters were taken from the OPLS-AA forcefield and the SPC water model. The Molecular Dynamics simulations were performed in the constant NpT ensemble ( $p=1$ bar and $T=$ 300 K ), using the Berendsen weak coupling schemes. The bond lengths and angles were constrained to their equilibrium values, so that a larger time step could be used ( 2 fs ). The trajectories were integrated up to 10 ns .

The OPLS parameters yielded a micellar structure resembling an inverse micelle rather than a normal one, with all counter-ions tightly bound to the octanoate headgroup, forming ionic bridges between the anions. This structure should not be stable in an aqueous environment, but it is indeed, even if the system is simulated at temperature raised to 350 K . It is clear that sodium ion interacts more strongly with the anions than with the water molecules around it. This can be reasoned by considering the potential energy surface (PES) of sodium-water and sodiumcarboxylate dimers, obtained from quantum chemical calculations. It is clear that ion pairs are far more stable than the cation surrounded by $4-6$ water molecules or the carboxylate headgroup with 2-4 hydrogen bonded water molecules. The OPLS parameters are intended to fit the dimers PES and dilute solutions thermochemistry, but they do not correctly reproduce the structure of a concentrated ionic system. Besides the deep minimum of the ionic dimer PES, the potential derivative is also much larger than it is for other dimers, i.e., the attractive force acting between these two ions is larger than that between neutral molecules or between an ion and a neutral molecule.

On the other hand, the Aqvist's parameters reproduce the Gibbs free energy of hydration of dilute solutions of alkaline and alkaline earth metals. It is hoped that these parameters should give a better account of the solution microscopic structure, since they were not derived to give the mechanical energy only. In fact, we have obtained a better micellar structure with the Aqvist's parameters for the sodium ion. The counter-ions do not condense on the micellar surface. Instead, they remain in solution during the whole simulation.

These finding suggest that great care should be taken to choose the interaction parameters to study complex fluids, specially if the model system includes ionic species. Further analyses will be performed to extract other structural as well as dynamical properties of the trajectories generated so far, in order to characterize the effects of sodium ion parameters on the micellar system. (FAPESP).

# QCODES - TOPOLOGICAL ATOIMIC AND MOLECULAR DESCRIPTORS 

Edgardo Garcia (PQ)<br>garciae@unb.br<br>Laboratório de Química Computacional, Instituto de Química, Universidade de Brasilía, Brasilia DF 70910-900, Brasil.<br>Palavras-chave : topological descriptors, atomic descriptor, molecular descriptor

Atomic and molecular descriptors are numbers, or sets of numbers, that are invariant with molecular structure labeling. They are very useful in applications where atom neighborhood or molecular similarity needs to be accessed quickly such as database structure manipulation and screening. A fast iterative algorithm to obtain topological atomic and molecular descriptors, called Qcodes ${ }^{1}$, is presented in this work. The QCODE topological descriptor is used to provide a unique atom type identifier in a vector form: $A T=\left(C_{1}, C_{2}, \ldots C_{n}\right)$. Molecular topological neighborhood dependence is encoded up to any desired radial shell $\boldsymbol{n}$, so atoms can be compared at different levels of similarity. It's linear time dependence with the size of the structures and low memory requirement allows practical use in small molecules as well as in macromolecular systems. The descriptors are unique and are able to sense small topological changes in atom's neighborhood. These properties make them suitable as atom and molecular identifiers to be used in database searching, isomorphism - automorphism algorithms and also as force field atom type names. Molecular descriptors are obtained as summations over the atomic descriptors. In test sets including structures with 5 to 783 atoms, no more than 9 iterations and 7 decimal places codes were needed to discriminate among isomeric structures with subtle topological changes. In most structures of the test set 4 iterations and 6 decimal places were enough to check for their isomorphism. For a code convergence study a test set of 288 molecules with a total of 14024 atoms had their QCODES calculated and compared up to 26 iterations. The codes present a linear convergence behavior with the number of iterations. As an example if a 10 iteration code is desired most code variations with changes in neighborhood are in the $6^{\text {th }}$ decimal place, maximum variations in the $3^{\text {rd }}$ and minimum in the $9^{\text {th }}$. Computational time and memory requirements are linear with the size of the structures allowing the use of the algorithm for macromolecular structures. The QCODE descriptors have excellent discriminating power with very low ambiguity as verified in high atomic diversity test sets, not showing any degradation of sensitivity even in macromolecules like proteins and DNA/RNA strands.

1. Garcia Edgardo, QCODES - Fast topological descriptors for macromolecules, J.Chem.Inf.Comput.Sci., 42, 1370-1377, 2002.

# MOLECULAR DYNAMICS STUDY ON THE GLASS TRANSITION IN Ca $\mathrm{Ca}_{0.4} \mathrm{~K}_{0.6}\left(\mathrm{NO}_{3}\right)_{1.4}$ 

Mauro C. C. Ribeiro (PQ)<br>mccribei@quim.iq.usp.br Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, C.P. 26077, CEP 05513-970, São Paulo, SP, Brasil, email:<br>Palavras-chave: molecular dynamics, glass transition, polarizable model.

Molecular dynamics (MD) simulations played a fundamental role in our understanding of the dramatic dynamical changes which super-cooled liquids undergo on approaching the glass transition temperature, $T_{g}$. The molten salt $\mathrm{Ca}_{0.4} \mathrm{~K}_{0.6}\left(\mathrm{NO}_{3}\right)_{1.4}, \mathrm{CKN}$, is an archetypical fragile glassforming liquid, i.e. a glass-forming liquid whose viscosity increases under cooling in a nonArrhenius fashion at temperature close to $T_{g}$. A previous MD simulation of CKN has been reported by Signorini et al., J. Chem. Phys. 92, 1294 (1990), and more recently, their model (a nonpolarizable rigid ion model, RIM) has been modified in order to include polarization effects in a fluctuating charge model, FCM [M. C. C. Ribeiro, Phys. Rev. B61, 3297, (2000)]. In the FCM, the partial charges assigned to the nitrogen and oxygen atoms of the $\mathrm{NO}_{3}{ }^{-}$anion are not fixed, instead they are allowed to fluctuate as the anion experience a changing environment along the MD run. Polarization effects increase the diffusion coefficients and the rate of structural relaxation of CKN. This finding points to a general improvement of the FCM on the previous RIM, as it was recognised that the RIM was a too stiff model since the ionic mobilities seemed to cease in a temperature range higher than the experimental $T_{g}$. In the present work, we provide evidence that $T_{g}$ of CKN simulated with the FCM is indeed closer to the experimental $T_{g}$ than the one obtained with the RIM. $T_{g}$ was estimated by calculating the equilibrium density of the system with decreasing temperature and identifying the change of the slope in a density vs. temperature plot. On a technical perspective, the present MD simulations have been performed by using the recently proposed method of Wolf et al., J. Chem. Phys. 110, 8254 (1999), for handling the long range electrostatic interactions. In the Wolf's method, a truncated shifted Coulomb potential is used, which is computationally faster than the well know Ewald sum method. As the Wolf's method has been used previously only in a few systems, and the Ewald sum method is certainly a reference procedure of handling long range interactions in ionic systems, we provide some comparisons between results of liquid CKN simulated with either of these methods. We show that $T_{g}$ of CKN simulated with the FCM is in better agreement with the experimental calorimetric value ( $T_{g} \approx 475,380$ and 335 K for the RIM, FCM and experiment, respectively). Being confident that the dynamics of CKN simulated with the FCM is more representative of the real system than the RIM, we then investigate the temperature dependence of reorientational, translational and structural relaxation obtained with the FCM from a high temperature liquid state at 800 K down to a glassy state at 150 K . Calculated reorientational relaxation time, $\tau_{\text {or, }}$ agree with previous Raman spectroscopy results as long as the calculated reorientational time correlation functions, $P_{2}(t)$, are analysed in the same way as the experimental ones, that is, by taking into account only the short time ( $t<1.2 \mathrm{ps}$ ) decay. However, that is misleading as a change in activation energy actually occurs at $T_{g}$ when the long time behaviour of $P_{2}(t)$ is considered. The temperature dependence of reorientational relaxation given by $\tau_{o r}$ is further compared with the translational diffusion coefficient, $D$, and the structural relaxation time. The structural $\alpha$-relaxation time, $\tau_{x,}$, was obtained from the self-part of the intermediate scattering function. The main upshot of the present simulations was that $\tau_{o r,} D^{-1}$ and $\tau_{\alpha}$ display the same activation energy at the high temperature liquid state, but they decouple as the glass transition is approached. Whereas the $D^{-1}(T)$ and the $\tau_{\text {or }}(T)$ curves can be superimposed at high temperature, the latter falls below the former as $T_{g}$ is approached, so that the slope of the $\tau_{o r}(T)$ curve, and therefore its activation energy, is smaller than the $D^{-1}(T)$ at low temperature. It is then suggested that hopping processes are more effective in the relaxation of the reorientational than the translational dynamics, what is corroborated by the corresponding van Hove correlation functions. On the other hand, the structural relaxation time $\tau_{\alpha}$ display a divergent behaviour as $T_{g}$ is approached proper to the structural arrest. Thus, hopping processes allow single-particle motions despite of a freezing structure. (FAPESP, CNPq).

# DEFASAMENTO VIBRACIONAL-DO-ÂNION-ESQUARATO-EM MEIO AQUOSO POR DINÂMICA MOLECULAR 

Lucimara R. Martins ${ }^{1}(\mathrm{PG})$, Mauro C. C. Ribeiro ${ }^{2}$ (PQ), Munir S. Skaf ${ }^{1}(\mathrm{PQ})$<br>lucimara@iqm.unicamp.br<br>${ }^{1}$ Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas<br>${ }^{2}$ Departamento de Química Fundamental - Instituto de Química - Universidade de São Paulo Palavras-chave: defasamento vibracional, oxocarbonos, dinâmica molecular

Os ânions oxocarbonos atuam como poderosas sondas da dinâmica intra- e intermolecular de líquidos devido à intensidade e definição de suas formas de linhas Raman. Estes ânions vêm sendo empregados há vários anos no estudo da dinâmica de soluções polares e não polares pelo Laboratório de Espectroscopia Molecular do Instituto de Química da USP, e em particular no estudo do defasamento vibracional em fase condensada.

Três mecanismos são responsáveis pela relaxação vibracional de solutos em solução: relaxação da energia vibracional, transferência de energia ressonante e defasamento vibracional. O defasamento vibracional fornece informações sobre a estrutura local e dinâmica de líquidos moleculares. É resultante da oscilação da frequência vibracional causada pelo acoplamento dos movimentos vibracionais de uma molécula com os movimentos translacionais, rotacionais e vibracionais de suas vizinhas e sua manifestação mais direta é a forma das linhas espectrais.

A função de correlação das flutuações da frequência vibracional pode ser expressa como uma função de correlação de forças projetadas sobre as coordenadas normais. Sendo assim, utilizamos as forças sobre os sítios durante simulações por Dinâmica Molecular e os deslocamentos relativos dos átomos do ânion obtidos em um cálculo quântico (RHF/6$31++\mathrm{G}^{*}$ ) de análise vibracional do $\mathrm{C}_{4} \mathrm{O}_{4}{ }^{2-}$ para determinarmos as funções de correlação das flutuações da frequência vibracional do ânion esquarato em solução aquosa.

Analisando essas funções e os deslocamentos atômicos relativos dos átomos de oxigênio, podemos separar os modos normais em três grupos: (I) os modos com maiores deslocamentos relativos dos oxigênios apresentam influência do movimento libracional do ânion dentro da cavidade de solvente estando acoplados tanto aos movimentos libracionais do solvente quanto ao movimento libracional do próprio ânion; (II) os modos com intermediários deslocamentos relativos dos oxigênios não sofrem tanta influência do movimento libracional do ânion sendo a vibração do íon mais influenciada pelos movimentos libracionais do solvente; (III) os modos com pequenos deslocamentos relativos dos oxigênios não sofrem muita influência do solvente ao redor e nem do movimento libracional do íon.

Devido à forma da cavidade de solvente ao redor do íon, há pouca ou nenhuma correlação entre as vibrações serem no plano ou fora do plano do anel com o comportamento das funções de correlação da flutuação da frequência vibracional.

Como as forças surgem dos diferentes tipos de interação entre soluto e solvente, separamos as funções de correlação em três componentes: função de correlação da flutuação do potencial de Lennard-Jones, função de correlação da flutuação do potencial coulômbico e função de correlação cruzada.

Em relação ao componente eletrostático, todos os modos normais apresentam um comportamento semelhante, ou seja, as interações eletrostáticas do ín com o solvente afetam praticamente todos os modos de maneira semelhante. Por outro lado, com o componente de interações de Lennard-Jones ocorre a separação em grupos. Sendo assim, temos que a diferenciação entre os modos normais de vibração ocorre devido às interações de Lennard-Jones. São essas interações que irão levar a um diferente grau de acoplamento entre os movimentos vibracionais e libracionais do ânion em solução. (FAPESP).

# THEORETICAL STUDY OF THE REACTIONS $\mathrm{BF}_{3}+\mathrm{BN}$ 

Patricia R.P. Barreto ${ }^{1}(\mathrm{PQ})$, Alessandra F. A. Vilela ${ }^{2}(\mathrm{PG})$, and Ricardo Gargano ${ }^{2}(\mathrm{PQ})$ gargano@fis.unb.br<br>${ }^{1}$ Laboratório Associado de Plasma - LAP, Instituto Nacional de Pesquisas Espaciais - INPE/MCT, CP515, São José dos Campos, SP, CEP 12+247-970, Brazi<br>${ }^{2}$ Instituto de Fisica, Universidade Brasilia, CP04455, Brasilia, DF, CEP 70919-970, Brazil

KEY WORKS: boron trifluoride, boron nitrite, rate constant.
A kinetic mechanism describing the growth of boron nitride films was developed. The gas-phase mechanism includes 35 species and 1012 reactions and also extends a previous mechanism that contained 26 species and 67 elementary reactions. Rate constants for 117 elementary reactions were obtained from published experimental/theoretical data and those for the other 895 reactions should be estimated using Transition State Theory (TST).

This model determines the rate constant based in an interaction potential between reactant and products with a statistical representation of the dynamics. In addition to the BornOppenheimer approximation it uses more three assumptions: there is a surface in phase space that divides into a reactant region and a product region; the reactant equilibrium is assumed to maintain a Boltzmann energy distribution and the transition state or activated complex is assumed to have Boltzmann energy distribution corresponding to the temperature of the reacting system. For a bimolecular reaction, such as:

$$
A+B C \rightarrow A B+C
$$

where $A, B$ or $C$ are atoms or group of atoms, the thermal rate constant is given by:

$$
k_{T S T}=\frac{k_{B} T}{h} \frac{Q_{N^{\ddagger}}}{Q_{A} Q_{B C}} \exp \left(-\frac{V_{H}^{G^{\ddagger}}}{R T}\right)
$$

where $Q_{X}{ }^{\ddagger}, Q_{A}$ and $Q_{B C}$ are the partition function of the transition state, $X^{\ddagger}$ (saddle point), and the reactant, $A$ and $B C$, respectively, $k_{B}$ Boltzmann constant, $h$ Planck constant, $T$ temperature and $R$ universal gas constant and $V_{a}{ }^{G 7}$ is the barrier. So, to apply Transition State Theory, we must know the equilibrum geometries, frequencies, and the electronic structure energy for reactants, products and saddle point. These information are obtained from accurate eletronic structure calculation performed using the GAUSSIAN98 program

In this work, we show the rate constants calculated for the temperature range 200-400 K for the reactions $\mathrm{BF}_{3}+\mathrm{BN} \rightarrow \mathrm{BF}_{2}+\mathrm{BNF}$, BNF has two different conformation, named $\mathrm{BNF}-\mathrm{a}$ and BNF - b where the fluorine atom is connected with the boron or nitron atoms, respectively.

We developed a simple program to determine the reaction rate by using conventional transition state theory with the Wigner or the Eckart transmission coefficient, minimum energy path as functions of the reaction coordinate and the thermodynamic ; operties of all the species. The rate constants have been computed for the gas-phase chem al reaction over the temperature range of $200-4000 \mathrm{~K}$, using this code. The thermodynamic pr energies, heats of formation at $0 K$ and $298 K$, dissociation energies and th enthalpies and entropies, for temperature range of 200-6000K, for rea 'erties: atomization coefficients for the ints and products namely for the BNF will be also presented
(CNPq, CENAPAD-SP)

# DINÂMICA HAMILTONIANA E SÓLITONS EHERHSTAIS LíQuidos ferroelétricos 

Francisco Alexandre Castro ${ }^{1}(\mathrm{PG})$, Paulo Pitanga ${ }^{2}(\mathrm{PQ})$, Aurino Ribeiro Filho ${ }^{3}(\mathrm{PQ})$ e Kleber C. Mundim ${ }^{1}$ (PQ)<br>alexandre_7@yahoo.com.br

1)Instituto de Química, Universidade de Brasilia - C.P. 04478, CEP 70919-970 Brasilia-DF, Brasil. (2)Instituto de Física, Universidade Federal do Rio de Janeiro; CEP 21944 Rio de Janeiro-RJ, Brasil.
(3) Instituto de Física, Universidade Federal da Bahia. CEP 40210-340 Bahia-BA, Brasil. Palavras-chave: cristal líquido ferroelétrico, sistema hamiltoniano, sóliton.

Um tratamento Hamiltoniano da teoria de Landau para transiçōes de fase de um cristal líquido ferroelétrico (CLF) é considerado. Usando uma expressão estendida para a densidade Lagrangeana de um CLF (DOBAMBC), livre de campo externo, obtemos um sistema Hamiltoniano integrado onde novas equações são discutidas. A energia livre de Landau que governa as transições de fase de DOBAMBC é considerada como a Lagrangeana do sistema, onde as componentes dos parâmetros de ordem săo tratadas como coordenadas generalizadas do formalismo mecânico clássico. Este tratamento possibilita-nos verificar a estabilidade e a existência de caos nas diversas fases de um CLF. Na ausência de campo magnético externo, a densidade de energia livre origina as seguintes equações acopladas de Euler-Lagrange:

$$
\begin{gather*}
\Theta^{\prime \prime}-a_{1} \Theta-c_{1} \Theta^{3}-d_{1} \Theta^{5}-J \Theta^{-3}+\frac{3}{2} \beta^{3} \phi^{\prime}=0  \tag{1}\\
J^{\prime}=0
\end{gather*}
$$

$\square^{\prime}$ é a frequêência espacial azimutal do diretor molecular; $\square$ é uma função do ângulo latitudinal deste vetor e $d / d z \equiv()^{\prime}$. O "momento angular" $J=\Theta^{2}\left\lfloor\left(\phi^{\prime}-\varepsilon\right)-\frac{3}{4} \mathcal{h}^{2}\right\rfloor$ é uma integral do movimento, além da "energia total" $E$. Um caso particular estudado foi a verificação da existência e da estabilidade de soluções para $J=0$, com solução estacionária $\square=0$. Onde as equaçōes (1) podem ser escritas como:

$$
\begin{equation*}
\Theta^{\prime \prime}-a_{1} \Theta-c_{2} \Theta^{3}-d_{2} \Theta^{5}=0 \tag{2}
\end{equation*}
$$

e para o caso $d_{2}=0$ como:

$$
\begin{equation*}
\Theta^{\prime \prime}-a_{1} \Theta-c_{2} \Theta^{3}=0 \tag{3}
\end{equation*}
$$

As soluçōes de (2) descrevem a dependência quadrática da freqüência espacial sobre a experimentalmente observada. Para (3), a solução geral é encontrada em termos das funções elípticas de Jacobi, $\Theta=\operatorname{Asn}(\lambda v, k)$
com $v=z-z_{0}$, onde $\square$ e $z_{o}$ são constantes arbitrárias e $\mathrm{k}^{2}=-\lambda^{-2}\left(\lambda^{2}+\mathrm{a}_{1}\right)$ e $\mathrm{A}^{2}=-2 \mathrm{c}_{2}^{-1}\left(\lambda^{2}+\mathrm{a}_{1}\right)$. A solução (4) pode ser expressa através das outras funções elípticas Jacobianas (cn, dn, ns). É conhecido que (3) pode ser convertida a uma equação do tipo sine-Gordon, fazendo a transformação $\Theta=\operatorname{sen}(\omega / 2)$ :

$$
\begin{equation*}
\frac{d^{2} \Theta}{d z^{2}}+n^{2} \operatorname{sen} \Theta=0 \tag{5}
\end{equation*}
$$

que tem uma solução solitônica:

$$
\begin{equation*}
\Theta^{o}=4 \tan ^{-1} \mathrm{e}^{ \pm \mathrm{n}\left(\mathrm{z}-\mathrm{z}_{0}\right)} \tag{6}
\end{equation*}
$$

Esta equação representa a torção (kinks) do ângulo $\square$. onde $z$ é interpretado como a posição do sóliton ou "pacote-प" e os sinais $\pm$ representam a duas helicidades possíveis para a torção. No caso da equação (2), é necessário considerar funções hiper-elípticas de três parâmetros independentes de modo a obter uma solução exata. Esse caso será tratado em um trabalho posterior.

Portanto, neste projeto discutimos algumas soluc̣ōes das equaçōes de movimento correspondentes à densidade de energia livre, que considera a contribuição de reentrada cúbica à fase $\mathrm{Sm}-\mathrm{C}^{*}$. Neste problema, surgem duas integrais do movimento ( $J, E$ ) e para o caso $J=0$, vimos que a solução produz uma dependência experimental da freqüencia espacial sobre o ângulo $\square$, a qual reduz as equações de Euler-Lagrange a uma equação desacoplada de quinto grau. Para o caso particular onde consideramos somente até o termo cúbico, podemos obter soluçōes solitônicas. O caso geral será tratado na segunda fase do projeto.

# ESPECTROSCOPIA AUMENTADA POR SUPERFÍCIES - UM NOVO MODELO. 

Eduardo P. Muniz (PQ) ${ }^{1}$, Ricardo Aroca (PQ) ${ }^{2}$ e Milan Trsic (PQ) ${ }^{1}$ g57@uwindsor.ca<br>${ }^{1}$ Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 380,13560-970, São Carlos, SP, Brazil,<br>${ }^{2}$ Materials and Surface Science Group, School of Physical Sciences, University of Windsor, Windsor, On. N9B 3P4 Canada.<br>Palavras-chave: Espectroscopia, Filmes Finos Metálicos.

Neste trabalho o aumento de absorção infravermelha por parte de uma substância orgânica depositada sobre um filme metálico com espessura de massa na casa dos nanômetros, foi estudado. Modelos foram criados para o sistema e sua validade testada, por meio de comparação com resultados experimentais.

O objetivo deste trabalho é estudar a espectroscopia aumentada por superfícies na região do infravermelho, criando, a partir de evidências experimentais, um modelo que permita:
i) Compreender o efeito que os componentes do sistema: ar, filme composto por material orgânico, filme metálico com espessura na casa dos nanômetros e o substrato, possuem sobre o espectro.
ii) O papel da forma das partículas metálicas que compõem o filme metálico, de seu tamanho e de sua distribuição.
iii) Realizar o cálculo do fator de aumento (enhancement factor) da absorção de luz pela substância orgânica, devido à presença da superfície metálica, para diferentes combinações de metal com substância orgânica.
Começamos o estudo pela análise da dependência das características dos picos de absorção de luz por partículas metálicas para com a forma e o tipo de material. Em seguida, obtivemos os espectros de absorção de luz de filmes com 8 , 10 e 12 nm de prata no visível e no infravermelho.

Por fim, cobrimos cada um dos filmes metálicos de 8 , 10 e 12 nm de prata com bis( 2,6 difluoro benzilimido perileno), bis-( 3,4 dicloro benzilimido perileno), bis-( 3,5 dicloro benzilimido perileno), de forma a criar filmes compostos por uma camada de metal coberta por uma camada de um dos materiais orgânicos citados. Medimos o espectro de absorção no infravermelho destes filmes compostos e utilizamos uma adaptação do modelo de aproximação por rede de dipolos criado por Martin e Aroca (1990) para o cálculo deste mesmo espectro, a partir do espectro de absorção no visível. Comparamos os resultados teóricos com os experimentais.

Os programas de computador necessários foram desenvolvidos em Maple.
Foi possível reproduzir o espectro de absorção no infravermelho de filmes compostos de prata cobertos com orgânico, a partir do modelo desenvolvido e de dados obtidos ao aplicar o modelo ao espectro de absorção de luz visível do filme de prata, antes do mesmo ser coberto pelo orgânico. Comparações com trabalhos de outros autores mostraram que o modelo é fraco na determinação da geometria das partículas que compõem o filme, mas permite uma boa avaliação da quantidade de partículas por unidade de volume, do desvio da geometria das partículas em relação à média e do porque de alguns filmes apresentarem maior absorção de luz no infravermelho que os outros.

Embora não seja ainda o modelo ideal para este sistema, a aproximação por rede de dipolos permite entender melhor a distribuição, formato e campo elétrico gerado pelas partículas metálicas que compõem os filmes finos que dão origem ao fenômeno da absorção aumentada por superfícies. (CNPq, NSERC do Canadá).

# DFT STUDY OF THE ARSENIC ADSORPTION ON IRON(III) HYDROXIDES PRESENT IN MINE TAILINGS 

Augusto Faria Oliveira ${ }^{1}$ (PG), Hélio Anderson Duarte ${ }^{1}$ (PQ)<br>augustof@netuno.qui.ufmg.br<br>1. Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG) - 31270-901- Belo Horizonte $M G$.

Keywords: arsenic, adsorption, DFT.
The potential mobility, toxicity, and potential bioavailability of arsenic in the environment are closely related to its speciation. Mining activities realized for over three centuries in the Iron Quadrangle in the Southeastern part of Brazil are related to high arsenic concentrations in that region. Fortunately, most of this arsenic is normally immobilized by various minerals, particularly iron oxides, and then it is not available for abstraction [1]. Although the chemical speciation of the arsenic in mining tailings has received much attention in the last years, it is not understood yet at a molecular level.

Recently, X-ray absorption techniques, EXAFS (Extended X-ray Absorption Fine Structure) for example, have been used to determine the chemical speciation and the geometrical properties of arsenic adsorbed on distinct mono-mineralic systems such as iron and aluminum oxyhydroxides [2]. Structural adsorption models could be proposed form $X$-ray techniques, even so, theoretical methods arise as an important tool for helping the understanding of the anion retention mechanism in detail.

In this work we have used different cluster models up to $\mathrm{Fe}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{9}$ to study the adsorption of $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}$on iron oxides present in mine tailings. Density functional calculations have been performed to study the monodentate-mononuclear ( mm ), monodentate-binuclear (bm), bidentate-mononuclear (bm), and bidentate-binuclear (bb) adsorption sites. The exchange and correlation (XC) functional has been treated within the generalized gradient approximation (GGA) using the expressions due to Becke (1988) and Perdew (1986) implemented in the program demon-KS 3.5 with DZVP basis sets for all atoms.

Three cluster models based on the crystallographic data for goethite: (1) $\mathrm{Fe}_{2}(\mathrm{OH})_{6}$, with quadratic planar Fe ; (2) $\mathrm{Fe}_{2} \mathrm{O}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{2}$, with quadratic planar Fe ; and (3) $\mathrm{Fe}_{2} \mathrm{O}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{2}$, with trigonal pyramidal Fe were built. When complexed with $\mathrm{H}_{2} \mathrm{AsO}_{4}$;, the models (1) and (2) give rise to quadratic-pyramidal Fe , while the model (3) gives rise to trigonal-bipyramidal Fe atoms. During the optimization processes only the $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}$was allowed to move. The hydrogen atoms of the bare clusters were previously optimized. Our results (see Table 1) are in good agreement with one of the values ( $2.86 \pm 0.05 \AA$ ) observed from EXAFS for $\mathrm{Fe}(\mathrm{III})-\mathrm{As}(\mathrm{V})$ distance [3]. Results using larger cluster models follow the same trends and will be discussed and compared with the available experimental data. (Millennium Initiative: Water: A mineral approach - CNPq/PADCT, CAPES, CNPq, FAPEMIG)

Tabela 1: Relative adsorption energies and $\mathrm{Fe}(\mathrm{III})-\mathrm{As}(\mathrm{V})$ distances calculated with DFT.

| Model-Site | $\mathrm{E}_{\text {ads }}\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)$ | $\mathrm{Fe}(\mathrm{III})-\mathrm{As}(\mathrm{V})(\mathrm{A})$ |
| :---: | :---: | :---: |
| $2-\mathrm{bb}$ | 26.0 | 2.81 |
| $3-\mathrm{mb}^{\mathrm{b}}$ | 0.0 | 2.80 |
| $3-\mathrm{bm}^{\mathrm{b}}$ | 17.2 | 2.91 |
| $3-\mathrm{bb}$ | 16.4 | 2.91 |

[^33]1. Smedley, P. L. and Kinniburgh, D. G. Appl. Geochem. 2002, 17, 517.
2. Ladeira, A. C. Q.; Ciminelli, V. S. T.; Duarte, H. A. et al. Geochim. et Cosmochim. Acta 2001, $65,1211$.
3. Vasconcelos, F. M.; Ciminelli, V. S. T.; Silva, R. J. et al., to be submitted, 2003.

# Propriedades Estruturais e Eletrônicas de Dímeros de OxoMetaloPoririnas com Mietais da $1^{a}$ e $2^{a}$ Séries de Transição 

Kelson M.T. Oliveira ${ }^{1 *}$ ( PQ ), Milan Trsic $^{2}$ ( PQ )<br>kelsonmota@ufam.edu.br, milan@iqsc.usp.br<br>${ }^{1}$ Departamento de Química - Instituto de Ciências Exatas, Universidade Federal do Amazonas<br>${ }^{2}$ Instituto de Química de São Carlos - USP<br>Palavras-chave: Metaloporfirinas, Metais de Transição,Ponte Oxo

A grande importância das porfirinas se deve a sua participação essencial em sistemas biológicos, em processos como a fotossíntese, oxidação-redução e transporte de oxigênio nas células, bem como em variadas aplicações médicas e tecnológicas. Sua importância como droga terapêutica no tratamento do câncer têm aumentado na última década. Em diversos processos biológicos e tecnológicos, as porfirinas podem existir na forma de monômero ou dimero. Neste trabalho estudamos, do ponto de vista teórico, as propriedades estruturais, eletrônicas e espectros eletrônicos dos dímeros de metaloporfirinas, com os metais da primeira e segunda séries de transição, nos quais os monômeros estão agregados através de uma ponte $\mu$-oxo (Fig. 01). A natureza da ponte $\mu$-oxo, bem como os espectros eletrônicos teóricos foram discutidos. Cinco diferentes conformações estruturais básicas foram encontradas para os dímeros (Fig. 02), e a correlação destas com a estrutura eletrônica dos monômeros e da ponte $\mu$-oxo foi observada, tendo a interação entre os orbitais $d$ dos metais e $p$ do oxigênio da ponte $\mu$-oxo papel fundamental (Tabela 01). Foi utilizado o método químico quântico semi-empírico INDO (Intermediate Neglect of Differential Overlap), no modelamento das moléculas, o qual reproduziu satisfatoriamente as propriedades eletrônicas e estruturais das metaloporfirinas estudadas. (FAPESP, CAPES-PICDT).


Figura 01. Oxo-dimero de metaloporfirina. Os metais de transição ( $M_{2}$ e $M_{35}$ ) estão agregados através de uma ponte oxo.

(a) Fora do plano

(c) Assimétrico

(b) Alternado

(d) No plano

Figura 02. Representação esquemática das posições optimizadas dos metais em relação ao plano do macrociclo nas oxo-porfirinas.

Tabela 01. Energia de interação do oxigênio, em unidades atômicas, com o sistema porfirinico ( $E_{\text {nt M M O }}$ ).

| Molécula | $\mathrm{E}_{\text {tm } \mathrm{mo}}$ (ua) |
| :---: | :---: |
| ${ }^{\prime} \mathrm{OScP}$ | -0.511 |
| ${ }^{\prime}$ OTiP ${ }^{2+}$ | -1.617 |
| ${ }^{3} \mathrm{OVP}^{4+}$ | -1.286 |
| ${ }^{3} \mathrm{OCrP}$ | -1.759 |
| ${ }^{\prime} \mathrm{OMnP}$ | -4.722 |
| ${ }^{1} \mathrm{OFeP}$ | -1.521 |
| ${ }^{1} \mathrm{OCOP}^{2 \cdot}$ | -1.663 |
| 'ONiP ${ }^{2 \cdot}$ | -1.851 |
| ${ }^{\text {'OCuP }}{ }^{2-}$ | -2.193 |
| ${ }^{1} \mathrm{OZnP} \mathrm{P}^{2 \cdot}$ | $-2.062$ |
| ${ }^{3} \mathrm{OYP}$ | -0.421 |
| ${ }^{1} \mathrm{OZrP}{ }^{2+}$ | -0.777 |
| ${ }^{1} \mathrm{ONbP}{ }^{4+}$ | -1.220 |
| ${ }^{3} \mathrm{OMoP}^{6+}$ | -2.829 |
| ${ }^{3}$ ORup | -2.117 |
| ${ }^{3} \mathrm{ORUP}{ }^{2+}$ | -2.413 |
| ${ }^{3} \mathrm{ORhP}$ | -2.242 |
| ${ }^{1} \mathrm{OPdP}{ }^{\text {2 }}$ | -1.998 |
|  | $\cdots$ |

# CARACTERIZAÇÃO DAS PROPRIEDADES, EM NÍVEL SEMIIEMPÍRICO, DA FE-PORFIRINA LIGADA AXIALMENTE A $H_{2} O$, $\mathrm{CO}_{2} \mathrm{ENO}$ 

Ercila Pinto Monteiro (IC) e Kelson Mota T. Oliveira (PQ)

Kelsonmota@ufam.edu.br
Laboratório de Química Teórica (LQT-AM), Depto Química-ICE, Universidade Federal do
Amazonas (UFAM)*
Palavras-chave: Fe-porfirina, ligante axial, ZINDO
As porfirinas são classes de moléculas fundamentais que chamam atenção pela diversidade de aplicações que apresenta, que vão desde base de drogas terapêuticas em processos de fototerapia dinâmica até aplicação de sensores e biossensores. Atualmente, os estudos sobre porfirinas estão bem avançados, porém um conhecimento detalhado do seu comportamento diante de ligantes axiais ainda necessita de esclarecimento. Sendo assim, este trabalho tem por objetivo caracterizar as propriedades estruturais e eletrônicas, em nível semiempírico, de ligantes $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$ e NO com Fe-Porfirina ( FeP ). Para tanto adotou-se uma abordagem teórica químico-quântica, em nível semi-empírico ZINDO/1 e ZINDO/S, através do programa computacional HyperChem ${ }^{\circledR}$ 6.0, em plataforma Pentium III. Foram definidos estados de spin e cargas e suas propriedades estruturais foram optmizadas em nível ZINDO/1 e as eletrônicas em ZINDO/S (potencial eletrostático, densidade de carga, densidade eletrônica, população atômica). Em seguida, caracterizada as propriedades eletrônicas e estruturais, com os respectivos ligantes.

Os resultados mostraram grande estabilidade para o complexo $\mathrm{FeP}\left(\mathrm{CO}_{2}\right)$. Dentre os ligantes, $0 \mathrm{CO}_{2}$ foi que mais apresentou diferenças no comportamento diante da FeP. Todos os ligantes foram capazes de deslocar o metal do plano, as respectivas distâncias: $0.369 \AA$ (ligante $\mathrm{CO}_{2}$ ), $0.155 \AA$ (ligante $\mathrm{H}_{2} \mathrm{O}$ ) e $0.159 \AA(\mathrm{NO})$. Observou-se que $\mathrm{CO}_{2}$ deslocou aproximadamente o dobro quando comparado ao ligante $\mathrm{H}_{2} \mathrm{O}$ ou NO . Observou-se uma grande sobreposição eletrônica dos orbitais pzedz nestes casos, levando o ligante a se aproximar mais do metal, resultando em uma distância menor para a $\mathrm{Fe}-\mathrm{CO}_{2}$ (Tabelas 01 e 02).

| Probabilidade eletrônica |  |
| :---: | :---: |
| $\mathrm{Fe}-\mathrm{Lig}$ | $\psi^{2}$ |
| $\mathrm{Fe}-\mathrm{O}$ | 0.016131 |
| $\mathrm{Fe}-\mathrm{C}$ | 0.110815 |
| $\mathrm{Fe}-\mathrm{N}$ | 0.040622 |

Tab. 1. Probabilidade eletrônica/sobreposição dos orbitais do ligante (Lig) com os orbitais do Fe.

| Complexos | Fe -Lig $(\mathrm{A})$ |
| :---: | :---: |
| $\mathrm{Fe}-\mathrm{P}$ | X |
| $\mathrm{FeP}\left(\mathrm{H}_{2} \mathrm{O}\right)$ | 2.25 |
| $\mathrm{FeP}\left(\mathrm{CO}_{2}\right)$ | 2.15 |
| $\mathrm{FeP}(\mathrm{NO})$ | 2.21 |

Tab. 2. Deslocamento do Fe em relação ao plano do macrociclo.
Observaram-se fracas ligações entre Fe e os nitrogênios pirrólicos que permite a saída mais rápida do Fe para fora do plano quando submetido à ligantes axiais. O mecanismo de interação do centro do macrociclo porfirínico com o NO sugere o fenômeno de retrodoação, uma vez que os orbitais envolvidos e observados ( $d_{x z}$ do Fe e $\mathrm{p}_{\mathrm{x}}$ do NO ) possuem conformação para tal e notória sobreposição. As porfirinas estudadas mostraram-se bastante suscetíveis à ligantes axiais capazes de variarem os seus comportamentos diante do Fe , de acordo com à contribuição eletrônica de seus orbitais com as do metal de transição. (CNPq - Universidade Federal do Amazonas).

# ABOUT THE BENZOTRIAZOLE TAUTOMERISM, AN AB INITIO STUDY 

Leonardo T. Ueno ${ }^{1}(P Q)$, Rodrigo O. Ribeiro ${ }^{1}(I C)$, Milton S. Rocha ${ }^{1}(P Q)$, Maria E. V. Suárez-Iha ${ }^{2}$ (PQ), Koshun Iha ${ }^{1}(\mathrm{PQ})$, Francisco B. C. Machado ${ }^{1}$ (PQ)<br>leonardo_ueno@hotmail.com<br>${ }^{1}$ Departamento de Química, Centro Técnico Aeroespacial, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900, Brazil<br>${ }^{2}$ Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, 05513-970, Brazil<br>Palavras-chave: benzotriazole, ab initio, tautomerism.

The tautomeric equilibrium observed with benzotriazole, known as an excellent corrosion inhibitor of cooper, is a problem that has been attracted much attention, concerned mainly to the question of relative stability between both tautomers. The relative stability question between 1 H -benzotriazole $(1 \mathrm{H})$ and 2 H -benzotriazole $(2 \mathrm{H})$ has been an open problem, because of the non-convergent results obtained with different experimental techniques and methodologies in computational calculation.

Relative stability, geometrical parameters, harmonic vibrational frequencies, dipole moments and rotational constants of benzotriazole tautomers were obtained with HF, MP2, B3LYP and Coupled Cluster methodologies and several basis set, ranging from 6-31G** and D95** to cc-pVDZ, cc-pVTZ and cc-pVQZ.

With the inclusion of zero point energy correction, HF/cc-pVDZ calculation presented 1 H tautomer $2.74 \mathrm{kcal} / \mathrm{mol}$ more stable than 2 H , while this order inverted with MP2/cc-pVDZ calculation, being 2 H tautomer $2.41 \mathrm{kcal} / \mathrm{mol}$ more stable than 1 H . B3LYP and Coupled Cluster predicted 1 H and 2 H with very similar energies. B3LYP/cc-pVDZ with zero point energy presented 1 H only $0.31 \mathrm{kcal} / \mathrm{mol}$ more stable than 2 H tautomer, while our best calculation, CCSD $(T) / c c-p V T Z / / M P 2 / c c-p V T Z$, predicted 2 H only $0.26 \mathrm{kcal} / \mathrm{mol}$ more stable, but the inclusion of zero point energy certainly will change this energetic order.

The interatomic distances obtained with HF methodology with extense basis set are underestimated in covalent bondings, but the inclusion of correlation effects with MP2 increased these distances, the same occurring with B3LYP, that presented values similar to MP2. Even with these changes in the distances, all methodologies gave values very close with experimental ones related to 1 H tautomer. There are no experimental data for 2 H tautomer, and the results for this structure show a similar behavior as presented by 1 H .

Considering the results with scale factor for 1 H , the MP2/cc-pVDZ frequencies are, in general, smaller than the B3LYP/cc-pVDZ results, which are closer to the experimental attribution. For 2 H tautomer, our MP2/cc-pVDZ results with scale factor gave a better agreement with experimental values, mainly related to higher frequencies. In comparison with experimental results, the N-H stretching frequency with the appropriate use of scale factor using the B3LYP method gives values very close to experiment.

The dipole moment of 1 H obtained with cc-pVDZ basis and HF, B3LYP and MP2 methodologies are $3.91,3.78$ and 4.05 D , respectively. These values are relatively close to the experimental value, 4.3 D . The dipole moment of 2 H tautomer is not known experimentally, and the values obtained in this work with cc-pVDZ basis set are $0.14,0.10$ and 0.20 D with HF, B3LYP and MP2, respectively. Considering the good results presented by 1 H we can believe that the values obtained for 2 H are reliable, and these values are 20 to 30 times smaller than 1 H , justifying the experimental difficult to observe this tautomer in rotational spectroscopy experiments.

With relation to rotational constants, the B3LYP/cc-pVDZ results are closer to experiment in comparison with other methods, with differences smaller than 10 MHz . (CAPES/CNPq/FAPESP/CENAPAD-SP).

# DENSITY FUNGTIONAL STUDY OF NITROGEN-ADSORPTION 

 ONTO Si(100) SURFACELeonardo T. Ueno ${ }^{1}(\mathrm{PQ})$, Fernando R. Ornellas ${ }^{2}(\mathrm{PQ})$<br>leonardo_ueno@hotmail.com<br>${ }^{1}$ Departamento de Química, Centro Técnico Aeroespacial, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900, Brazil<br>${ }^{2}$ Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, 05513-970, Brazil<br>Palavras-chave: silicon surface, ab initio, nitridation.

The use of ab initio methods for the simulation of processes that occur on the surface of metals and semiconductors can provide information on the possible mechanisms involved in the growth of new films. One experimental technique of growth of silicon nitride $-\mathrm{Si}_{3} \mathrm{~N}_{4}$ - films involves a deposition process where a beam of nitrogen atoms with a known kinetic energy collides with a surface. Our work aims to understand the initial steps of the nitrogen atom incorporation, searching the involved mechanisms, energies and structural details. This study makes use of the Density Functional methodology, with the hybrid functional B3LYP, and for the representation of the $\mathrm{Si}(100)$ surface we used two clusters, with formulas $\mathrm{Sig}_{9} \mathrm{H}_{12}$ and $\mathrm{Si}_{21} \mathrm{H}_{20}$, that simulate the presence of one and three dimers, respectively. The use of constraints in the geometric parameters during optimization of quartet structures was questioned, because it leads to an inversion of stability of the two most stable structures. The first step during the incorporation of nitrogen atom in the quartet structures without constraints consists of the atom bonded to one silicon dimer. The energy of atom incorporation is $61 \mathrm{kcal} / \mathrm{mol}$, and this process occurs without barrier. Two possible routes of internal rearrangement were studied, including the correspondent transition states, being the conversion to a structure with nitrogen inserted below the surface of the cluster and bonded to three silicon atoms the most favorable energetically by $45 \mathrm{kcal} / \mathrm{mol}$. The other route leads to a structure with nitrogen bonded symmetrically to two silicon dimers, and the energy difference between this two most stable structure is $17.25 \mathrm{kcal} / \mathrm{mol}$.

The optimization of doublet structures leads to similar results to those of the quartets. The most stable structure corresponds to that with nitrogen incorporated in the silicon cluster, and the second most stable one is located $14.70 \mathrm{kcal} / \mathrm{mol}$ higher. The third more stable structure found, corresponding to the first stage of incorporation of nitrogen in the silicon cluster, is located 62.93 $\mathrm{kcal} / \mathrm{mol}$ higher. We observed that this structure correlates with nitrogen quartet and cluster triplet. This result allows to visualize the neutralization of the incident ion leading to the formation of the neutral atom in the quartet state and the formation of a surface where the electrons of the silicon dimers are coupled in a triplet state. In the quartet structure, the surface remained with the singlet spin symmetry, while the nitrogen was also neutralized in the quartet state. Therefore, the preference for the doublet or quartet state depends on the behavior of the silicon surface during the neutralization process.

The most stable structure shows a site similar to that found in silicon nitride, because this also presents the nitrogen bonded to silicons forming planar structures. Another important characteristic is that the incorporation of nitrogen in the interior fries the silicon dimers, thus allowing the progress of the reaction with the interaction of other atoms. The incorporation of a nitrogen atom is sufficiently favorable from the energetic point of view, and the conversion barriers are relatively small, in a way that the reaction can occur spontaneously with the possibility of formation of the two species.

The cluster with the formula $\mathrm{Si}_{2} \mathrm{H}_{20}$ allows us to verify the influence of other dimers and gives a more accurate view of how much the use of $\mathrm{Sig}_{19} \mathrm{H}_{12}$ system simulates a more extensive system. With this cluster, the quartet and doublet structures were optimized with a geometry similar to the minima found with the small system. We observed that the most stable doublet and quartet structures present the nitrogen bonded to the two silicon dimers, in contrast to what happened with the system with only one dimer. This inversion is related to a structural tension caused by the incorporation of nitrogen in the interior of the silicon cluster. (CAPES/LCCA-USP).

# CÁLCULO DE ENERGIAS DE IONIZAÇÃO PARA ÁTOMOS COM CAMIADAS ABERTAS VIA TEORIA DO FUNCIONAL DE DENSIDADE. 

Ednilsom Orestes (IC) ${ }^{1}$, Tatiani Marcasso (IC) ${ }^{2}$, Klaus W. Capelle (PQ) ${ }^{3}$<br>capelle@if.sc.usp.br<br>${ }^{1}$ Instituto de Química de São Carlos - Universidade de São Paulo, ${ }^{2}$ Departamento de Engenharia de Materiais - Universidade Federal de São Carlos, ${ }^{3}$ Instituto de Física de São Carlos - Universidade de São Paulo<br>Palavras-chave: funcional da densidade, camadas abertas, energia de ionização.


#### Abstract

Correntes orbitais podem aparecer numa grande variedade de sistemas de muitos corpos, como por exemplo, em átomos com camadas abertas. Na prática, tais correntes não podem ser investigadas com a teoria do funcional de densidade (DFT) padräo por não haver nessa teoria uma receita explícita de como calculá-las. Por outro lado, a "Current-DFT" (CDFT), [G. Vignale, M. Rasolt, Phys. Rev. Lett., 59, p.2360, (1987)] que usa a densidade de corrente como variável fundamental, além da densidade de carga, é formalmente capaz de calcular essas correntes orbitais, porém, a solução completa das equaçōes da CDFT é computacionalmente muito pesada, principalmente considerando o quão pequeno são os efeitos provocados por tais correntes. Entretanto, apesar de pequenos, no estágio atual de desenvolvimento dos funcionais os efeitos relacionados as correntes começam a ser importantes, pois sảo de magnitude comparável à diferença entre cálculos teóricos usando os melhores funcionais da densidade disponiveis atualmente e os dados experimentais.

No presente trabalho foram inicialmente comparadas duas parametrizações para a aproximação da densidade local dependente da corrente (C-LDA). Uma destas parametrizações foi proposta por A. M. Lee, et al. [J. Chem. Phys. 103, p. 10095 (1995)] e a outra é uma proposta nossa. Essas diferentes expressōes para a C-LDA foram então usadas para calcular energias de ionização de estados atômicos com correntes em camadas abertas. A abordagem computacional usada é uma simplificação da CDFT proposta por K. Capelle [Phys. Rev. A, p. 733 (1999)]. Essa abordagem permite utilizar a aproximação da densidade local (LDA) comum para descrever a estrutura eletrônica na ausência de correntes, e incluir os efeitos das correntes no funcional de troca e correlação de forma perturbativa.


Antes de compararmos as energias de ionização experimentais com os autovalores Kohn-Sham calculados com a LDA para o orbital ocupado mais alto levamos em conta as correções devido à auto-interação, que suavizam o decaimento assimptótico brusco dos orbitais calculados com a LDA. Uma vez aplicada tal correção, o erro principal da LDA é removido e então podemos considerar correções menores como as correções dependentes da corrente, as quais foram calculadas para alguns átomos com camadas $p$ e $d$ semipreenchidas e preparados num estado atômico com corrente. Energias e orbitais do sistema não perturbado foram obtidas com um programa DFT padrão (opmks) e os orbitais monoeletrônicos completos num determinado estado de corrente foram obtidos multiplicando a função de onda radial, obtida numericamente, com o harmônico esférico correspondente ao valor definido para o número quântico $m$. Tais orbitais monoeletrônicos suportam uma corrente proporcional a $m$. Um exemplo dos cálculos citados acima é o caso do Carbono, no qual a correção da energia de ionização obtida é $0,045 \mathrm{eV}$ (com a parametrização de Lee et al.) e $0,051 \mathrm{eV}$ (com a nossa parametrização) para a configuração $m_{1}=1$ (ocupação dupla) $m_{2}=0$, mas $0,18 \mathrm{eV} \mathrm{e} 0,20 \mathrm{eV}$, respectivamente, para a configuração $m_{1}=1 \mathrm{e}$ $m_{2}=1$ (ocupaçäo simples).

A análise dos dados obtidos assim para 12 átomos revela que, apesar de possuírem a mesma ordem de grandeza, há uma diferença substancial entre as correções dependentes da corrente para as duas parametrizaçōes testadas da C-LDA. Tal fato nos leva a concluir que ainda há a necessidade do desenvolvimento de funcionais de troca e correlação dependentes da correntes que traduzam melhor a realidade dos sistemas sob estudo. Além disso, podemos perceber também que dependendo da ocupação dos subestados com valores diferentes de $m$, o valor das correções devidas à corrente pode variar consideravelmente. Podemos ainda comparar a magnitude das correções para corrente com o desvio existente entre os dados experimentais e os cálculos LDA incluindo a correção para a auto-interação. Observamos que os efeitos relacionados à corrente não são desprezíveis em comparação com este desvio que é de $0,34 \mathrm{eV}$ para o Carbono, e portanto começam a ser relevantes para o refinamento dos cálculos teóricos feitos atualmente para as energias de ionização em campos externos elétricos ou magnéticos, ou na formação e quebra de ligaçōes químicas na presença destes campos [ E . Orestes, T. Marcasso e K. Capelle, Phys. Rev. A, 2003, em produção].

Tais considerações nos mostram que seria interessante estender a análise feita aqui para outros átomos e moléculas. Também mostram que ainda há a necessidade de desenvolver melhores funcionais da densidade da corrente e de implementar um tratamento completo auto-consistente das equaçōes da CDFT. (FAPESP)

# Estudo-Estrutural-de-Ariloxieielofosfazênios-Através-de Cálculos Teóricos Utilizando ONIOM 

${ }^{1}$ Mauricio Chagas da Silva (PG)*, ${ }^{2}$ NeIson Henrique Morgon (PQ)* - Instituo de Química (IQ/UNICAMP).

[1] isobestico@bol.com.br, [2] morgon@iqm.unicamp.br

Palavras-Chaves: ONIOM, DFT, MCG/ECP.

1. Introdução: Ariloxicilofosfazẻnios apresentam propriedades ópticas e elétricas interessantes e por isso têm sido utilizados em vidros com altos indices de refração e em dispositivos ópticos não-lineares. Sua sintese está esquematizada logo abaixo, onde dependendo da natureza de seus substituintes OR pode-se obter diversas propriedades químicas que levam a várias aplicações tecnológicas. Uma dessas aplicaçōes encontra-se voltada para a área de catálise heterogênea, onde ciclofosfazênios são empregados para complexar e heterogenizar catalisadores de paládio.

Devido a sua importância, esses sistemas ciclofosfazênios foram escolhidos como sistemas modelos para estudos

$R=-\cdots,-\cdots$ envolvendo metodologias ONIOM empregando cálculos DFT e semi-empíricos. E com isso visa-se obter a melhor descrição das propriedades estruturais e eletrônicas de sistemas relativamente "grandes" empregando a metodologia ONIOM e bases adaptadas a pseudopotencial (ECP) geradas através do método da coordenada geradora (MCG).
2. Metodologia: Utilizando o programa GAUSSIAN-98, investigou-se a estrutura molecular de diversos ciclofosfazênios para-substituídos - $\mathrm{P}_{3} \mathrm{~N}_{3}\left(\mathrm{OC}_{6} \mathrm{H}_{5} \mathrm{R}\right)_{6}$ com $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{OH}$, $\mathrm{OPh}, \mathrm{OCH}_{2} \mathrm{Ph}$ - frente a resultados experimentais de difraçăo de raios-X (DR-X), a fim de se definir qual a melhor descrição metodológica para cálculos envolvendo ONIOM do tipo DFT/HF/PM3. Para isso geraram-se conjuntos de bases no nivel B3LYP adaptados a pseudopotencial (ECP), através do método da coordenada geradora (MCG). As bases foram validadas através do estudo da afinidade por próton (AP) de alfahaloácidos, aminas e fosfinas e também através do estudo da afinidade eletrônica (AE) de sistemas atômicos. Os resultados de AP e AE foram comparados a dados experimentais e a cálculos obtidos pelo método G3.

3. Resultados e Conclusões: Estudos estruturais preliminares da molécula ao lado $\left(\mathrm{P}_{3} \mathrm{~N}_{3}\left(\mathrm{OC}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)_{6}\right)$, mostram boas correlações estruturais frente aos dados de DR-X, obtendo-se variações estruturais dentro das considerações experimentais. Os sistemas estudados são relativamente grandes ( 96 átomos), como mostra a figura ao lado, o que dificulta estudos teóricos através de métodos ab-initio convencionais, assim, justifica-se a utilização da metodologia ONIOM. Os conjuntos de bases gerados apresentam resultados muito satisfatól s tanto para cálculos envolvendo métodos DFT como sara o método QCISD(T).
Nos cálculos de validação das bases, a AE dos átomos estudados ( S), tanto com DFT como para QCISD(T), apresentaram erros da ordem d $\mathrm{kJ} / \mathrm{mol}$, assim como nos cálculos envolvendo a AP dos sistemas molecule geral, os erros obtidos nas validações foram menores ou iguais àquele: método G3. Com isso, as bases geradas poderão ser utilizadas tanto em es métodos DFT como ab-initio em sistemas análogos utilizando métodos

O, P, B, F, Cl no máximo 10 s. De maneira )btidos com o to envolvendo 'vIOM do tipo DFT/HF/PM3.
(Órgão Financi $\quad$ r-FAPESP)

# UM ESTUDO DFT DO MECANISMO DE OXIDAÇÃO DO PARACETAMOL 

Cláudio N. Alves (PQ), Rosivaldo S. Borges (PQ), Joel E. M. Diniz (PG) nahum@ufpa.br

Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil
Palavras-chave: oxidação; paracetamol; b3lyp/6-31g*
O paracetamol (PAR) é utilizado desde 1878 até hoje em muitos países, como analgésico e antipirético, em pediatria, geriatria e odontologia, no alívio de sintomas relacionados a processos dolorosos e estados febris. Seu mecanismo de ação se baseia na inibição dos derivados do ácido araquidônico, responsáveis pela resposta inflamatória. No fígado, uma maior parte é biotransformada por rações de conjugação, enquanto que uma menor quantidade é oxidada pelo citocromo P450, formando a acetoimida-p-benzoquinona (NAPQI), um intermediário reativo, que reage através da adição de glutationa. No mecanismo de oxidação do paracetamol duas possibilidades podem ser consideradas: saída de um átomo de hidrogênio de um grupo fenol ou saída de um átomo de hidrogênio do grupo acetamida

Neste trabalho foi utilizado o método do funcional de densidade (B3LYP), com o conjunto de base $6-31 \mathrm{G}^{*}$, para estudar o mecanismo de oxidação do paracetamol. O efeito do solvente foi considerado com o método continuo polarizável (PCM). Os cálculos mostram que a saída inicial de um átomo de hidrogênio ligado ao oxigênio do grupo fenol (Esquema) é 19,63 (14,53 em água) $\mathrm{kcal} \mathrm{mol}^{-1}$ favorecida sobre a saída do átomo de hidrogênio ligado ao nitrogênio do grupo acetamida. Cálculos para a densidade de spin foram realizados para o radical formado, devido a saída do elétron do grupo fenol. Esses resultados mostram que o elétron desemparelhado está localizado nos átomos de oxigênio $\mathrm{O}_{7}(39 \%)$, carbono $\mathrm{C}_{3}$ e $\mathrm{C}_{5}$ na posição orto ( $27 \%$ e $26 \%$, respectivamente) e carbono $C_{1}$ na posição para (33\%). A combinação entre um radical hidroxil e esses radicais pode explicar a formação do 3-hidroxiPAR, p-benzoquinona e acetamida, que são metabólitos do PAR. (CAPES, CNPq, UFPA).

Esquema. Estruturas de ressonância para a saída do hidrogênio do grupo fenol.


# ESTUDO MECANHEO-QUANTICO-DO-NEUROTRANSMASSOR ACETILCOLINA 

Hércules S. Miglio ${ }^{1}(\mathrm{PQ})$, Tomé $M$. Schmidt² ${ }^{2}(\mathrm{PQ})$, Élson Longo ${ }^{3}(\mathrm{PQ})$, Antônio E. H. Machado ${ }^{4}$ (PQ)<br>Hercules@ centershop.com.br<br>1. UNIPAM - Centro Universitário de Patos de Minas - Faculdade de Farmácia.<br>2. UFU - Universidade Federal de Uberlândia - Instituto de Física<br>3. UFSCar - Universidade Federal de São Carlos - Departamento de Química<br>4. UFU - Universidade Federal de Uberlândia - Instituto de Química<br>Palavras-chave: acetilcolina, dft, am1

O estudo mecânico quântico de sistemas biológicos, como a acetilcolina, um neurotransmissor presente no sistema nervoso de várias espécies animais, é bastante relevante para investigações futuras na construção teórica de fármacos. O conhecimento das propriedades eletrônicas e dos estados conformacionais da estrutura da acetilcolina é de extrema importância, assim como a compreensão da sua ação fisiológica nos organismos dos animais e na elaboração de possíveis estruturas que venham a inativar ou mesmo potencializar a acetilcolina.

Utilizou-se, dentro do pacote de programas Gaussian-98, o método semi-empírico AM1 e um método da Teoria Funcional de Densidades (DFT B3PW91) empregando uma base $6-31 \mathrm{G}^{* *}$. A partir da análise conformacional da acetilcolina, observa-se que esta apresenta quatro conformações de energia mínima sendo que as duas termodinamicamente estáveis são as formas trans - mais estirada, que foi denominada de acetilcolina-A (fig. 1), e a gauche - mais empacotada, acetilcolina-B (fig.2). A diferença de energia entre essas duas conformações é de $0,13 \mathrm{eV}$ (DFT) e $0,16 \mathrm{eV}$ (AM1).


Fig. 1 Conformação A da acetilcolina (trans)


Fig. 2 conformação B da acetilcolina (gauche)
Dados encontrados na literatura, teóricos e cristalográficos, quanto às distâncias interatômicas ângulos e diedros são concordantes com os apresentados nessa comunicação, os quais estão em concordância melhor com os dados cristalográficos.

A literatura mais específica da área fisiológica destaca a grande atividade da acetilcolina-A e baixa atividade para a acetilcolina-B. O que foi verificado nesse estudo e se torna coerente é que a aceticolina-A sendo uma estrutura mais aberta expõe os seus sítios de ligação tanto na membrana do neurônio quanto na enzima que a degrada, desempenhando assim seu importante papel neurológico em polarizar e despolarizar essa célula nervosa, propagando assim, o pulso elétrico, com uma eventual resposta neurológica. (CNPq FAPEMIG).

# ESTUDO TEÓRICO DO ESPALHAMENTO DE ELÉTRONS POR CS NAS FAIXAS DE ENERGIAS BAIXA E INTERMEDIÁRIA 

Antonio Moreira de Cerqueira Sobrinho ${ }^{1,3}$ (PG) e Lee Mu-Tao ${ }^{2}$ (PQ) moreira@df.ufscar.br<br>${ }^{1}$ Departamento de Física, UFSCar, Rod. Washington Luiz Km 235, CEP 13565-905, São Carlos, SP, e-mail:<br>${ }^{2}$ Departamento de Química, UFSCar, CEP 13565-905, São Carlos, SP<br>${ }^{3}$ Departamento de Física do Estado Sólido, UFBa, CEP 40170-290, Salvador, BA<br>Palavras-chave: espalhamento de elétrons, seções de choque, CS

Recentemente, há um interesse muito grande em estudos de espalhamento de elétrons por moléculas. Este interesse se deve principalmente a importância de seções de choque que resultam dessas colisões em várias aplicações práticas tais como modelamento de plasmas utilizados em indústrias microeletrônicas, estudos de química ambiental, lasers, etc [1]. O conhecimento de diversas seções de choque resultante de colisões entre elétrons com várias moléculas é importante para otimização de reatores e também no balanceamento de matéria e energia em diversos ambientes atmosféricos e planetários. Em particular, o elemento enxofre constitui um dos principais poluentes na atmosfera terrestre. Este elemento é lançado ao ar principalmente pela queima de combustíveis fósseis como petróleo e carvão e na atmosfera pode aparecer em várias formas moleculares e radicais como $\mathrm{SO}_{2}, \mathrm{SO}, \mathrm{CS}_{2}$, CS, H2S, HS, etc. Portanto, a determinação de seções de choques de espalhamento de elétrons por estas espécies é importante para o entendimento de reações químicas atmosféricas que envolvem enxofre. Entretanto, feixes moleculares de algumas dessas espécies são difíceis de gerar e, portanto as medidas experimentais de tais seções de choques são ainda impraticáveis. Desta forma, cálculo teórico se torna o único meio viável para obtenção destas seções de choque.

Neste trabalho, apresentamos um estudo teórico de espalhamento de elétrons por CS na faixa de energia entre 0,5-500 eV. São calculadas as seções de choque elástica e total (elástica e inelástica). Em nosso estudo, a interação de elétron do espalhamento e o alvo são descritos por um potencial de interação complexo ótico que é formado por componentes estático, de troca, de correlação-polarização e de absorção. Os potenciais estático e de troca são gerados diretamente da função de onda do alvo calculada aos níveis de Hartree-Fock e de CISD. As contribuições de correlação-polarização e de absorção são gerados através de modelos de potencial livre de parâmetros ajustáveis. As equações do espalhamento são resolvidas com o método variacional de Schwinger iterativo sendo que as funções de onda do elétron do espalhamento assim como todas matrizes são expandidas em ondas parciais. Esta expansão é truncada para um certo $I_{\max }$ e $\mathrm{m}_{\text {max }}$. Contribuições das ondas parciais maiores são corrigidas por aproximação de Born. As seções de choque foram calculadas na faixa de energia entre $0,5-500 \mathrm{eV}$ e serão apresentadas no Simpósio. (FAPESP, CNPq, CAPES-PICD).
[1] Plasma Processing of Materials: Scientific Opportunities and Technological Challenges, Plasma Science Committee, Board on Physics and Astronomy, Committee on Physical Science, Mathematics and Applications, National Research Council, 1991. Academic Press, Washington D.C.

# CONJUGATED DENDRIAER: CHARACTERIZATIONOF A NEW CLASS OF ORGANIC MATERIALS 

Jordan Del Nero (PQ)<br>jordan@ufpa.br<br>Departamento de Física - UFPA - CEP: 66.075-110 - Belém - PA (Brazil)<br>Keywords: Dendrimer, Fractal molecules, Electronic Structure.

Dendrimer are a new class of materials for opto-electronic applications. They are a group of materials (macromolecular) founded between the polymeric regimes and a single monomolecular material. Dendrimers are based on a self-similar fractal branching geometry, where the amount of branching increases with the size of the molecule. In a recent study it has been demonstrated that the properties of dendrimer based LEDs are controlled by dendrimer generation and describes the degree of branching of the dendrons.

In this work we show calculations of the electronic structure for these molecules with up to 600 carbon atoms, and present how they account for the electronic properties of few families of conjugated dendrimer. The dendrimers studied in this work are the poly-para-phenilene-vinylene derivatives with central unit as carbon, nitrogen or phenyl ring. The discussion of these analogous structures by the exchanging of the central unit will be performed by the analysis of the electronic structure properties.

The methodology is based on semiempirical PM3 (Parametric Method 3) and PM5 (Parametric Method 5) methods for the simulation of the ground state. To understand the physical process of the microscopic effect of dendrimer generation on the macroscopic observable device properties and spectra, we performed the INDO/S-CI (Intermediate Neglect differential orbital / Spectroscopic - Configuration Interaction) for the calculation of electronic transitions of these molecules. (PROINT-UFPA).




Three generations of dendrimer presented in this work. The central atom corresponds to Nitrogen, ionic Carbon, Carbon (4 dendrons) or phenyl ring (it doesn't showed in this picture).

The results show a strong confinement of excitations at the center of the dendrimer and dependence with the intermolecular electronic distribution is observed. In the dendrimer investigated, all dendron units are founded to contribute to the dendron absorption explaining the observed scaling of the dendron absorption with the different generation. The calculated spectra are in very good agreement with the experimental data from literature and show that phenyl rings are shared between excitations of the hyperbranched molecules. The INDO/S-Cl approach is ideally suited to treat organic dendritic molecules.

# SEMIEMPIRICAL/CI AND AB INITIO CHARACTERIZATION OF ANTIDEPRESSANT MOLECULES 

Luciana B. C. Del Nero ${ }^{1}(\mathrm{PQ})$, Jordan Del Nero ${ }^{2}$ (PQ)<br>jordan@ufpa.br<br>${ }^{1}$ Departamento de Clínicas Integradas - UFPA - CEP: 66.050-060 - Belém - PA (Brazil)<br>${ }^{2}$ Departamento de Física - UFPA - CEP: 66.075-110 - Belém - PA (Brazil)

Keywords: Antidepressant molecules, biological activity, Serotonin.
Obsessive compulsive disorder (OCD) is characterized by recurrent and intrusive thoughts that are distressing (obsessions) and/or repetitive behaviors or mental acts that the person feels driven to perform (compulsions), OCD has a partly genetic basis. For treatment of OCD, potent serotonin reuptake inhibitor (SRI) drugs (clomipramine (Anafranil), fluvoxamine (Luvox), fluoxetine (Prozac) and paroxetine (Paxil)), which act on the serotonin transporter protein, are uniquely efficacious (Figure 1). Despite that exhibit widespread pharmaceutical application in the psychiatry, being used as drugs for such varied indications as epilepsy, migraine, chronic pain, depression and psychosis. Structurally these compounds don't possess similarities but the spatial distribution of the aromatic rings of these drugs has been deemed to be an influential factor in determining their respective pharmacological activity. The biological activity as antidepressants and/or neuroleptic of compounds is investigated by electronic structure calculations.





Fig. 1 - Chemical Structure of clomipramine, fluoxetine, fluvoxamine and paroxetine, respectively.

The geometry of the structures shown in Fig. 1 were fully optimized using semiempirical (PM3/CI) methods. Standard MOPAC PACKAGE parameters were used but the convergence criterion, for which a maximum step size of 0.005 was adopted. Absorptions spectra calculations were made using the ZINDO PACKAGE with geometry being fully optimized at the PM3 level. The absorption spectra were calculated using the INDO/S-CI (Intermediate Neglect of Differential Overlap/Configuration Interaction) level. This level of approximation was utilized within a restricted and unrestricted Hartree-Fock approach to determine the ground and excited states (singlet and triplet). For the ab initio calculations was used the standard $6-31 \mathrm{G}^{*} /$ RHF for geometries using the Gaussian 94 package.

Our results show differences in the liquid charges and bond lengths between the ground state and the first excited state for molecules investigated. Electronic effects have also been found to be useful in explaining the differential bioactivities. From the analysis of the calculated spectra we obtained a mixing of $\mid \mathrm{HOMO} \rightarrow$ LUMO $>$ and $\mid \mathrm{HOMO}-\mathrm{x} \rightarrow \mathrm{LUMO}+\mathrm{y}>$ ( $x, y=[1,3]$ ) transitions. (PROINT-UFPA, FADESP).

# ESTUDO DA ISOMERIA CIS-TRANS DO ÍON COMPLEXO DI FLUORO BIS ETILENODIAMIIN CROMO III POR TFD. 

Alexandre N. M. Carauta(PQ) ${ }^{1}$, José W. de M. Carneiro(PQ) ${ }^{1}$, e Paulo Corrêa de Mello (PQ) ${ }^{2}$ ancarauta@uol.com.br

1 - Departamento de Química Inorgânica. Instituto de Química. Universidade Federal Fluminense UFF - Outeiro de S. J. Baptista, s/n, Niterói - Centro. Cep-24020-150. Rio de Janeiro. Brasil.
2 - Instituto de Ciências Biológicas e Ambientais. Universidade Santa Úrsula - USU - Rua Fernando Ferrari, 75, Botafogo. Rio de Janeiro. Cep.: 22231-040. Rio de Janeiro. Brasil.

Palavras-chave: isomeria cis-trans, dft, complexo de cromo.
A Teoria do Funcional de Densidade (TFD) têm sido utilizada para calcular propriedades de sistemas envolvendo muitos elétrons devido à sua precisão e ao menor custo computacional em relação a outros métodos ab initio com correlação eletrônica, tais como MP2 e Cl . Diversos sistemas, já estudados experimentalmente, podem agora ser tratados teoricamente possibilitando um aprofundamento do conhecimento desses sistemas, como é o caso de certos compostos de coordenação.

Este trabalho tem por objetivo estudar a isomeria cis e trans do íon complexo di fluoro bis etilenodiamin cromo III utilizando o método ROHF/B3LYP/6-31G* com ECP LACVP* disponíveis no pacote TITAN. As estruturas moleculares foram completamente otimizadas e as freqüências harmônicas vibracionais foram obtidas para estas geometrias otimizadas. Estas puderam ser comparados com os espectros experimentais obtidos anteriormente. Cálculo das transições do espectro UV-VIS foram realizados pelo método ZINDO/S disponível no pacote Gaussian 98W. Alguns resultados estão listados abaixo:

| Isômero | CIS |  | TRANS |  |
| :---: | :---: | :---: | :---: | :---: |
| Energia (a.u) | -667,0316 |  | -667,0439 |  |
| $\begin{gathered} \text { UV-VIS }\left(1^{a}\right. \\ \text { transiçāo)(nm) } \end{gathered}$ | Calc. ${ }^{4} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{2 g}$ | Exp. | $\begin{gathered} \text { Calc. } \\ { }^{4} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{2 g} \end{gathered}$ | Exp |
|  | 502 | 517 | 455 | 465 |
| $\mathrm{IV}\left(\mathrm{cm}^{-1}\right)$ | Calc. | Exp. | Calc. | Exp |
| $v(\mathrm{Cr}-\mathrm{N})$ | $\begin{gathered} 334,374,421, \\ 438 \end{gathered}$ | $\begin{gathered} 350,367,416, \\ 436 \end{gathered}$ | $\begin{gathered} 334,352,411, \\ 430,436 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 350,367,396, \\ 416 \end{gathered}$ |
| $v(\mathrm{Cr}-\mathrm{F})$ | 678, 730,746 | 770,692,668 | 605, 642, 784 | 770,692, 666 |

As quatro bandas para o $v(\mathrm{Cr}-\mathrm{N})$ podem ser identificadas experimentalmente na região entre $250-500 \mathrm{~cm}^{-1}$, para ambos os isômeros, apesar da baixa intensidade. As três bandas relativas ao $\mathrm{v}(\mathrm{Cr}-\mathrm{F})$ também podem ser identificadas no espectro experimental, na região de $500-600 \mathrm{~cm}^{-1}$, apesar de estarem praticamente sobrepostas pelas bandas relativas às deformações angulares $\delta(N C C)$. As duas regiões do espectro infravermelho relativas aos estiramentos $v(\mathrm{Cr}-\mathrm{N})$ e $v(\mathrm{Cr}-\mathrm{F})$ foram portanto bem reproduzidas pelos cálculos. Os números de onda calculados em $746 \mathrm{~cm}^{-1}$ (cis) e $784 \mathrm{~cm}^{-1}$ (trans) são atribuídos ao estiramento assimétrico Cr -F. Esta é a diferença mais significativa entre os isômeros, apesar de experimentalmente aparecer uma única banda em $770 \mathrm{~cm}^{-1}$. As transições eletrônicas $d \rightarrow d$ do espectro UV-VIS também apresentam boa correlação com os dados experimentais. O isômero trans é mais estável do que o isômero cis por $7,72 \mathrm{kcal} / \mathrm{mol}$.

# HYPERCONJUGATION EFFECTS OF THE NITROGEN LONEPAIR IN HALF-GAGE AMINES 

José W. de M. Carneiro ${ }^{1}(\mathrm{PQ})$, Alexandre N. M. Carauta ${ }^{1}(\mathrm{PQ})$, Peter R. Seidl ${ }^{2}(\mathrm{PQ})$, José G. R. Tostes ${ }^{3}$ (PQ) walk@kabir.uff.br<br>${ }^{1}$ Departamento de Química Inorgânica, Instituto de Química - UFF, Outeiro de São João Batista, $s / n$, Niterói, RJ,<br>${ }^{2}$ Programa de Pós-Graduação em Química Orgânica, Instituto de Química - UFF, Outeiro de São João Batista, s/n, Niterói, RJ.<br>${ }^{3}$ Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, UENF, Campos, RJ. Palavras-chave: hyperconjugation, chemical shift, half-cage amine

Rigid cyclic systems with unique conformations have contributed to the understanding of steric and electronic effects. In our previous investigations on acyclic ${ }^{1}$, bicyclic $^{2}$ and pentacyclic alcohols ${ }^{3}$ we showed that hyperconjugation of the oxygen lone-pairs may influence both the geometry and spectroscopic properties. As an example, carboncarbon bond lengths as well as ${ }^{13} \mathrm{C}$ chemical shifts in the vicinity of the lone-pairs are strongly influenced by hyperconjugation. Therefore we decided to investigate whether the same effects may be calculated due to the lone-pair on the nitrogen atom of the amines.

The geometries of the half-cage endo and exo pentacycle amines (1 and 2) were fully optimized with the B3LYP/6-31g(d) method. This was followed by a set of partial optimizations of structures with a $\mathrm{H}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ dihedral angle varying from 0 to $360^{\circ}$, in $30^{\circ}$ increments, generating a set of 12 structures for the exo and 12 structures for the endo amine. For each optimized structure we undertook a population analysis with the Natural Bond Orbital method at the B3LYP/6-31g(d) level. Additionally, chemical shifts were calculated with the GIAO method, using the B3LYP/6-31g(d) approach. Figures bellow show variation of $E^{(2)}$, the energy of the second order perturbation analysis, as a function of the dihedral angle. We are particularly interested in the interaction between the non-bonding lonepair on the nitrogen atom - a typical $\mathrm{sp}^{3}$ hybrid - and the antibonding orbital of the $\mathrm{C}_{5}-\mathrm{H}_{5}, \mathrm{C}_{5}$ $\mathrm{C}_{6}$ and $\mathrm{C}_{4}-\mathrm{C}_{5}$ bonds. For both, the exo and the endo derivatives, maxima in hyperconjugation are calculated for dihedral angles of about $60^{\circ}$ and $240^{\circ}$. These are the angles where the lone pair is syn $\left(240^{\circ}\right)$ or anti $\left(60^{\circ}\right)$ to the corresponding $\mathrm{C}_{5}-\mathrm{X}\left(\mathrm{X}=\mathrm{H}_{5}, \mathrm{C}_{4}, \mathrm{C}_{6}\right)$ bond. As was verified for the exo and endo half-cage alcohols ${ }^{3}$, these results support current theories of hybridization of lone pairs on heteroatoms. (PRONEX, FINEP-CTPETRO)
${ }^{1}$ Tostes, J. G. R., et alli, J. Mol. Struct. (THEOCHEM), 580 (2002) 75-83.
${ }^{2}$ Seidl, P. R., et alli, J. Mol. Struct. (THEOCHEM), 539 (2001) 163-169.
${ }^{3}$ Dias, J.F. et al, presented at 16th IUPAC Conference on Physical Organic Chemistry, San Diego, August 2002.


# INSULATOR METAL TRANSITION INVESTIGATION OF SINGLE-WALLED CARBON NANOTUBE 

Carlos A. B. Silva Jr. ${ }^{*}(\mathrm{PG})$, Jordan Del Nero ${ }^{2}(\mathrm{PQ})$, Victor Dmitriev ${ }^{1}(\mathrm{PQ})$<br>${ }^{1}$ Departamento de Engenharia Elétrica - UFPA - CEP: 66.075-900 - Belém - PA (Brazil)<br>${ }^{2}$ Departamento de Fisica - UFPA - CEP: 66.075-110 - Belém - PA (Brazil)<br>*cabsjr@bol.com.br<br>Keywords: Tight Binding method, Single-Walled Carbon Nanotubes (SWCNs), Effective Boundary Conditions.

The class of materials based on carbon nanotubes are the focus of research in world that invest in science and technology with many applications since electronic devices in computers through proves in electronics microscopes. In last years, it was discovered that they have fascinating electromagnetics properties and quite different of others carbonic structures, such as graphene, where it arises all this study.

In this work, we change the Hamada index that is associated with the parameter which define the SWCNs. Effective Boundary Condicions (EBCs) is applied in surface of SWCNs as a approach as well an application on EBCs, including the propagation of surface electromagnetics waves in SWCNs.


In this work, we present an investigation about the electromagnetics properties of SingleWalled Carbon Nanotubes (SWCNs), which are characterized by electronic (as band structure and density of states) and transport (axial electrical conductivity by semi-classic and quantum approximations) properties. These properties were investigated utilizing the tight-binding method by Linear Combination of Orbitals Atomics (or LCAO) method. Our theoretical results founded show very good agreement with experimental ones.

Sponsors: PROINT-UFPA (Programa Integrado de Apoio ao Ensino, Pesquisa e Extensão), CAPES (M.Sc. fellowship for CABSJr).

# CARBON NITRIDE NANOTUBES: BRANCHING AND RING STRUCTURES 

Ana Claudia M. Carvalho* (PG), and Maria Cristina dos Santos (PQ) ana@ifi.unicamp<br>Instituto de Física "Gleb Wataghin", Departamento de Fisica da Matéria Condensada Universidade Estadual de Campinas<br>CP 6165 Campinas 13.083-970 SP Brazil

Palavras-Chaves: carbon nitride nanotubes, conformational defects, devices.

Since carbon nanotubes were first synthesized in 1991 [1], many theoretical and experimental studies have shown the remarkable versatility of this material. According to theoretical predictions, nanotube electronic properties depend only on geometrical parameters as diameter and chirality.

Conformational defects and nanotube branched structures have attracted much attention due the possibility of developing nanodevices based on these nanostructures. Topological defects and junctions with L, T, and Y shapes heve been produced by the incorporation of five- and seven-membered rings. In order to obtain more relaxed structures, junctions glued by eight-membered rings have been proposed [2]. These defects could allow the creation of metal-metal (MM), metal-semiconductor (MS), and semiconductorsemiconductor (SS) heterojunctions. Local Density of States (LDOS) calculations have predicted a metallic behavior across the MS junction. MM and SS junctions, on the other hand, are expected to induce the formation of localized states in the middle of the gap [3]. The development of a controlled growth process of these heterojunctions has not yet been achieved.

Carbon nitride nanotubes have shown a natural growing of bamboo-like and bent structures. Nitrogen atoms are usually localized in the kink regions [4].

Our previous theoretical studies have shown that nitrogen incorporation induces local distortions on tube walls. The energy associated to nitrogen incorporation depends strongly upon the tube helicity and diameter: N -doped zigzag tubes are more stable than armchair tubes of similar diameter. Moreover, nitrogen substitutions are energetically more favorable in structures containing topological defects - like pentagons - than in fully hexagonal networks [5].

In the present work we applied semiempirical techniques, by means of the Quantum Chemical Parametric Method 3 (PM3), to analyze the effects due to the incorporation of five-, seven-, and eight-membered rings into the tube walls. N-doping follows these topological defects, producing branching and toroidal structures. Contrary to most reports on this subject, we are interested in defects, which do not change the tube chirality. We were able to find nanoparticles having structures similar to the nanoboxes recently observed [6]. (CNPq).
[1] S. lijima, Nature (London) 354, 56 (1991)
[2] M. Menon, D. Srivastava, J. Mater. Res. 14, 2357 (1998).
[3] L. Chico, et al, Phys. Rev. Lett. 76, 971 (1996).
[4] G. Y. Zhang, et al, J. Appl. Phys. 91, 9324 (2002).
[5] R. Droppa, et al, J. Non-Crist. Sol. 299, 874 (2002).
[6] M.P. Johansson et al., Appl. Phys. Lett. 76, 825 (2000).

# EFEITO DE SUBSTITUINTES NO BAND GAP DO COPOLÍMERO POLI-P-FENILENO/POLI-TIOFENO 

Marcos R. Ribas (PG)*, Regina M. Q. de Mello (PQ), Eduardo L. de Sá (PQ). grey2099@quimica.ufpr.br<br>Departamento de Química, Centro Politécnico, C. P. 19081, Curitiba-PR, CEP 81531-990<br>Palavras-chave: copolímeros, métodos semi-empíricos, semicondutores.

Os polímeros conjugados apresentam uma série de vantagens no uso de dispositivos opto-eletrônicos, quando comparados aos materiais inorgânicos. A principal delas é que o seu band gap pode ser controlado por modificações químicas (adição de grupos substituintes) na cadeia polimérica [1]. Outra possibilidade é empregar-se a copolimerização, que é um processo no qual dois ou mais tipos de monômeros são incorporados ao segmento integral do polímero. Geralmente os copolímeros apresentam propriedades físicas e químicas intermediárias aos seus homopolímeros [2]. Neste trabalho foi realizada a determinação e comparação entre as propriedades eletrônicas do copolímero PPP+PT com suas contra-partes substituídas no anel tiofênico por grupamentos alquil ou éter. As geometrias dos copolímeros (com até 6 anéis tiofênicos) foram otimizadas utilizando-se os hamiltonianos semi-empíricos AM1 e PM3 (MOPAC 6.0) [3] e os espectros eletrônicos das estruturas otimizadas foram determinados aplicando-se a parametrização INDO/S [4]. Na figura ao lado, compararmos os espectros eletrônicos simulados (geometria PM3) do copolímero PPP + PT não-substituído com os análogos substituídos por radicais alquilas (até hexil) e por grupamentos éteres (até o hexanoxi). Observa-se que a adição de substituintes ao PPP + PT aumenta o band gap, passando de $3,04 \mathrm{eV}$ ( 408 nm ) (emissão de luz em tonalidades azul-violáceas), para $3,44 \mathrm{eV}$ ( $359,8 \mathrm{~nm}$ ) (substituinte $n$-hexil) e $3,12 \mathrm{eV}$ ( $396,3 \mathrm{~nm}$ ) (substituinte hexanoxi), ambas transições ocorrendo na faixa do ultravioleta próximo. Para as três estruturas acima citadas, as primeiras transições eletrônicas podem ser caracterizadas como HOMO $\rightarrow$ LUMO, ou mais especificamente, transições $\pi \rightarrow \pi^{*}$. Estudos com outros substituintes estão em andamento com o objetivo de obter um LED que emita coloração nos diversos comprimentos de onda. (PIBIC,CNPq, Prof. Dr. Joaquim D. Motta Neto).


1. STAMPFL, J.; TASCH, S.; LEISING, G. e SCHERF, U.; Synthetic Metals 1995, 2125-2128, 71
2. NALWA, H.S.; Hand Book of Organic Condutive Molecules and Polymers 1997, 470,v. 2.
3. STEWART, J.J.P. , J. Comp. Chem, 1989,221.
4. RIDLEY, J.E., ZERNER, M.C., Theoret.Chim.Acta, 1973, 111, 32.

# ESTUDO MECÂNICO-QUÂNTICO DE SESQUITERPENOS ALTAMENTE OXIDADOS DO TIPO CUPARENO 

Marcos R. Ribas (PG)* ${ }^{1}$, Júlio C. P. dos Santos (PG) ${ }^{1}$, Cléber F. Nascimento (IC) ${ }^{1}$, Satoshi Tahara (PQ) ${ }^{2}$, Noemia K. Ishikawa (PQ) ${ }^{3}$, Eduardo L. de Sá (PQ). grey2099@quimica.ufpr.br<br>1. Depto de Química, Centro Politécnico, C.P. 19081, CEP81531-990, Curitiba-PR-Brasil.<br>2. Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University,Kitaku, Sapporo, 060-8589, Japan.<br>3. Depto de Biologia Geral, Campus Universitário, CEP: 86051-990, Londrina PR - Brasil. Palavras-chave: Enokipodin, métodos semi-empíricos, Flammulina velutipes.

Os sesquiterpenos são constituintes importantes de óleos essenciais que apresentam muitas aplicações na área medicinal. Estudos recentes têm mostrado que a Flammulina velutipes, um cogumelo comestível muito consumido no Japão também apresenta tais propriedades. Dentre alguns dos compostos extraídos desse cogumelo, destacam-se proteínas, glicoproteínas e polissacarídeos com atividades antitumorais e microbiais [1-2]. Os compostos sesquiterpenos altamente oxidados do tipo cupareno, chamados de Enokipodin A $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\right)$ e Enokipodin $\mathrm{B}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}\right)$, possuem atividade antimicrobiana contra helicobasidin [3] e deoxihelicobasidin.

O presente trabalho objetiva determinar as propriedades eletrônicas e vibracionais (aplicando-se as metodologias semi-empíricas de cálculos em Mecânica Quântica). As geometrias, assim como os espectros vibracionais das espécies Enokipodin A e B foram otimizadas/calculadas utilizando-se os hamiltonianos semi-empíricos AM1 e PM3 (MOPAC 6.0) [4] e os espectros eletrônicos das estruturas otimizadas foram determinados através da parametrização INDO/S [5]. Na figura temos uma comparação entre os espectros eletrônicos simulados calculados por PM3 para as espécies Enokipodin A e B. O espectro eletrônico simulado da espécie Enokipodin A apresenta o primeiro sinal em torno de 315 nm , assinalado como uma transferência de densidade eletrônica entre orbitais HOMO-LUMO, ocorrendo entre $\pi \rightarrow \pi^{\star}$, para a espécie Enokipodin B o primeiro sinal aparece em $422,5 \mathrm{~nm}$, porém o sinal mais intenso surge em 224 nm (atribuído à transição eletrônica entre orbitais $\pi \rightarrow \pi^{*}$ ).

Através dos resultados calculados podemos observar que a estrutura química das duas espécies apresenta propriedades eletrônicas e vibracionais distintas, bem como as metodologias AM1/PM3 apresentaram-se concordantes nos resultados obtidos. (PIBIC/CNPq, Prof ${ }^{\circ}$ Dr. Joaquim D. da Motta. Neto, Prof ${ }^{0}$ Dr. Antonio S. Mangrich).


1. Merfort,I.; J. Chromatorg. A; 2002, 967, 115-130.
2. Zhang, H; Gong, F.; Feng, Y.;Zhang, C.; Inter. J. Med. Mushrooms, 1999, 1, 89-92.
3. Ishikawa,N.K.; Yamaji, K.; Tahara, S.; Fukushi, Y.; Takahashi, K.; Phytochem,2000, 54, 777-782.
4. Stewart,J.J.P., J. Comp. Chem., 1989, 10, 221.
5. Ridley, J. E., Zerner, R.; Theoret. Chim. Acta, 1973, 32, 111.

# A SURVEY OF PHOTOSENSITIZERS FOR USE IN PHOTODYNAMIC THERAPY 

Cristina Ap. Setúbal (IC), Joaquim D. Da Motta Neto (PQ).<br>quim@quimica.ufpr.br<br>Department of Chemistry, P.O Box 19081, University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil

Key words: photodynamic therapy (PDT), intermediate neglect of differential overlap (INDO), porphyrins

Protocols of photodynamic therapy (PDT) are among the main clinical resources against several types of cancer. However, currently known photosensitizers such as Photofrin present problems: they (i) present weak absorption intensity in the range of interest ( $\lambda \geq 650$ nm ); (ii) present poor water solubility and therefore little tissue penetrability; and (iii) tend to accumulate in the targeted site, leading to serious tissue damage. Therefore, there is a clear need to develop new photosensitizers for clinical use [1-3]. Currently there is a number of prospective drugs under clinical trials in the United State, Europe and Japan.

In this work we have studied a series of known photosensitizers (tetrakishydroxyphenylporphyrins, chlorins, bacteriochlorins, phthalocyanins, $\mathrm{Zn}^{\prime \prime}$ etiopurpurin, MACE, BPDMA) using semiempirical techniques: all geometries have been optimized using the AM1 model of Dewar and coworkers [4], and absorption spectra have been calculated with the INDO/S technique as suggested by Zerner and coworkers [5-6]. Solvent effects have been included at the continuum model for spectroscopy as suggested by Karelson and Zerner [7]. We have chosen those methods based on previous CIS and RPA results by Baker and Zerner on the spectroscopy of porphyrins [8].

Results are presented and discussed for each sensitizer. For example, the Soret bands (characteristic of the porphyrin system) are calculated very close to $380 \mathrm{~nm}(27000 \mathrm{~cm}$ ${ }^{1}$ ) for all compounds. For zinc(II) naphthalocyanin the low energy band at 770 nm is located at 736 nm by the INDO/S technique. For zinc(II) etiopurpurin, the spectra should have contributions from four stereoisomers. The low energy band (exp. 690 nm ) is calculated by INDO/S close to 646 nm for all four conformers. In addition, calculated oscillator strengths of the low energy bands correlate well with the experimental extinction coefficients. For porphyrins, chlorins and bacteriochlorins, the absorption frequencies are underestimated. In conclusion, our results are in good agreement with the available experimental absorption spectra. Such a body of results allows us to build a correlation with the photophysical data (quantum yields for the triplet state) and biological data (dosage of irradiation, tumour necrosis). We now intend to carry out a search for new, more effective drugs for use in PDT.
[1] J.C.M. Stewart, Curr. Opin. Invest. Drugs 2(12), 1279-1289 (1993).
[2] R. Bonnett, Chem. Soc. Rev. 24, 19-33 (1995).
[3] M. Ochsner, Arzneim.-Forsch. Drug Res. 47(II)(11), 1185-1194 (1997).
[4] M.J. Dewar, E.G. Zoebisch, E.F. Healy and J.J. Stewart, JACS 107(13), 3902-3909 (1985).
[5] J.E. Ridley and M.C. Zerner, Theoretica Chim. Acta (Berlin) 32, 111-134 (1973).
[6] M. Zerner, G. Loew, R. Kirchner and U. Mueller-Westerhoff, JACS 102(2), 589-599 (1980).
[7] M.M. Karelson and M.C. Zerner, J. Phys. Chem. 96(17), 6949-6953 (1992).
[8] J.D. Baker and M.C. Zerner, Chem. Phys. Lett. 175, 192-197 (1990).

# SEMIEMPIRICAL CALCULATIONS AND ELECTROCHEMICAL CHARACTERIZATION OF HALOGENATED TETRAKISPHENYLPORPHYRINS 

Flavio L. Benedito (IC), Geraldo R. Friedermann (PG), Shirley Nakagaki (PQ) and Joaquim D. Da Motta Neto (PQ)<br>quim@quimica.ufpr.br<br>Department of Chemistry, P. O Box 19081, University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil

Key words: electrochemistry, intermediate neglect of differential overlap (INDO), porphyrins
Porphyrins are involved in the light harvesting reactions of photosynthesis, and in the electron- or oxygen- transporting and storage functions of cellular metabolism. Synthetic porphyrins are used in a wide variety of applications. In Medicine, several porphyrin derivatives are prospective sensitizers for use in photodynamic therapy (PDT). In Electronics, porphyrins are used to build up liquid crystals and semiconductors [1]. Some wide band gap semiconductors such as $\mathrm{TiO}_{2}$ have been investigated by coating the surface with zinc porphyrin derivatives, aiming spectral sensitization in visible light [2]. Photocatalytic reduction of carbon dioxide to formic acid using zinc porphyrins adsorbed at Nafion ${ }^{\text {TM }}$ membranes has been studied to reduce the $\mathrm{CO}_{2}$ emissions [3].

Considering that all applications of porphyrins are related, directly or indirectly, to the reduction and oxidation potentials and that the synthetic pathway to several porphyrin derivatives is usually either hard or very expensive, it is desirable to obtain reliable predictive correlations of such properties. Quantum chemistry based methods can provide some insight.

In this work we have used semiempirical techniques to study two series of five meso-halogenated porphyrins synthesized in our laboratory (Figure 1). Some geometries were obtained from X-ray data. When those were not available, geometries have been optimized using the AM1 model of Dewar and coworkers [4]. Absorption spectra have been calculated with the INDO/S technique as suggested by Zerner and coworkers [5-6]. Solvent effects have been included at the continuum model for


$\mathrm{M}+\mathrm{H}=2 \mathrm{H}$ or Zn

Figure 1 - Porphyrins studied spectroscopy as suggested by Karelson and Zerner [7].

Results are presented and discussed for each molecule, along with cyclic voltammograms and UV spectra. We establish a correlation of the experimental redox potentials with the calculated frontier orbitals. Some predictions are suggested for new porphyrin compounds. (CAPES, CNPq, PRONEX, UFPR, Fundação Araucária).
[1] L.R. Milgrom, The Colours of Life, Oxford University Press, New York, pp. 191-243 (1997).
[2] E.A. Malinka, G.L. Kamalov, J. Photochem. Photobiol. A: Chem 90, 153-158 (1995).
[3] J. Premkumar, R. Ramaraj, J. Photochem. Photobiol. A: Chem. 110, 53-58 (1997).
[4] M.J. Dewar, E.G. Zoebisch, E.F. Healy and J.J. Stewart, JACS 107(13), 3902-3909 (1985).
[5] Joan E. Ridley and Michael C. Zerner, Theoretica Chim. Acta (Berlin) 32, 111-134 (1973).
[6] M. Zerner, G. Loew, R. Kirchner and U. Mueller-Westerhoff, JACS 102(2), 589-599 (1980).
[7] Mati M. Karelson and Michael C. Zerner, J. Phys. Chem. 96(17), 6949-6953 (1992).

# Cálculo do Desdobramento por Tunelamento no Malonaldeído Utilizando o Método MCTDH. 

Maurício D. Coutinho Neto ${ }^{\star}(P Q)$, Uwe Manthe(PQ).<br>Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, Garching D-85747, Alemanha. email: coutinho@ch.tum.de

Palavras Chaves: Dinâmica Quântica, Ligação de Hidrogēnio, Tunelamento.
O malonaldeído possui uma forte ligação de hidrôgênio intramolecular que é potencializada por ressonância. Ligaçōes de hidrogênio homonucleares (O.... H-O) sāo, em geral, fortes e, no caso do malonaldeído, esta ligação é potencializada pela ressonância do grupo heteroconjugado (....... $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{OH} . . .$. ). O resultado prático é uma barreira para a transferência do próton relativamente baixa. Estimativas ab-initio baseadas em cálculos CCSD estimam a barreira em $4.3 \mathrm{kcal} / \mathrm{mol}$ enquanto que cálculos mais simples baseados no método MP2 estimam a barreira em $3.6 \mathrm{kcal} / \mathrm{mol}$. A baixa barreira para a transferência do próton acarreta em um desdobramento por tunelamento (DPT) do estado fundamental de $21.4 \mathrm{~cm}^{-1}$. Este valor experimental é normalmente usado como guia em cálculos de dinâmica quântica para avaliar a qualidade da descrição do estado fundamental nuclear do sistema.
O objetivo do presente estudo é calcular o o valor do DPT no malonaldeído utilizando se um método de dinâmica quântica exato, o MCTDH do inglês Multiconfiguration Time Dependent Hartree, incluindo todos os graus de liberdade do sistema (cálculo com 21 dimensōes tratadas com dinâmica quântica).
As equações que descrevem a dinâmica do sistema no método MCTDH são obtidas aplicando-se o principio variacional dependente do tempo. O principio variacional garante a descrição otimizada do sistema com um número reduzido de funções de base dependentes do tempo.
Resultados obtidos para o DPT utilizando o método MCTDH de dinâmica quântica nuclear obtém o valor do DPT de $24 \mathrm{~cm}^{-1}$ em excelente concordância com o resultado experimental. A análise sobre resultados obtidos utilizando-se um número reduzido de dimensōes na simulação indicam que a dimensionalidade do processo de tunelamento no malolaldeído é maior do que em geral se assume na literatura. Este fato é importante para o melhor entendimento dos fatores que alteram o processo de tunelamento de hidrogênio em sistemas químicos e biológicos.
O cálculo do desdobramento por tunelamento utilizando-se todas os graus de liberdade no malonaldeido é também importante para aferir a confiabilidade de trabalhos que utilizam-se de dimensionalidade reduzida para facilitar a solução do problema. Há na literatura resultados semelhantes para o desdobramento por tunelamento do estado fundamental no malonaldeído que utilizam-se de diferentes sistemas de coordenadas e portanto tratam o sistema de maneiras distintas.
Para o cálculo de dinâmica quântica utilizou-se uma superfície de potencial eletrônico baseada na interpolação de Sheppard sobre pontos calculados com o método MP2.

# REATIVIDADE EM REAÇÕES DE DIELS-ALDER ENTRE CICLO-ENONAS E CICLOPENTADIENO: UMI ESTUDO TEÓRICO 

Valdemar Lacerda $\mathrm{Jr}^{\mathrm{b}}$ (PG), Kleber T. de Oliveira ${ }^{\mathrm{b}}$ (PG), Luiz C. da Silva Filho ${ }^{\text {b }}$ (PG), Mauricio G. Constantino ${ }^{\text {b }}$ (PQ), Sergio E. Galembeck ${ }^{\text {a }}$ (PQ) segalemb@usp.br<br>${ }^{a}$ Laboratório de Modelagem Molecular (LAMMOL); ${ }^{\text {L }}$ Laboratório de Síntese Orgânica (LSO). Depto de Química, FFCLRP, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP, Brasil.<br>Palavras-chave: reatividade, reações de Diels-Alder, orbitais moleculares de fronteira

A reação de Diels-Alder é uma das ferramentas mais importantes em síntese orgânica e freqüentemente utilizada na síntese de produtos naturais, ${ }^{1}$ devido à facilidade com que ligações carbono-carbono e compostos policíclicos podem ser formados. O uso de $\mathrm{NbCl}_{5}$ (dentre outros ácidos de Lewis) na catálise de reações de Diels-Alder tem sido alvo de recentes estudos. ${ }^{2}$ Dienófilos de baixa reatividade, como 2 e 3 , que não reagem com ciclopentadieno (1) na ausência de um ácido de Lewis forte, se mostraram mais reativos fornecendo os produtos de cicloadição $\mathbf{5}$, 6 e 7, 8 (endo/exo), respectivamente (Esquema 1). Já quando a enona 4 é utilizada como dienófilo nenhum aduto de Diels-Alder é formado, mesmo em refluxo e após várias horas de reação.


No intuito de procurar entender a diferença de reatividade observada entre as enonas 2-4 iniciamos estudos teóricos buscando compreender os resultados experimentais. Primeiramente as geometrias dos compostos 1-4 foram otimizadas com o método B3LYP e o conjunto de função de base $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$. Para os complexos formados entre as enonas $2-4$ e o ácido de Lewis (modelo: $\mathrm{AlCl}_{3}$ ) usamos o mesmo método e base. Com as estruturas otimizadas calculamos as energias dos Orbitais Moleculares de Fronteira (OMF) com o método B3LYP/6-311++G(d,p). Através das energias de HOMO e LUMO de cada composto calculamos algumas propriedades globais, ${ }^{3}$ como: potencial químico eletrônico $\mu$, dureza química $\eta$ e eletrofilicidade $\omega$, o que juntamente com a comparação da diferença de energias entre o HOMO do ciclopentadieno e o LUMO de cada enona com ou sem ácido de Lewis nos forneceu resultados interessantes sobre a diferença de reatividade entre as enonas (tabela 1). No momento encontram-se em andamento estudos que visam a obtenção de propriedades locais (indice de Fukui) e estudos de estado de transição. (Fapesp, CNPq, Capes)

Tabela 1-Propriedades Globais ${ }^{\mathrm{a}}$ dos compostos 1-4.

| Composto |  | $\mathrm{E}_{\text {HOMO }}$ | $\mathrm{E}_{\text {LUMO }}$ | $\mu$ | $\eta$ | $\omega$ | $\Delta N$ max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | $-0,2261$ | $-0,0293$ | $-0,1277$ | 0,1968 | 1,12 | 0,65 |
| 2 |  | $-0,2523$ | $-0,0660$ | $-0,1591$ | 0,1863 | 1,85 | 0,85 |
| 3 |  | $-0,2566$ | $-0,0613$ | $-0,1560$ | 0,1893 | 1,75 | 0,82 |
| 4 |  | $-0,2470$ | $-0,0568$ | $-0,1519$ | 0,1902 | 1,65 | 0,79 |
| 2 |  | Com ácido de Lewis | $-0,2882$ | $-0,1366$ | $-0,2124$ | 0,1516 | 4,05 |
| 3 | (modelo: $\mathrm{AlCl}_{3}$ ) | $-0,2878$ | $-0,1316$ | $-0,2097$ | 0,1562 | 3,83 | 1,34 |
| 4 | $-0,2849$ | $-0,1283$ | $-0,2066$ | 0,1566 | 3,71 | 1,32 |  |

[^34]
# CARACTERIZAÇAO TEÓRICA DA MOLÉCULA DE SALVINORIN A. 

Ricardo Mercadante ${ }^{1}$ (PQ), Lucilaine de Assumpção ${ }^{1}$ (IC), Luciane de L. Pelaquim ${ }^{1}$ (IC)<br>rm@less.com.br<br>Centro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná - Rua da<br>Faculdade 645, Jardim La Salle, Toledo - PR.

Palavras-chave: Salvinorin A, conformação, ab initio.
A planta conhecida como Salvia divinorum, há séculos é utilizada em rituais tribais pelos nativos da etnia Mazatec que habitam a região de Oaxaca, no México. Este uso levou alguns pesquisadores a se interessarem em estudar o princípio ativo da planta em relação ao seu efeito psicoativo. Alfredo Ortega ${ }^{1}$ e colaboradores e posteriormente Leander J. Valdes ${ }^{2}$ e colaboradores, elucidaram a estrutura desta substância por técnicas de espectroscopia RMN e métodos cristalográficos de raios- x , conforme mostrada na figura 1, contudo o mecanismo de atuação no organismo humano ainda não está plenamente definido.



Figura 1 - Na seqüência, a geometria cristalográfica e a geometria calculada para o salvinorin $A$.
Este trabalho teve sua motivação na potencialidade latente de utilização desta substância como uma nova categoria de medicamentos para combater distúrbios mentais que se manifestem pela distorção da percepção, e pela escassez de trabalhos relacionados à caracterização química do Salvinorin A. Para a realização dos cálculos foi montada uma molécula plana que em seguida foi pré-otimizada utilizando-se os parâmetros MM+ encontrados no pacote HyperChem. Em seguida a molécula de Salvinorin A foi submetida a um estudo de análise conformacional sistemática com o uso do método semi-empírico PM3 encontrado no pacote Gaussian 98, onde foram analisados os ângulos diedrais mais relevantes considerando a estrutura com geometria relaxada. Após esta etapa foram analisadas as melhores configurações dos radicais $-\mathrm{CH}_{3}$. Sendo verificada a freqüência vibracional da estrutura final encontrada, para verificação de coerência de mínimo energético. A partir da estrutura assim encontrada foi executado um cálculo de otimização relaxada no nível B3LYP/6-311 $\mathrm{g}^{* *} / / \mathrm{HF} / 6-311 \mathrm{~g}^{* *}$ sendo definida a geometria final de mínimo e realizada a determinação das principais propriedades eletrônicas e análise dos orbitais de fronteira. Os resultados geométricos calculados pela metodologia acima descrita foram bem próximos dos encontrados por cristalografia de raios-x, como pode ser observado na figura 1, indicando ter sido utilizada uma metodologia razoável na análise conformacional e otimização geométrica. O modelo de estudo adotado permitiu também calcular a densidade de carga, as ordens de ligação, o momento dipolar, o GAP, a polarizabilidade, o diagrama dos orbitais de fronteira e a energia total, dando uma descrição bastante ampla das características eletrônicas e geométricas da molécula de Salvinorin A.

[^35]
## P300

## ESTUDO CONFORMACIONAL DO CÁTION 2-DCCTA.

Ricardo Mercadante ${ }^{1}$ (PQ), Lucilaine de Assumpção ${ }^{1}$ (IC), Karen C. Weber ${ }^{2}$ (PG), Flávia G. Manarin ${ }^{1}$ (IC)<br>rm@less.com.br<br>${ }^{1}$ Centro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná - Rua da Faculdade 645, Jardim La Salle, Toledo - PR.<br>${ }^{2}$ Departamento de Química e Física Molecular, Instituto de Química de São Carlos, USP. Cx. Postal 780 - CEP 13560-970. São Carlos - SP.<br>Palavras-chave: par iônico, análise conformacional, ab initio.

O cátion 2-DCCTA ((2-Dimethylcarbamoyloxy-cyclohexyl)-trimethyl-ammonium) apresenta dois centros quirais, levando à existência de quatro isômeros ópticos que estão representados na figura 1 .


Figura 1 - Representação das estruturas otimizadas dos quatro isômeros ópticos do 2-DCCTA.

Estas estruturas apresentam muitos graus de liberdade, permitindo uma alta flexibilidade geométrica. Sendo assim, foi necessário fazer uma análise conformacional para encontrar uma geometria que esteja próxima à conformação energética de mínimo absoluto com a respectiva construção da Superfície de Energia Potencial (SEP) para os quatro isômeros. A análise conformacional foi realizada com o método semi-empírico PM3, e foram construídas projeções tridimensionais da SEP com os dados obtidos pela variação simultânea das combinações de pares dos diedros mais relevantes, sendo realizados variações diedrais rígidas e variações diedrais otimizadas. Encontrada a geometria de menor energia foi realizada novas varreduras de refinamento, com variação de ângulos diedrais cada vez menores, até incrementos de $0,01^{\circ}$. A comparação entre os calores de formação, encontrados nas SEP rígida e otimizada, indica que em ambos os casos as estruturas geométricas finais encontradas tem calores de formação muito próximas, conforme se pode ver na tabelal.

Tabela 1 - Valores do calor de formação mínimo final encontrados com a variação diedral rígida, otimizada e pelo método 1 para a estrutura OaNa .

|  | CFM para Variação Diedral <br> Rígida | CFM para Variação <br> Diedral Otimizada | CFM para o Método <br> CEP |
| :---: | :---: | :---: | :---: |
| Não Otimizado | $50,636290 \mathrm{Kcal} / \mathrm{mol}$ | $50,635413 \mathrm{Kcal} / \mathrm{mol}$ | $50,633877 \mathrm{Kcal} / \mathrm{mol}$ |
| Otimizado | $50,633881 \mathrm{Kcal} / \mathrm{mol}$ | $50,633855 \mathrm{Kcal} / \mathrm{mol}$ | $50,633835 \mathrm{Kcal} / \mathrm{mol}$ |

Após encontrados os pontos de mínimo, as estruturas finais foram otimizados pelo método HF/3-21g** e encontrado as propriedades eletrônicas e energéticas, sendo realizadas as comparações entre os resultados dos quatro isômeros, bem como a construção do diagrama de correlação entre seus orbitais de fronteira. Uma vez determinada as estruturas finais dos quatro isômeros foi realizado os cálculos da interação entre o ion l' e cada um dos isômeros. Sendo escolhidas 10 posições iniciais para o ion l' em relação ao cátion 2-DCCTA, levando-se em consideração eixos de simetria locais. Estes cálculos permitiram encontrar as melhores posições para o íon 1. Tendo mostrado boa concordância com o resultado encontrado por metodologia de raios-x para o isômero ( $R, R$ ). E dessa forma acreditamos que os demais resultados também sejam coerentes com futuros dados experimentais.

# THERMOCHEMISTRY OF ATMOSPHERIC SULFUR COMPOUNDS 

Stella M. Resende ${ }^{1}$ (PQ), Fernando R. Ornellas (PQ)<br>stella@qmc.ufsc.br<br>Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, CP 26077, São Paulo, SP, 05513-970, Brasil.<br>${ }^{1}$ Present Address: Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brasil.

Keywords: thermochemistry, CBS, additivity.

Thermodynamic stability of radical species plays an important role in understanding and predicting their reactivity. In this context, it is desirable to know the thermochemistry of a particular reaction very accurately to assess its contribution to possible reaction channels and its importance for the overall process. In this work (S. M. Resende, F. R. Ornellas, Chem. Phys. Lett. 2003, 367, 489), our purpose is to provide reliable heats of formation for some sulfur compounds of atmospheric interest, namely, $\mathrm{SH}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CH}_{3} \mathrm{SH}, \mathrm{CH}_{3} \mathrm{SO}$ and $\mathrm{CH}_{3} \mathrm{SO}_{2}$. Since molecules containing second row atoms such as sulfur often need a higher level of theoretical description than molecules containing only first row atoms, the determination of accurate thermodynamic properties for sulfur compounds presents a great challenge. In this respect, the use of chemical reactions where the convergence of the theoretical calculations can be easily achieved is a need. The carefully chosen set of chemical reactions given below:
$\mathrm{SH}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{H}$
$\mathrm{CH}_{3} \mathrm{SCH}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{CH}_{3} \mathrm{SH}$
$\mathrm{CH}_{3} \mathrm{~S}+\mathrm{CH}_{3} \mathrm{SH} \rightarrow \mathrm{CH}_{3} \mathrm{SCH}+\mathrm{SH}$
$\mathrm{CH}_{3} \mathrm{~S}+\mathrm{SO}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{SO}+\mathrm{SO}_{2}$
$\mathrm{CH}_{3} \mathrm{SO}+\mathrm{SO}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{SO}_{2}+\mathrm{SO}_{2}$

Initially, the heat of formation of SH is determined using R1. Next, through R2, the value of $\Delta H^{0}{ }_{1,298}$ for $\mathrm{CH}_{3} \mathrm{SH}$ is evaluated and used in the calculation of $\Delta \mathrm{H}_{1,298}^{0}$ for $\mathrm{CH}_{3} \mathrm{~S}$ in R3. Incidentally, this value was also used to obtain $\Delta H^{1}, 298$ for $\mathrm{CH}_{3} \mathrm{SO}$, which is considered in the evaluation of the heat of formation of $\mathrm{CH}_{3} \mathrm{SO}_{2}$. For reaction R1, geometry optimization and frequency calculations were done at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ level of theory. A much improved estimate of the reaction energy of this isogyric reaction was obtained by a single point calculation in the $\operatorname{CCSD}(T) / c c-p V 5 Z$ level of theory. For reactions 2 to 4 , which are isodesmic, geometries and frequencies were obtained at the MP2/cc-pVTZ level. Single point calculations were also carried out using the MP2 method and the cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets, and the complete basis set (CBS) limit was achieved using the extrapolation scheme of Woon and Dunning. In order to include a higher level of electron correlation, single point calculations at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ level were done. An effective $\operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS}$ level of theory for reactions 2 through 5 was achieved using the additivity approximation. All calculations were conducted using the Gaussian 98 package of programs. Table 1 presents the enthalpy and the Gibbs free energy for these reactions, and the enthalpy of formation calculated for the five species considered in this work. The heat of formation of the SH and $\mathrm{CH}_{3} \mathrm{SH}$ radicals determined by this work are in excellent agreement with experimental measurements. The experimental heat of formation of the $\mathrm{CH}_{3} \mathrm{~S}$ species has a large range of values, from $29 \mathrm{kcal} \mathrm{mol}^{-1}$ to $36 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. Considering the quality of our calculation and the experimental uncertainty, we think that our theoretical value is the most reliable result to date and could be used as a recommended $\Delta H_{\mathrm{f}, 298}^{0}$ for $\mathrm{CH}_{3} \mathrm{~S}$. For the $\mathrm{CH}_{3} \mathrm{SO}$ species, no experimental data of $\Delta H^{0}$, is available. In the case of $\mathrm{CH}_{3} \mathrm{SO}_{2}$, the unique experimental result available provides a value expected to be highly overestimated considering the high level of theory used in this work. These findings are corroborative of the important role that high level ab initio calculations can play in the determination of thermodynamic properties of radical species. (FAPESP, LCCA-USP, CNPq)

Table 1. Reaction enthalpies and Gibbs Free energies (in $\mathrm{kcal} \mathrm{mol}^{-i}$ ) for reactions R1 through R5, and standard enthalpy of formation at 298.15 K for the species studied in this work ( $\Delta \mathrm{H}^{0}{ }_{298}$, in $\mathrm{kcal} \mathrm{mol}^{-1}$ ).

| Reaction | $\Delta \mathrm{H}_{\text {reac }}$ | $\Delta \mathrm{G}_{\text {reac }}$ | Species studied | $\Delta H_{1}^{\mathrm{o}} 298$ |
| :--- | ---: | ---: | :--- | :--- |
| R1 | 12.81 | 12.55 | SH | 34.4 |
| R2 | 3.25 | 2.41 | $\mathrm{CH}_{3} \mathrm{SH}$ | -5.3 |
| R3 | 1.03 | 2.60 | $\mathrm{CH}_{3} \mathrm{~S}$ | 29.7 |
| R4 | -22.88 | -23.40 | $\mathrm{CH}_{3} \mathrm{SO}_{3}$ | -16.8 |
| R5 | -11.71 | -11.24 | $\mathrm{CH}_{3} \mathrm{SO}_{2}$ | -52.2 |

# A REAÇÃO ATMOSFÉRICA ENTRE DMSO E CI 

Sōiange Vandresen (iC), Sielia ini. Resende (PQ)<br>stella@qmc.ufsc.br<br>Depto de Química Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brasil. Palavras-chave: cinética, CBS, estados de transição.

Uma das fontes naturais de emissão de enxofre para a atmosfera é o dimetil-sulfóxido (DMSO). O composto é um dos produtos principais na decomposição atmosférica do sulfeto de dimetila (DMS) na presença de radicais OH . Pode ainda ser encontrado na água do mar, como resultado de decomposição bacteriana do DMS. No entanto, seu destino na atmosfera é ainda escassamente conhecido, e aspectos de como se processam suas reações não são disponíveis. Neste estudo, investigamos teoricamente a interação entre DMSO e radicais Cl , analisando os seguintes canais de reação:

$$
\begin{align*}
\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}+\mathrm{Cl} & \rightarrow \mathrm{CH}_{3} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}+\mathrm{HCl}  \tag{R1}\\
& \rightarrow \mathrm{CH}_{3} \mathrm{SOCl}+\mathrm{CH}_{3} \\
& \rightarrow \mathrm{CH}_{3} \mathrm{SO}+\mathrm{CH}_{3} \mathrm{Cl}  \tag{R3}\\
& \rightarrow \mathrm{CH}_{3} \mathrm{SCH}+\mathrm{OCl} \tag{R4}
\end{align*}
$$

As otimizações de geometria das espécies envolvidas nestas reações foram realizadas em nivel MP2/6-31G(d,p). Freqüências vibracionais foram calculadas com o mesmo conjunto de funções de base, para a obtenção das energias de ponto-zero (ZPE) e das propriedades termodinâmicas entalpia e energia de Gibbs. Para avaliar o efeito do tamanho do conjunto de funções de base nos resultados, foi utilizada a aproximação CBS. Abaixo estão representados as geometrias dos estados de transição obtidos para os quatro canais de reação investigados e o diagrama de energia de Gibbs correspondente para a reação total. Considerando-se que há três tipos de hidrogênio no DMSO, a abstração de hidrogênio (R1) pode ocorrer por três caminhos diferentes, os quais podem ser visualizados através dos estados de transição TS1A, TS1B e TS1C. Nossos resultados mostram que os canais 1,2 e 3 são favoráveis termodinamicamente. Das três possibilidades para R1, a maior estabilidade do TS1A permite identificar o hidrogênio mais ácido do DMSO. O canal de reação que apresenta a menor energia de ativação é o R2, e sua constante cinética foi calculada como sendo $k_{\mathrm{R} 2}=3,4 \times 10^{-10} \mathrm{~cm}^{3}$ molécula $^{-1} \mathrm{~s}^{-1}$. Este resultado está em razoável concordância com os valores determinados experimentalmente para a reação global, os quais vão de 0,14 a $0,92 \times 10^{-10} \mathrm{~cm}^{3}$ molécula ${ }^{-1} \mathrm{~s}^{-1}$, considerando as incertezas. Segundo nossos cálculos, os produtos principais serão $\mathrm{CH}_{3} \mathrm{SOCl}$ e $\mathrm{CH}_{3}$, o que confirma as conclusões obtidas nos experimentos cinéticos citados anteriormente. Para comprovar estes resultados, novos cálculos estão sendo conduzidos para se incluir a correlação eletrônica em um nivel mais elevado, o que permitirá determinar as constantes cinéticas de cada canal com maior precisão e, posteriormente, a cinética para a reação global. (CNPq PROFIX)



# REACTION KINETICS OF OH ${ }^{-}$ADDITION TO $\mathrm{CO}_{2}$ IN AQUEOUS SOLUTION: A THEORETICAL STUDY USING THE CLUSTERCONTINUUM MODEL AND A TEST OF A MULTILAYERMULTILEVEL METHOD. 

Josefredo R. Pliego Jr. (PQ)<br>josef@qmc.ufsc.br<br>Departamento de Química - Universidade Federal de Santa Catarina<br>Palavras-chave: reaction mechanism, solvation model, composed methods


#### Abstract

Accurate description of chemical reactions in liquid phase requires the use of high level ab initio calculations coupled with a reliable solvation model. In order to be able to apply high quality theoretical methods to chemically interesting systems, it is usually need to take a composed model, where the reacting site is described in a high level and the surrounding is treated in a lower level. In the present work, we have studied the addition of hydroxide ion to carbon monoxide in aqueous solution using a high level ab initio calculation coupled with the cluster-continuum model to include the solvent effect. This model is a hybrid approach where some explicit solvent molecules are including in the quantum mechanics calculations and the remain solvent is described by a dielectric continuum. We have used this study to test a composed model, which we have named multilayer-multilevel (MLML). This approach use the multilayer idea of the IMOMO (integrated molecular-orbital molecular-orbital method) and the hybrid discrete-continuum description of the solvation and also the additive approximation of correlation energy present in G2 like methods. In the MLML method, the system is divided in three parts: reactants (R), explicit solvent (ES), implicit solvent (IS). The total energy, including solvation is:


$$
\begin{aligned}
& E=E_{L 0}(R+E S)+\Delta E_{\text {layer }}+\Delta E_{\text {add }}+\Delta G_{\text {solv }}^{*} \\
& \Delta E_{\text {add }}=\left(E_{L 3}(R)-E_{L 1}(R)\right)+\left(E_{L 2}(R)-E_{L 1}(R)\right) \\
& \Delta E_{\text {layer }}=\left[E_{L 1}(R)-E_{L 0}(R)\right] \\
& \Delta G_{\text {solv }}^{*}=E_{P C M}(R+E S+I S)-E_{P C M}(R+E S)
\end{aligned}
$$


where L0, L1, L2 and L3 are different levels of ab initio theory, and PCM mean the theory used for the continuum solvation. We have tested two MLML models that use different LO method and were named MLML1 and MLML2. In both methods, L1, L2 and L3 correspond to MP2/6-31+G(d), MP2/6-311+G(2df,2p) and $\operatorname{CCSD}(T) / 6-31+G(d)$ levels. The L0 in MLML1 is HF/6-31+G(d,p) and in MLML2 level is MP2/6-31+G(d).

The structure of the transition state is shown in the right side, and was obtained at HF/6-31+G(d,p) level. The activation free energy calculated at CCSD (T)/6-311+G(2df,2p) level of theory and including the solvent effect through the cluster-continuum model is 12.4 $\mathrm{kcal} / \mathrm{mol}$, which is in very good agreement with the experimental value of $12.1 \mathrm{kcal} / \mathrm{mol}$. By the way, the MLML1 and MLML2 models predict $10.5 \mathrm{kcal} / \mathrm{mol}$ and $12.5 \mathrm{kcal} / \mathrm{mol}$, respectively. As can be observed, the MLML2 model perform very well, while the MLML1 model has an error of $2 \mathrm{kcal} / \mathrm{mol}$ from the high level of theory. Essentially, the MLML1 model includes solute-explicit solvent interaction through a HF/6-31+G(d,p) level of theory, while in the MLML2 model the interaction is included at MP2/6-31+G(d) level. The present study shows that the MLML2 method can be a very accurate model to study chemical reactions in liquid phase. (Profix CNPq).

# ESTUDO AB INITIO DA CINÉTICA DA REAÇÃO $\mathrm{H}_{2} \mathrm{O}+\mathrm{HCONH}_{2}$ EM SOLUÇÃO AOUOSÁ: RESOLVENDO A CONTROVÉRSIA SOBRE A HIDRÓLISE NEUTRA DE AMIDAS 

Gizelle I. Almerindo (IC), Josefredo R. Pliego Jr. (PQ)<br>josef@qmc.ufsc.br<br>Departamento de Química - Universidade Federal de Santa Catarina<br>Palavras-chave: catálise bifuncional, hidrólise de amidas, mecanismo de reação.

O grupo amida é de extrema importância em sistemas biológicos, e há naturalmente um grande número de estudos experimentais sobre a estabilidade de amidas em solução aquosa. Este interesse também se reflete em química teórica, com muitos trabalhos visando principalmente modelar adequadamente as hidrólises neutra e básica de amidas. No caso da hidrólise neutra, há uma grande controvérsia na literatura a respeito desta reação, se a mesma ocorre ou se a reação em pH próximo de 7 é devido na realidade as hidrólises ácida e básica. Estudos experimentais recentes não são completamente conclusivos nesta questão, pois indicam que em pH 7 a hidrólise neutra da formamida seria tão lenta a ponto de competir com as catálises ácida e básica. Não é possível, portanto, isolar a hidrólise neutra, mesmo variando-se a temperatura (!), de forma que não se tem certeza se a constante de velocidade obtida experimentalmente é real ou um simples parâmetro artificial criado pelo ajuste de curvas feito em cima dos dados experimentais. No presente trabalho, nossa intenção é resolver esta questão, através do uso de cálculos ab initio altamente correlacionados. Outro interesse nosso nesta reação é a possibilidade de se projetar catalisadores orgânicos capazes de promover a hidrólise neutra em condições brandas.

A hidrólise neutra da formamida foi estudada no presente trabalho através de cálculos ab initio em nível MP2/6-31+G(d) para otimização de geometria e frequências harmônicas, e cálculos da energia nos niveis MP2/6-311+G(2df,2p) e $\operatorname{CCSD}(\mathrm{T}) / 6-31+G(d)$. A aproximação de aditividade foi incluída para se obter energias $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})$ e o modelo PCM foi utilizado para se determinar o efeito do solvente. Na procura dos estados de transição para a primeira etapa da hidrólise, utilizou-se uma, duas e três moléculas de água explícitas. Isto é necessário para se analisar a ocorrência de catálise bifuncional das molécula de água e a importância de interação especifica soluto-solvente.

As figuras abaixo mostram os estados de transição obtidos. O ataque da água à carbonila pode ocorrer de forma direta (1a), através de catálise bifuncional por meio de uma segunda molécula de água (1b) ou através de catálise bifuncional mais solvatação específica (1c). As energias livre de ativação obtidas foram de $53.0,49.0$ e $54.3 \mathrm{kcal} / \mathrm{mol}$, respectivamente. Estes resultados demonstram o efeito catalítico da segunda molécula de água e apontam que não é necessário a inclusão de solvatação específica. Entretanto, o resultado mais importante é que a barreira mais baixa, $49 \mathrm{kcal} \mathrm{mol}^{-1}$, leva a uma constante de velocidade muito inferior àquela observada experimentalmente. De fato, a constante cinética experimental implica em uma barreira de $30 \mathrm{kcal} / \mathrm{mol}$. Desta forma, podemos concluir que a hidrólise neutra da formamida não ocorre de fato. (Profix/CNPq)


# THERNOCHENHSTRY OF BNH $H_{x} F_{y}$ HOLECULE 

Patrícia R.P. Barreto ${ }^{1}(\mathrm{PQ})$, Alessandra F. A. Vilela ${ }^{2}(\mathrm{PG})$, and Ricardo Gargano ${ }^{2}(\mathrm{PQ})$

patricia@plasma.inpe.br
${ }^{1}$ Laboratório Associado de Plasma - LAP, Instituto Nacional de Pesquisas Espaciais - INPE/MCT, CP515, São José dos Campos, SP, CEP 12247-970, Brasil
${ }^{2}$ Instituto de Física, Universidade Brasilia, CP04455, Brasilia, DF, CEP 70919-970, Brasil
Key words: thermochemistry properties, $\mathrm{B} / \mathrm{F} / \mathrm{H} / \mathrm{N}$ system, boron nitride.
A self-consistent set of thermochemical data for 88 chemical species in the $B / F / H / N$ system are obtained from $a b$ initio electronic structure calculation. Calculations were performed for both stable and radical species. The quantities calculated include the atomization energy $\left(\Sigma \mathrm{D}_{0}\right)$, heat of formation $\left(\Delta \mathrm{H}_{\mathrm{t}}\right)$ at OK and 298.15 K and bond dissociation energies (BDE) for all species. In this work we will present the $\mathrm{BNH}_{x} \mathrm{~F}_{\mathrm{y}}$ species, in a total of 39 species, in which only 8 species have theoretical reference data to be compared. Good agreement is found between the calculation data and theoretical reference data for the quantities analyzed here. Polynomial fits of the predicted thermodynamic data (heat capacity, entropy and enthalpy) over the $200-6000 \mathrm{~K}$ temperature range are also included. The species analyzed here are important in a kinetic mechanism for growth boron nitride films in a CVD reactor. It is generally difficult to optimize conditions in a CVD reactor because films properties depend on complex interactions involving heat and mass transport, chemical kinetics, and thermochemistry. Developing a reliable set of thermodynamic data is a necessary first step for system optimization, since it provides important constraints on the possible reaction mechanism. This work is complementary to the "Thermochemistry of $N_{x} H_{y} F_{z}$ Molecule", also to be present in this conference. (CNPq, CENAPAD-SP)

# THERMOCHEMISTRY OF $N_{x} H_{y} F_{z}$ MOLECULE 

Patrícia R.P. Barreto ${ }^{1}(\mathrm{PQ})$, Alessandra F. A. Vilela ${ }^{2}(\mathrm{PG})$, and Ricardo Gargano ${ }^{2}(\mathrm{PQ})$<br>patricia@plasma.inpe.br<br>${ }^{1}$ Laboratório Associado de Plasma - LAP, Instituto Nacional de Pesquisas Espaciais - INPE/MCT, CP515, São José dos Campos, SP, CEP 12247-970, Brasil<br>${ }^{2}$ Instituto de Física, Universidade Brasilia, CP04455, Brasília, DF, CEP 70919-970, Brasil

Key words: thermochemistry properties, N/H/F system, boron nitride.
A self-consistent set of thermochemical data for 88 chemical species in the $B / F / H / N$ system are obtained from $a b$ initio electronic structure calculation. Calculations were performed for both stable and radical species. The quantities calculated include the atomization energy ( $\Sigma \mathrm{D}_{0}$ ), heat of formation $\left(\Delta \mathrm{H}_{\mathrm{t}}\right)$ at OK and 298.15 K and bond dissociation energies (BDE) for all species. In this work we will present the $N_{x} H_{y} F_{z}$ species, in a total of 16 species, where only 4 species have experimental or theoretical reference data to be compared. First of all the well know species in the $N_{x} F_{y}$ and $N_{x} H_{y}$ system are analyzed, in a total of 12 species, for which the calculation methodology is tested by comparing the calculated properties with the experimental results. Then we determined the properties for the 16 desired species in the $N_{x} H_{y} F_{z}$ system. Good agreement is found between the calculated data and experimental or theoretical reference data for the quantities analyzed in this work. The error between the calculated thermodynamic properties and the experimental or theoretical reference data for the species analyzed here are compared with the error bar. Polynomial fits of the predicted thermodynamic data (heat capacity, entropy and enthalpy) over the $200-6000 \mathrm{~K}$ temperature range are also included. The species analyzed here are important in a kinetic mechanism in the growth of boron nitride films in a CVD reactor. It is generally difficult to optimize conditions in a CVD reactor because films properties depend on complex interactions involving heat and mass transport, chemical kinetics, and thermochemistry. Developing a reliable set of thermodynamic data is a necessary first step for system optimization, since it provides important constraints on the possible reaction mechanism. (CNPq, CENAPAD-SP)

# ALTERINATIVE APPROACHTO REDUCE THE NUMBEROF ELECTRONIC INTEGRALS IN HARTREE-FOCK METHODS THROUGH GENERALIZED GAUSSIAN 

Kleber C. Mundim ${ }^{1}$ (PQ)<br>kcmundim@unb.br<br>${ }^{1}$ Instituto de Química, Universidade de Brasília, 70919-970 Brasília (DF) Brasil.<br>Palavras-chave: Generalized Gaussian, Hartree-Fock, two-electron integrals

Theoretical methods for studying fundamental biochemical processes at the electronic level hold tremendous promise for enabling rational drug design, the interpretation of biophysical measurements, and understanding the complex mechanisms of life. A primary difficulty in such theories is that, as the size of the systems become larger and more complex, the empirical methods become less reliable. One promising approach to avoid empiricism is to employ first principles ( $a b-$ initio) quantum mechanical methods ( QM ). In this context we need only solve the Schrödinger equation (in silicon) to know how a molecule will react to stress in vitro or in vivo. Using these principles, it may in the next future be possible to study, for instance, the dynamics (time dependence) of a molecular complex important to AIDS, for example. The time-dependent Schrödinger equation provides an analog to Newton's equation of motion, but unfortunately it is incredibly difficult to solve, even for small molecules. Theoreticians are currently searching for ways to introduce time dependency into quantum mechanics approaches that can be performed on large systems. To date, the dynamics of molecules consisting of about hundreds of atoms have been studied in this way. It is likely that the juxtaposition of new developments in computer technology, theoretical chemistry, and crystallography will continue to lead us toward the day when theoretical calculations on large molecules are possible. The deeper understanding of matter that will follow should motivate many new applications in molecular science. The major driving force behind much of the application of these convergent methodologies is the pharmaceutical industry and its unquenchable thirst for new drugs. Although the quantum mechanical equations governing chemistry are well known, their mathematical solution is extremely demanding of computer time-so demanding that it is impractical to apply these methods to most biochemical problems. The simplest level of ab initio QM simulation is the Hartree-Fock (HF) method. This method produces very accurate bond lengths and angles and reasonable reaction energies. Potentially more accurate structures and reaction energies can be determined with density functional theory (DFT) that shares HF's favorable scaling properties. Promising new algorithms, such as the MP2 method, should allow for very accurate energetic calculations on the chemically significant segments of many biochemical reactions. However, for certain properties, such as reaction barriers that are particularly important in nonequilibrium biochemical processes, more sophisticated QM methods, such as the coupledcluster (CC) theory including all single and double excitations (CCSD) and with perturbative triples (CCSD(T)), may be required. Considering the series of theoretical models, HF or DFT methods, MP2, CCSD $\operatorname{CCSD}(T)$, for a given size basis set with $n$ contracted Gaussian function, and varying molecular size, then in the simplest analysis their computational requirements scale as $n^{4}, n^{5}, n^{6}$, and $n^{7}$, respectively.

In this context an alternative approach to modeling molecular system through ab-initio quantum mechanics without to evaluate any electronic integral is proposed here. The procedure used is particularly advantageous, when compared with the usual one, because it reduces drastically the number of two-electronic integrals used in the construction of the Fock matrix, enabling the use of the quantum mechanics in the description of macro-molecular systems. This advantage increases when the size of the molecular systems become larger and more complex. While the CPU time increases with $n^{4}$, in the usual methodology, here in the new methodology the time scales linearly with $n$. This catastrophic dependence of the rank the Hamiltonian or Fock matrix with $n^{4}$ two-electron integrals is a severe bottleneck for petaFLOPS computing time. (CNPq e CAPES Projeto PROCAD).

# NOVA ESTRUTURA PARA LIGAÇÃO DE HIDROGÊNIO ENTRE pirazina e água. 

Thaciana V. Malaspina ${ }^{1}$ (PG) e Sylvio Canuto ${ }^{1}$ (PQ)<br>thaciana@if.usp.br<br>${ }^{1}$ Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo. Palavras-chave: ligação de hidrogênio, cálculos ab initio, pirazina.


#### Abstract

É sabido que os hidrocarbonetos aromáticos são moléculas propensas à formação de ligação de hidrogênio. Destes hidrocarbonetos, os mais interessantes são aqueles que apresentam heteroátomos no anel tais como nitrogênio, uma vez que este tipo de molécula encontra-se presente em diversas macromoléculas de interesse biológico. Por outro lado, sabe-se que a molécula de água é a mais importante molécula no contexto biológico, pois é em solução aquosa que a maioria dos processos químicos e biológicos ocorrem. Sendo assim, torna-se importante o estudo das interações que ocorrem entre a molécula de água e os heterociclos aromáticos como a pirazina $\left(\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)$.

Neste trabalho estudamos as possíveis estruturas conformacionais estáveis formadas entre as moléculas de pirazina e água em fase gasosa. Obtivemos duas estruturas de mínima energia através de otimizações nos níveis MP2/6-31+G* e MP2/aug-cc-pVDZ. Realizamos estes cálculos com o programa Gaussian98. Uma dessas estruturas que obtivemos apresenta a molécula de água no mesmo plano da molécula de pirazina (PLANAR), como já havia sido sugerido experimentalmente, Figura 1. A outra estrutura que obtivemos mostra uma conformação completamente nova, onde cada hidrogênio da molécula de água faz uma ligação com um dos átomos de nitrogênio da molécula de pirazina, N...HOH...N, ilustrada na Figura 2. Embora a conformação NÃO-PLANAR seja semelhante à estrutura formada entre a nuvem $\pi$ do anel benzênico e os hidrogênios da água, estas estruturas mostram-se bem distintas. No caso da pirazina a ligação de hidrogênio ocorre com os átomos de nitrogênio da pirazina e isto corresponde a um mínimo de energia em função do ângulo de rotação da água sobre a molécula. Calculamos também as frequências vibracionais, momentos de dipolo e energia de ligação das duas estruturas, nos mesmos níveis de cálculo citados anteriormente.

A caracterização energética das ligações de hidrogênio, incluindo correção de counterpoise, no nível MP2/aug-cc-pVDZ, mostra que na estrutura NÃO-PLANAR a molécula de água tem uma energia de ligação de $1.9 \mathrm{kcal} / \mathrm{mol}$ enquanto que a estrutura PLANAR tem uma energia de ligação de $5.5 \mathrm{kcal} / \mathrm{mol}$. (CNPq e FAPESP)





Figura 1: PLANAR



Figura 2: NÃO-PLANAR

# ANÁLISE CONFORIMACIONAL DA CROTAMIINA POR MMÉTODOS TEÓRICOS DE ADIÇÃO DE UNIDADES DE AMINOÁCIDOS 

Antônio J. do N. Fernandes ${ }^{1}$ (PG), Ana M. H. Moniz (PG) ${ }^{1}$, Maria C. dos Santos ${ }^{2}$ (PQ), Wagner B. De Almeida ${ }^{3}$ (PQ), Antônio F. de C. Alcântara ${ }^{1}$ (PQ)

antoniojnf @ufam.edu.br
${ }^{1}$ Depto de Química, ICE, Universidade Federal do Amazonas, 69077-000 Manaus, AM, Brasil ${ }^{2}$ Depto de Parasitologia, ICB, Universidade Federal do Amazonas, 69077-000 Manaus, AM, Brasil
${ }^{3}$ Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Depto de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil

## Palavras-chave: Crotamina, Busca Conformacional, PM3

Da peçonha de cascavéis Crotalus durissus terrificus foi isolada crotamina ${ }^{1}$. Essa proteina, com seqüência: YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWPWKCCKKGSG, pertence a um pequeno grupo de toxinas com alto grau de homologia, porém, com atividades tóxicas diferentes, denominadas miotoxinas. De um modo geral, informaçōes estruturais sobre macromoléculas com atividades biológicas apresentam elevada importância, principalmente de estruturas peptídicas, cujas conformações podem determinar o potencial de atividade de seus sítios. Neste contexto, pode-se esperar que fatores estruturais da crotamina influenciem suas propriedades químicas e biológicas. A literatura registra uma análise conformacinal da crotamina ${ }^{2}$, conformação I, obtida por SVFF em Dinâmica Molecular (DM), por homologia. Entretanto, melhorias algorítmicas tểm aumentado enormemente as habilidades para estudos de estrutura eletrônica de fragmentos de biomoléculas como, por exemplo, um sítio ativo de uma toxina. Entre elas, três estratégias principais empregando método quântico (MQ) podem ser aplicadas ao estudo de biomoléculas. A aproximação de supermolécula ainda é utilizada, mas está sendo substituído pelos métodos conjugados denominados MQ/MM (MM: Mecânica Molecular). Uma outra é o desenvolvimento contínuo e aplicação de aproximaçães em escala linear de MQ para sistemas biomoleculares ${ }^{3}$. Os modelos que utilizam um Hamiltoniano clássico em conjunto com um quântico demonstram dificuldades na integração dos dois modelos, principalmente para as propriedades eletrostáticas. A fim de aplicar a terceira e última estratégia por metodologia teórica empregando método MQ ainda não realizado ao estudo sistemático de proteínas, neste trabalho foram realizadas análises conformacionais de crotamina, empregando uma nova metodologia de busca conformacional em MM e semi-empírico MQ. Além disso, os resultados assim obtidos permitem uma comparação com estudo em MM por DM com construção por homologia descrita na literatura ${ }^{2}$, o que foi realizado também neste trabalho. Para otimização da geometria foi empregado o pacote computacional TITAN, utilizando MM (MMFF94), e Gaussian-94, semiempírico MQ (PM3). No intuito de propor novas metodologias ao estudo de proteinas e macromoléculas, otimizações de geometria de fragmentos da crotamina foram realizadas desde a unidade leucina na posição 19 até a sua estrutura completa, adicionando-se unidades de aminoácidos em ambos os lados dos fragmentos sucessivos a crotamina. As estruturas foram consideradas na forma molecular, na conformação peptídica trans para os resíduos de prolina, estado gasoso e sem interaçōes intermoleculares e não considerando a sua forma secundária. Comparando-se as conformaçōes II e III, obtidas respectivamente por MMFF94 e PM3, verifica-se que são semelhantes entre si e, marcantemente, distintas de I, aquela descrita na literatura. Além disso, II e III são menos globulares, apresentando conseqüentemente menores restrições estéricas a interações de seus sítios ativos, o que pode estar relacionado com as atividades tóxicas da crotamina. Portanto, as conformaçōes II e III apresentam uma disposição terciária que favorece melhor a indicação de sua atividade biológica.

Assim, pelos resultados obtidos até o presente, pode-se propor que a metodologia por adiçōes sucessivas de unidades de aminoácidos e otimização de geometria dos fragmentos, de forma sucessiva, até a obtençăo da estrutura completa da crotamina mostra-se mais apropriada para a sua análise conformacional. (CAPES)



II


III
[1] Moura, G. J.; Vieira, L. G.; An. Acad. Bras. Ciênc. 1950, 22, 141. [2] Siqueira, A. M.; Martins, N. F.; De Lima; M.E.; Diniz, C.R.; Cartier, A.; Brown, D.; Maigret, B.; J. Mol. Graph. Mod. 2002, 20, 389. [3] Gogonea, V.; Suárez, D.; van der Vaart, A.; Merzjr, K. M.; Curr. Op. Struct. Biol. 2001,11,217.

# HYDRATED ELECTRON: A THEORETICAL STUDY 

Valdemir Ludwig ${ }^{1}$, Syvio Canuto ${ }^{1}$<br>ludwig@macbeth.if.usp.br<br>${ }^{1}$ Instituto de Física, USP, CP 66318, 05315-970, São Paulo, SP.<br>Key words: hydrated electron, TDDFT.

Excess electron in condensed-phase media plays a crucial role in the dynamics of important chemical processes. Among those are solution photochemistry, non-radiative electronic transitions and charge transfer reactions. Unlike free electrons that are delocalized, electrons in polar solvents become self-trapped because of their interactions with the solvent enviroment.

The study of hydrated electrons is particularly interesting from the point of view of the solvent involved. Of all solvents in chemistry, water is undoubtedly the most important one, owning to its outstanding importance in nature. Because of its large dipole moment and strong hydrogen bonding, water crucially influences the outcome of many chemical reactions.

Recently a new generalization of DFT theory based on response theory have been proposed to study excited state properties, which is known as time-dependet density functional theory (TDDFT). In this context, we present results of vertical transition energy, charge distribution and the molecular orbitals on different structures of hydrated electron calculated with TDDFT methodology. To obtain these structures, we performed various Monte Carlo simulations with different potential parameters for the electron and water molecules. These parameters were fit to obtain geometrical structures close to structures found in the literature (Fig.1), which corresponds to a cage structure formed with six or seven water molecules where most of the electron density is located. After, these structures were submitted to Quantum Mechanical calculations and the electronic properties were calculated. We used B3LYP hybrid functional and gaussian ( $6-31++G(d, p)$ basis sets with diffuse functions on all atoms.


Fig.1: Electron in aqueos enmviroment

Analysis of the radial distribution function shows that the first solvation shell includes nearly 7 water molecules and the average distance between the classical electron and the nearest hydrogen atom is $2.0 \AA$. The TDDFT results show three intense transition in the region $600-800 \mathrm{~nm}$ corresponding to s-p symmetry transitions. (CNPq, FAPESP, LCCAUSP, CENAPAD-UNICAMP)

# THE UV ABSORPTION SPECTRUM OF BENZOTRIAZOLE TAUTOMERS 

Antonio Carlos Borin ${ }^{1}(\mathrm{PQ})$, Luis Serrano-Andrés ${ }^{2}(\mathrm{PQ})$, Valdemir Ludwig ${ }^{3}$ (PG), Sylvio Canuto ${ }^{3}$ (PQ)<br>ancborin@quim.iq.usp.br<br>${ }^{1}$ Instituto de Química, USP, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, S.P.<br>${ }^{2}$ Departamento de Química Física, Instituto de Ciencia Molecular, Universitat de València, Dr.<br>Moliner 50, Burjassot, E-46100 Valencia, Spain.<br>${ }^{3}$ Instituto de Física, USP, CP 66318, 05315-970, São Paulo, SP.

Key words: benzotriazole, caspt2, uv-vis.

Benzotriazole (BT) belongs to the family of heterocycles compounds characterized by a six-membered ring.fused to a five-membered one, being important to prevent corrosion of metals and as antibacterial agent. In solid state (X-ray), microwave spectroscopy, gas cell and molecular beam, the 1 H -tautomer is the only stable isomer. However, rotationally resolved LIF experiments suggest that the 2 H -tautomer is the most stable. This contradiction for the gas phase results can be understood considering that the 2 H -tautomer has a dipole moment much smaller than that for the 1 H -tautomer, making its detection much more difficult in microwave experiments. Another technique that could be used to study the stability of the BT tautomers is ultraviolet absorption spectroscopy (UV). However, if UV is used to study their relative stability, there is an additional difficulty: both tautomers absorb in the same spectral region and several excited states are located very close to each other.

An alternative to study this kind of compound is by ab initio methods. In present work we carried out a detailed study of the low-lying ${ }^{1}\left(\pi, \pi^{*}\right)$ and ${ }^{1}\left(n, \pi^{*}\right)$ states of both 1 H -BT and $2 \mathrm{H}-\mathrm{BT}$ tautomers in order to better understand absorption and emission spectra of both tautomers. The geometry of the ground and the first excited state were optimized at the CASSCF level of theory using atomic natural basis sets contracted to CN [4s3p1d]/H [2s1p]. The absorption and emission spectra of both tautomers were simulated employing the CASPT2 and CASSI methods, in this case the atomic natural orbitals were supplemented with a set of 1sip1d Rydberg type functions placed in the molecular charge centroid of each tautomers.

For the absorption spectra we have found out that the $1 \mathrm{H}-\mathrm{BT}$ is responsible for two broad absorption bands located at $\approx 240-250 \mathrm{~nm}$ (most intense) and 280 nm (less intense), respectively, whereas the 2 H -BT gives rise to a single one at 275 nm . From our calculations we have also found out that the lowest lying excited states of the $1 \mathrm{H}-\mathrm{BT}$ and $2 \mathrm{H}-\mathrm{BT}$ are close to each other, but the $1 \mathrm{H}-\mathrm{BT} 2^{1} \mathrm{~A}^{\prime}$ excited state is located below the $2 \mathrm{H}-\mathrm{BT} 1^{1} \mathrm{~B}_{2}$, with the corresponding vertical excitation energy amounting to 4.27 and 4.60 eV , respectively.

Finally, we have also simulated a mixture of the UV-VIS spectra of both tautomers in different proportions of each species. Our best fit according to the experimental results gives a proportion of $70 / 301 \mathrm{H}-\mathrm{BT} / 2 \mathrm{H}-\mathrm{BT}$ species, in accordance with experimental findings. (CNPq, FAPESP, LCCA-USP, CENAPAD-UNICAMP)

# INVESTIGATION OF INSULATOR METAL TRANSITION OF POLYDIACETYLENE 

Wei Marcel ${ }^{1}(\mathrm{PG})$, Bernardo Laks ${ }^{1}$ (PQ), Jordan Del Nero ${ }^{2}$ (PO)<br>marcal@ifi.unicamp.br<br>${ }^{1}$ Institute de Física - UNICAMP - CEP: 13083-970 - Campinas - SP (Brazil)<br>${ }^{2}$ Departamento de Física - UFPA - CEP: 66.075-110-Belém - PA (Brazil)<br>Keywords: Tight binding method, Polydiacetylene, Polyacetylene derivative.

Interest in conductive organic polymers has considerably increased since the discovery in 1977 of the molecularly doped polyacetylene. Polymeric systems have attracted increased attention of a vast number of research groups due to their novel physics and chemistry and to their potential commercial use. High conductivity and stability as well as the availability as a film are some of the properties purposed for the commercial utilization of those materials. One such system, the polydiacetylene, have been used to investigate nonlinear optical properties by Z-scan methodology for Langmuir and Langmuir-Blodgett film.

Electronic structure calculations of unidimentional polymers come being studied at some time through of the coupled of semiempiricals methods, for the geometric optimization, with tight binding methods.

IIIIIIII


Figure 1. Representation of Polydiacetylene structure.

The electronic structure calculations assumed a tight-binding method with a $\pi$ electron system with one orbital per site and the hamiltonian matrix elements are obtained from transferred parameters optimized for oligomer calculations using Extended Hückel Theory with Clementi's parameterization. The well-known methods, Negative Factor Counting technique and the Inverse Iteraction, were used to found the density of states (electronic) and the wavefunctions, respectively.

The goal of this work is verify whether the proposed semiconductor polymer can be founded on metallic regime. For the calculations of this system we used several semiempirical methods for the optimization of the geometry and the results indicate that the bipolaron type defect is formed on the polymer. CAPES (D.Sc. Fellowship for N.M.).

# ESTRUTURA ELETRÔNICA E ABSORÇÃO ÓPTICA DO 

## POLI(TRANS-1,2-DI(2-TIENIL)ETILENO)

Nei Marcal ${ }^{1}(\mathrm{PG})$, Bernardo Laks ${ }^{1}$ (PQ)<br>marcal@ifi.unicamp.br<br>${ }^{1}$ Instituto de Física - UNICAMP - CEP: 13083-970 - Campinas - SP (Brazil)<br>Palavras-chave: poli(trans-1,2-di(2-tienil)etileno), semi-empírico, absorção óptica.

Atualmente os polímeros apresentam uma aplicabilidade em diversos ramos da indústria. Uma classe específica desses polímeros apresenta alternância de simples e duplas ligações entre átomos de Carbono, sendo conhecidos como Polímeros Conjugados. Estes têm sido alvo de vários estudos e do desenvolvimento de novos componentes microeletrônicos graças a suas propriedades ópticas não lineares e à condutividade elétrica dependente da concentração de dopantes.

Estamos interessados especificamente no poli(trans-1,2-di(2-tienil)etileno), também chamado de (trans-PTE) já sintetizado e apresentando um grande potencial tecnológico. Nosso objetivo foi descrever teoricamente a absorção óptica do trans-PTE e comparar os resultados obtidos com valores experimentais disponiveis na literatura.


Figura 1. Representação do poli(trans-1,2-di(2-tienil)etileno)

Para isso realizamos o cálculo de absorção óptica utilizando o código ZINDO através do modelo INDO/S, onde estamos interessados em determinar a energia do gap e dos níveis de impureza relacionados com os defeitos conformacionais quando o oligômero é dopado.

Os cálculos de otimização de geometria utilizaram o código GAMESS (General Atomic and Molecular Electronic Structure System) com os modelos semi-empíricos AM1 (Austin Method 1) e PM3 (Parametric Method 3) os quais apresentaram qualitativamente os mesmos resultados.

Na tentativa de obter os valores experimentais, variamos o número de tiofenos intercalados estudados de 2,4 e 6 monômeros, tentando assim conseguir descrever a absorção óptica do polímero ou pelo menos, observar uma tendência para que possamos comparar nossos resultados com dados experimentais. A investigação da estrutura eletrônica do polímero foi determinada através do método NFC (Negative Factor Counting) e sua função de onda foi obtida pela Técnica de Interação Inversa aplicada ao cálculo de autovetores.

Yuii Takahata (PQ) ${ }^{1}$ e Delano Pun Chong (PQ) ${ }^{2}$<br>taka@iqm.unicamp.br<br>${ }^{1}$ Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13083-862, Campinas, São Paulo, Brazil. ${ }^{2}$ Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, B.C., Canada, V6T 1 11

Palavras-chave: CEBEs, TFD, ADF
As energias de ionização de camadas internas (CEBE) podem ser determinadas experimentalmente, através de XPS (Espectroscopia fotoeletrônica de raios-X). XPS é especialmente útil na área de química analítica, nos estudos de polímeros, de superfícies de sólidos e/ou de moléculas adsorvidas em superfícies de sólidos. As CEBEs correlacionam-se intimamente com algumas propriedades moleculares, tais como reatividade química, afinidade protônica, distribuição de carga, acidez, eletronegatividade e outras. A técnica experimental foi desenvolvida há cerca de trinta anos. No entanto, ainda não existe uma técnica eficiente para o cálculo teórico de CEBE, com alto nivel de precisão. O objetivo deste trabalho é desenvolver uma nova e eficiente técnica, com alto nível de precisão (erro menor que $0,1 \%$ ), para calcular a energia de ionização de camadas internas de moléculas. Inicialmente, calcula-se CEBEs para moléculas pequenas, através do método não-empírico TFD (Teoria do Funcional de Densidade), utilizando-se diferentes técnicas e aproximações. O pacote computacional ADF (Amsterdam Density Funtional) foi empregado na realização dos cálculos. A maior dificuldade no cálculo de CEBE, é localizar o buraco na molécula. O ADF possui a característica de gerar uma densidade eletrônica, a partir de fragmentos que são geralmente átomos, o que facilita a localização do buraco. Cinco conjuntos de bases foram empregados: DZP, TZP, e TZ2P, et-pVQZ e QZ4P onde $D=$ Doublé, $Z=$ Zeta, $P=$ Polarização, $T=$ Triplo, $\mathrm{Q}=$ Quádruplo. Os funcionais empregados foram PW86x e PW91c. Alguns resultados estão mostrados na Tabela 1. Os desvios médios absolutos (DMA) para as cinco bases diferentes em 59 casos säo: 1,$09 ; 0,16 ; 0,16 ; 0,16 ; 0,16 \mathrm{eV}$, respectivamente. O emprego de bases maior ou igual a que TZP, resultou um erro de cálculo menor do que $0,05 \%$. O emprego de DZP resultou num erro de $0,5 \%$, isto é, dez vezes maior do que o erro obtido com o emprego de TZP. Testou-se também 21 diferentes funcionais junto com potencial SAOP (Statistical Average of Orbital Potentials) nos 59 casos com bases TZP. Os cinco melhores funcionais (valor de DMA,em eV, em parênteses) são; $\operatorname{VS98}(0,19)$; $\operatorname{BLYP}(0,28) ; \operatorname{FT98}(0,30) ; \operatorname{BP}(0,40)$; BOP $(0,45)$. O conjunto de base TZP no pacote ADF com os funcionais PW86x e PW91c é o melhor opção de cálculo de CEBEs. (FAPESP, CNPq).

Tabela 1. Alguns exemplos de desvios das energias de ionização de camadas internas (CEBE) calculadas com funcionais de PW86x e PW91c, empregando o pacote computacional Amsterdam Density Functional . Os valores na tabela correspondem ao CEBE do átomo, cujo símbolo na molécula, está indicado com letra negrito.

| Molecules | Obs. | DZP | TZP | TZ2P | et-pVQZ | QZ4P |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}_{2}$ | 290,23 | 0,68 | $-0,03$ | $-0,06$ | $-0,11$ | $-0,11$ |
| $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ | 291,3 | 0,5 | 0,03 | 0,01 | $-0,06$ | $-0,06$ |
| ${\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}}^{\left.4 \mathrm{HCON}_{2} \mathrm{CH}_{3}\right)_{2}}$ | 404,81 | 1,31 | 0,13 | 0,12 | 0,10 | 0,10 |
| $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ | 405,9 | 1,37 | 0,22 | 0,2 | $-0,01$ | 0,18 |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ | 537,92 | 1,55 | $-0,01$ | $-0,04$ | $-0,11$ | $-0,11$ |
| $\mathrm{CH}_{3} \mathrm{~F}$ | 538,82 | 1,59 | 0,13 | 0,11 | 0,05 | 0,05 |
| $\mathrm{BF} \mathrm{F}_{3}$ | 692,92 | 1,93 | 0,14 | 0,14 | 0,08 | $-0,02$ |
| DMA(59cases) | 202,8 | 0,52 | $-0,43$ | $-0,59$ | $-0,72$ | $-0,78$ |

# DFT STUDY OF THE INTERACTION OF As(III) AND CYSTEIN IN AQUEOUS SOLUTION. 

Sirlaine D. Ferreira (IC) ${ }^{1}$, Antônio L. O. de Noronha (PG) ${ }^{1}$, Hélio A. Duarte (PQ) ${ }^{1}$. noronha @ netuno.qui.ufmg.br LQC-MM - Departamento de Química, ICEx- Universidade Federal de Minas Gerais 31270-901 - Belo Horizonte - MG

Palavras-chave: Arsenium(III), cystein, DFT
Arsenium is an element of great importance in the nature and also in biological systems. It is found in the nature in two forms: $\mathrm{As}(\mathrm{III})$ in the form of arsenite ion $\left(\mathrm{AsO}_{3}{ }^{3-}\right)$ and $\mathrm{As}(\mathrm{V})$ in the form of arsenate ion $\left(\mathrm{AsO}_{4}{ }^{3-}\right)$. The compounds os As (III) are highly nocive to the health and environment, even though some of these compounds have antitumor activity. It is known that As(III) has the tendency to bound to sulfidryl groups. The amino-acid cystein, present in nail, horns and hair, is a natural amino-acid that contains this group. Fig. 1 shows the cystein molecular structure.


Figure 1: Cystein amino acid present in the glutatione.
Recent experimental studies ${ }^{1}$ have shown the formation of coordination complexes between $\mathrm{As}(\mathrm{III})$ and the cystein in $1: 1\left(\mathrm{As}(\mathrm{OH})_{2}(\mathrm{HL})\right)$ and $1: 3\left(\mathrm{As}(\mathrm{HL})_{3}\right)$ proportions, and the estimates of the respective stability constants $(\log \square)$. However, at the molecular level, the system is not yet well characterized.Density functional methods have been used to calculate the different tautomers and conformations of the As/cystein species. Solvent effects have been taken into account from the continuum method SCRF (self-consistent reaction field). The stability constants have been estimated and the error compared to the experimental data is less than 2 logarithmic units.

In order to understand why the species $1: 2$ where not observed experimentally, calculations have been performed and $\log \beta$ for the 1:2 species estimated (see Table I).

Table 1: Comparative values of the theoretical, and experimental, $\log \beta$ and $\Delta G$ for the possible complexes between cystein and As(III) in the 1:1, 1:2 and 1:3 proportions.

| Complexation Reaction | Log $\beta$ |  |  | $\Delta \mathrm{G}(\mathrm{Kcal} / \mathrm{mol})$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Theoret. | Experim. |  | Theoret. | Experim. |
| $\mathrm{H}_{3} \mathrm{AsO}_{3}+3 \mathrm{H}_{2} \mathrm{~L} \rightarrow \mathrm{As}(\mathrm{HL})_{3}+3 \mathrm{H}_{2} \mathrm{O}$ | 4.19 | 6.41 |  | $-5,70$ | $-8,74$ |
| $\mathrm{H}_{3} \mathrm{AsO}_{3}+2 \mathrm{H}_{2} \mathrm{~L} \rightarrow \mathrm{As}(\mathrm{HL})_{2}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O}$ | 3.40 | $* * * * *$ |  | $-4,63$ | $* * * *$ |
| $\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{H}_{2} \mathrm{~L} \rightarrow \mathrm{As}(\mathrm{HL})(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O}$ | 1.10 | 4.01 |  | $-1,50$ | $-5,45$ |

Also a graphical analysis of the distribution of species according to the pH variation was performed. The results agree with the experimental results showing that $\mathrm{As}(\mathrm{HL})_{3}$ species predominates in the pH range $2,0-7,0$ ( $1: 3$ species in the proportion of $60 \%$ ). The species $1: 1$ $\mathrm{As}(\mathrm{HL})(\mathrm{OH}) \mathrm{O}^{-}$predominates in the pH range of $7,0-9,0$.

The $\mathrm{As}(\mathrm{HL})_{2} \mathrm{OH}$ species that was not observed experimentally, according to our results, are present in the same range of pH as $\mathrm{As}(\mathrm{HL})_{3}$ with an extent of $\mathrm{ca} .8 \%$. This explains why this species was not observed experimentally. The presence of one cystein labilizes the other $\mathrm{OH}^{-}$ ligands, favoring the formation of $\mathrm{As}(\mathrm{HL})_{3}$ species. The mechanism of the As-SR bond will be briefly discussed. (CNPq, Fapemig, CAPES, Millenium Initiative - Water: A Mineral Approach.)
${ }^{1}$ Nicolas Adrian Rey, Master degree thesis, 2002.

# INTERAÇÃO DO Al ${ }^{3+}$ COM ÁCIDO CÍTRICO UTILIZANDO CÁLCULOS DE FUNCIONAL DE DENSIDADE. 

Luciana Guimarães (PG), Augusto F. Oliveira (PG), Hélio A. Duarte(PQ)<br>luciana@netuno.qui.ufmg.br<br>LQC-MM, Departamento de Química - ICEx, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte - MG<br>Palavras-chave: DFT, $\mathrm{Al}^{3+}$, Ácido Cítrico

Nos últimos tempos, há um grande interesse no estudo da formação de complexos metálicos ao nível molecular, ou seja, da especiação química destes complexos em meio aquoso, devido a sua importância para o meio ambiente e sistemas biológicos. O arsênio é uma substância tóxica que está presente em rejeitos industriais e em atividades mineradoras na forma de arsenito e arsenato. Estes íns são adsorvidos por minerais tais como gibsita e goetita. Técnicas experimentais avançadas, tais como EXAFS e XANES, tem sido usadas para se determinar as propriedades geométricas e eletrônicas destes sistemas. Métodos de Funcional de Densidade (DFT) tem contribuído também com sucesso para o estudo de tais complexos. A abordagem teórica permite estimar a variação de energia livre de reações de complexação e, consequentemente, estimar as constantes de formação. Neste trabalho, uma nova estratégia para a retenção de ânions é proposta baseando-se no fato de que óxido de alumínio é um excelente adsorvente para as espécies de $\mathrm{As}(\mathrm{V})$ em meio aquoso. A idéia é utilizar um complexo de $\mathrm{Al}^{3+}$ solúvel para evitar a hidrólise deste metal e estabelecer um sítio de coordenação do As(V). A partir da análise da distribuição de espécies de vários ligantes com $\mathrm{Al}^{3+}$, foi escolhido o íon citrato. O sistema estudado foi:

$$
\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}_{3} \mathrm{~L} \leftrightarrow \mathrm{AlL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \quad \log (\beta)=10,10
$$

A reação de coordenação foi escolhida de forma a não ter reagentes ou produtos eletricamente carregados. Demonstramos que desta forma o método contínuo pode ser utilizado com sucesso para o cálculo do efeito do solvente. O alumínio em meio aquoso possui coordenação tetraédrica, logo o alumínio do complexo $\mathrm{Al}^{3+} /$ citrato deve estar coordenado a duas moléculas de água, já que no complexo o citrato comporta-se como ligante bidentado. Há várias possibilidades de tautômeros e conformações para estas espécies. Todas elas foram calculadas e as energias relativas estimadas. Na espécie tetracoordenada $\mathrm{AlL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, por exemplo, pode ocorrer transferência de prótons intramolecular da molécula de água para um dos carboxilatos do citrato. As constantes de estabilidade dos complexos foram estimadas e comparadas com dados experimentais, como mostra a tabela 1.

Tabela 1- Valores de energia livre de Gibbs e constante de formação para os tautômeros do complexo $\mathrm{Al}^{3+} /$ citrato.

|  | $\Delta \mathrm{G}_{\mathrm{g}}(\mathrm{Kcal} / \mathrm{mol})$ | $\Delta \mathrm{G}_{\text {solv. }}$ (Kcal/mol) | $\Delta \mathrm{G}_{\text {ag }}(\mathrm{Kcal} / \mathrm{mol})^{*}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Al}(\mathrm{HL})(\mathrm{OH}) \mathrm{H}_{2} \mathrm{O}(\mathrm{A})$ | -18,40 | -2,96 | $-18,9(\log \beta=13,9)$ |
| $\mathrm{AlL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{~B})$ | -4,57 | -3,09 | -9,5 |
| $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{~L}\right)(\mathrm{OH})_{2}(\mathrm{C})$ | -15,58 | -3,09 | -16,2 |
| experimental | --------- | -------- | $-13,5(\log \beta=10,10)$ |

A reação de complexação formando o tautômero (A) é mais favorável com um $\Delta G_{a g}$ de $18,9 \mathrm{kcal} / \mathrm{mol}$. A reação envolvendo a espécie (C) é apenas $2,7 \mathrm{kcal} / \mathrm{mol}$ mais alto em energia. Certamente, a espécie (B) não é formada, pois a reação é quase $10 \mathrm{kcal} / \mathrm{mol}$ menos favorável que as outras. A diferença de $5,4 \mathrm{Kcal} / \mathrm{mol}$ entre os dados teóricos e as estimativas experimentais é razoável se levarmos em conta que experimentalmente as constantes de formação tem um erro de uma unidade logarítmica (cerca de $2 \mathrm{kcal} / \mathrm{mol}$ ). A influência de diferentes conjuntos de base e de diferentes funcionais de troca-correlação será discutida e os dados apresentados. (CNPq, FAPEMIG, CAPES, Instituto do Milênio - Água: Uma Visão Mineral).

# ESTUDO AB INITIO DE REAÇÕES QUÍMICAS ENVOLVENDO CFC's: $\mathrm{CF}_{2} \mathrm{Cl}_{2}, \mathrm{CHF}_{2} \mathrm{Cl}, \mathrm{RADICAL} \mathrm{OH}$ 

Eder S. Xavier ${ }^{1}(\mathrm{PG})$, Willian R. Rocha ${ }^{2}(\mathrm{PQ})$, Hélio F. Dos Santos ${ }^{3}(\mathrm{PQ})$, Wagner B . De Almeida ${ }^{1}$ (PQ)'<br>wagner @netuno.qui.ufmg.br<br>${ }^{1}$ Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31.270-901, Brasil<br>${ }^{2}$ Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Luiz Freire s/n, Cidade Universitária, Recife, PE, 50740-901, Brasil<br>${ }^{3}$ Núcleo de Estudos em Química Computacional (NEQC), Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF) Campus Universitário Martelos, Juiz de Fora, MG, 36036-330, Brasil.

Palavras-chave : CFC's, química atmosférica, correção térmica

As reações químicas que ocorrem na atmosfera envolvendo o radical hidroxila ( OH ) são de grande importância, particularmente aquelas de remoção de cloro-fluor-carbonos (CFCs) na troposfera. A vida média de hidrocloro-fluor-carbonos (HCFCs) é bem inferior, devido a reação exotérmica com o radical OH , com isto estes compostos são bons candidatos para substituir comercialmente os tradicionais CFCs. Com o objetivo de avaliar o desempenho dos métodos téoricos de cálculo no estudo de reações de interesse para a química atmosférica apresentaremos neste trabalho um estudo detalhado no nível ab initio Hartree-Fock (HF), Pós-HF e DFT (Teoria do Funcional de Densidade) das duas reações abaixo envolvendo CFC's onde existem dados experimentais disponíveis na literatura ( $p=1 \mathrm{~atm}, \mathrm{~T}=298.15 \mathrm{~K}$ ) para comparação.

Fig. Valores calculados de $\Delta \mathrm{H}^{\circ}{ }_{298 \mathrm{k}}$ para a reação 1.
$\mathrm{CF}_{2} \mathrm{Cl}_{2}+\mathrm{OH} \Rightarrow \mathrm{CF}_{2} \mathrm{Cl}+\mathrm{HOCl}$ $\Delta \mathrm{H}^{\circ}{ }^{\circ}{ }_{29 \mathrm{~K}}{ }^{\text {Expt. }}=27,0 \pm 0,2 \mathrm{kcalmol}^{-1}$

$\mathrm{CHF}_{2} \mathrm{Cl}+\mathrm{OH} \Rightarrow \mathrm{CF}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$


: $6-311++G(2 d, 2 p) 2: 6-311++G(2 d f, 2 p d) 3: 6-311+G(3 d f, 3 p d)$ 4: aug-cc-pVDZ 5: aug-cc-pVTZ 6: aug- $\propto-$-pVQZ

O cálculo teórico da entalpia de reação $\Delta H^{\circ}{ }_{298 k}$ foi realizado utilizando o procedimento proposto recentemente pelo nosso grupo, onde os modos normais de baixa frequência são tratados separadamente no cálculo da correção térmica [H.F. Dos Santos, W.R. Rocha, W.B. De Almeida, Chem. Phys. 280 (2002) 31]. Nossos resultados mostram que é necessário o uso de métodos $a b$ initio altamente correlacionados com funções de base próximas da completude para atingir um bom acordo com experimento (ver figura). (CNPq, FAPEMIG).

# ESTRUTURA MOLECULAR DE $\mathrm{Cp}-\mathrm{M}(\mathrm{CO})_{2},\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right.$; M=Rh, Ir) E DE METALOCENOS MODIFICADOS 

Eder S. Xavier ${ }^{1}(\mathrm{PG})$, Wagner B. De Almeida ${ }^{1}(\mathrm{PQ})$, Willian R. Rocha ${ }^{2}$ (PQ)<br>eder@netuno.qui.ufmg.br<br>${ }^{1}$ Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31.270-901, Brasil<br>${ }^{2}$ Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco (UFPE),<br>Avenida Prof. Luiz Freire s/n, Cidade Universitária, Recife, PE, 50740-901, Brasil

Palavras-chave: DFT, metalocenos, química de coordenação

Compostos organometálicos solúveis, representativos de uma classe bem distinta, foram estudados por Janovics e colaboradores ${ }^{1}$, os quais mostraram ser estes compostos capazes de propiciar a ocorrencia de adição oxidativa intramolecular. Estas reações geraram produtos estáveis e isoláveis, onde ocorreu a clivagem da ligação carbono - hidrogênio do substrato utilizado (hidrocarbonetos simples) e a concomitante formação da ligação metal hidrogênio. Zenming e col. ${ }^{2}$ investigaram complexos do tipo $\left[\mathrm{Cl}_{2} \mathrm{Rh}(\mathrm{CO})_{2}\right]^{-}$através de cálculos DFT no nível B3LYP, utilizando o método de clusters de simetria adaptada (SAC) e iteração de configuração sobre estes clusters (SAC-CI). Recentemente, Rocha e colaboradores ${ }^{3}$ publicaram a síntese, caracterização via RMN e resultados de cálculos ab initio (MP2/6$31 \mathrm{G}(\mathrm{d}), \mathrm{MP} 4 / 6-31 \mathrm{G}(\mathrm{d})$ ) para uma nova classe de compostos heterocíclicos contendo fósforo e arsênio chamados arsodifosfóis.

Neste trabalho, avaliamos via cálculos ab initio e DFT, utilizando funcionais de troca -correlação GGA (BP86 e BLYP), e hibrido B3LYP, contendo pseudopotencial LANL2DZ, a estrutura eletrônica e molecular dos compostos $\mathrm{Cp}-\mathrm{M}(\mathrm{CO})_{2}$ e do precursor catalítico Cp $\mathrm{M}(\mathrm{CO})$, onde $\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{M}=\mathrm{Rh}$, Ir e dos metalocenos modificados pela inserção de fósforo no anel aromático. Na figura 1, podemos ver os principais parâmetros estruturais avaliados durante os cálculos. ( CNPq, FAPEMIG).


Figura 1. Parâmetros estruturais avaliados via cálculos DFT (BP86), ângulos internos ( $A=5,1,2 ; B=1,2,3 ; C=3,4,5$ )
[1] Janovics, A.H. ; Bergman, R. G. J. Am.Chem. Soc., 1982, 104, 352
[2] Zenming H., Russel J. B. and Hiroshi N., J. Am. Chem. Soc., 2002, 124, 2624
[3] Rocha, W.R., L.W.M. Duarte, W.B. De Almeida and V.Caliman, J.Braz. Chem. Soc., 2002, 13, 597.

# ESTUDO TEÓRICO DA RELAÇÃO ENTRE ESTRUTURA E ATIVIDADE DO PARACETAMOL E SEUS DERIVADOS análogos 

Joel E. M. Diniz (PG), Rosivaldo S. Borges (PQ), Claúdio N. Alves (PQ)

joellee@ufpa.br
Departamento de Química , Centro de Ciências Exatas e Naturais , Universidade Federal do Pará , CEP 66075-110 Belém - Pará - Brasil.
Palavras-chave: paracetamol , tfd , regressão linear

O paracetamol (4' - hidroxiacetanilida, $N$ - acetil - p-aminolfenol, PAR) é um analgésico largamente utilizado e uma droga antipirética. que em estudos realizados mostrou-se que uma overdose aguda de PAR e seu uso a longo prazo pode levar a um falência renal aguda com risco de doença renal crônica.

Este trabalho tem como objetivo estudar uma serie de compostos químicos derivados do paracetamol e também, determinar teoricamente, quais propriedades FisicoQuímica seriam de maior relevância para explicar a atividade analgésica de análogos do paracetamol. O método da Teoria do Funcional de Densidade (TFD) tendo como funcional híbrido B3LYP e o conjunto de funções de base $6-31 \mathrm{G}^{*}$, foi empregado para otimização de geometria e determinação dos parâmetros eletrônicos a serem correlacionados com a atividade, tais como: potencial de ionização, energia dos orbitais moleculares HOMO e LUMO, moleza e dureza molecular. O método de regressão linear múltipla (RLM) foi empregado para correlacionar atividade biológica com as propriedades moleculares. A propriedade mais importante foi o potencial de ionização(PI). O modelo de regressão obtido pela equação 1 (Eq 1) apresenta um grau de explicação de $78 \%$ da variabilidade dos valores observados para a atividade. O teste de significância indicou valor de $F=17,4$. Além do mais, apresentou razoável grau de previsibilidade, pois $Q^{2}=0,63$ e pequena soma dos erros de previsão $\operatorname{SEP}=0,56$.
$\log 1 / \mathrm{C}=7.8362+1.3352 \mathrm{PI}$
Eq. 1
$R^{2}=0,78 \quad$ SEP $=0,56 \quad Q^{2}=0,63 \quad F=17,4$







# ESTUDO TEÓRICO DA ESTABILIDADE DE TAUTÔMEROS DERIVADOS DA FENILISOXAZOLONA 

Israel N. A. Amaral (IC), Rosivaldo S. Borges (PG), Cláudio N. Alves (PQ)<br>rosborg@ufpa.br<br>Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil.<br>Palavras-chave: fenilisoxazolona; ab initio; DFT.

Os derivados isoxazolonas apresentam diversas propriedades biológicas e entre as mais promissoras destacamos as atividades antiinflamatórias e anticancerígenas. O composto 3 -fenil-2-isoxazolin-5-ona é a matéria prima de partida para a preparação de um grande número de novos compostos com potencial atividade biológica, através de reações de condensação aldólica.

O composto 3-fenil-2-isoxazolin-5-ona I foi preparado sinteticamente através da reação entre o benzoilacetato de etila e cloridrato de hidroxilamina.

O estudo da estabilidade deste composto e seus tautomêros 3-fenil-3-isoxazolin-5ona II e 3-fenil-5-hidroxi-isoxazol III é fundamental para o entendimento do mecanismo de reação, a otimização dos produtos obtidos e a previsão de novos produtos.

Neste trabalho empregamos os métodos ab initio (HF/6-31G*) e DFT (B3LYP/6$31 G^{*}$ ) na otimização da geometria e obtenção de energia dos compostos mostrados na figura 1.

Figura 1: Tautomêros da fenilisoxazolona


Os resultados da avaliação de estabilidade dos compostos obtidos neste trabalho com os métodos ab initio (HF/6-31G*) e DFT (B3LYP/6-31G*) estão descritos na tabela 1. Nos dois métodos estudados o composto mais estável foi o 3 -fenil-2-isoxazolin-5-ona I. As barreiras de energia entre o composto mais estável e o tautomêro 3-fenil-3-isoxazolin-5-ona II é de 6.40 e 5.36 com os métodos $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ e $\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{*}$, respectivamente. Enquanto que entre o composto I e o tautomêro 3-fenil-5-hidroxi-isoxazol III o valor encontrado é de 13.95 e 11.81. Os estudos prosseguem utilizando o efeito do solvente, levando-se em consideração as condições nas quais as reações estão sendo realizadas. (CNPq, UFPA).

Tabela 1. Energia total (Hartree) e barreiras de energias ( $\mathrm{kcal} \mathrm{mol}^{-1}$ ) obtidas com os métodos ab initio (HF/6-31G*) e DFT (B3LYP/6-31G*) dos tautomêros de 3-fenil-2-isoxazolin-5-ona.

| Composto | HF/6-31G <br> (Hartree) | $\Delta \mathrm{E}$ <br> $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ | $\mathrm{B}^{\star} \mathrm{FYP} / 6-31 \mathrm{G}^{\star}$ (Hartree) | $\Delta \mathrm{E}$ <br> $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| I | -549.0257923 | 0 | -552.3307033 | 0 |
| II | -549.0155865 | 6.40 | -552.3221578 | 5.36 |
| III | -549.0035654 | 13.95 | -552.3118807 | 11.81 |

# CARACTERIZAÇÃO DE MOLÉCULAS DIATÔMICAS FORMADAS POR Be, NIg E Ca COM ÁTOMOS DO SEGUNDO PERÍODO 

Marina Pelegrini ${ }^{1}(\mathrm{PG})$, Orlando Roberto-Neto ${ }^{2}$ (PQ), Francisco B. C. Machado ${ }^{1}$<br>marinape@ief.ita.br<br>${ }^{1}$ Depto de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brasil.<br>${ }^{2}$ Instituto de Estudos Avançados, Centro Técnico Aeroespacial, São José dos Campos, SP, Brasil.<br>Palavras-chave: ab initio, constantes espectroscópicas, transições eletrônicas

Este trabalho consiste, num estudo teórico da espectroscopia e da ligação química de alguns estados eletrônicos de várias moléculas diatômicas a partir de princípios fundamentais da química teórica. Como abordagem de cálculo da estrutura eletrônica utilizou-se o método interação de configurações (Cl) com as funções de onda adaptadas às simetrias espacial e de spin. Essas funções foram geradas como excitações simples e duplas a partir de um conjunto de múltiplas referências (MRSDCI) e com posterior seleção por teoria de perturbação. As moléculas diatômicas heteronucleares estudadas são aquelas formadas pelo átomo de cálcio ( Ca ) com os átomos de boro (B), carbono (C), nitrogênio (N) e oxigênio ( O ), ou seja, as moléculas $\mathrm{CaB}, \mathrm{CaC}, \mathrm{CaN}$, e CaO. Como também as moléculas envolvendo o átomo de berilio ( Be ) e magnésio ( Mg ) com os átomos de boro e carbono.

A caracterização espectroscópica destas espécies foi realizada através da obtenção de curvas de energia potencial, funções momento de dipolo, funções momento de transição, níveis vibracionais, probabilidades de transições vibrônicas, tempos de vida radiativa e das análises de suas respectivas funções de onda.

Para as moléculas isovalentes $\mathrm{BeB}, \mathrm{MgB}$ e CaB , caracterizou-se o estado fundamental, de simetria $X^{2} \Pi$, e o estado excitado ${ }^{2} \Sigma^{+}$, ambos estados dissociam no primeiro canal de dissociação. Em cada uma destas moléculas, realizou-se também cálculos de probabilidades de transição entre os dois estados eletrônicos [1]. Para as moléculas isovalentes $\mathrm{BeC}, \mathrm{MgC} \mathrm{e} \mathrm{CaC}$, caracterizou-se três estados eletrônicos de mesma simetria de spin, ou seja, o estado fundamental $\left(X^{3} \Sigma^{-}\right)$, o estado excitado ${ }^{3} \Pi$, e um estado excitado de simetria ${ }^{3} \Sigma^{-}$. Para estas moléculas, também se estudou as possíveis transições eletrônicas entre estes estados. No caso da molécula CaC estudou-se também um estado ${ }^{5} \Sigma^{-}$, e três estados de simetria singleto [2]. Para a molécula CaN , caracterizou-se três estados eletrônicos de mesma simetria de spin, o estado fundamental ( $\mathrm{X}^{4} \Sigma^{-}$), e dois estados eletrônicos excitados, ${ }^{4} \Pi e^{4} \Sigma^{-}$, estudando as probabilidades de transições eletrônicas entre eles [3]. Neste trabalho caracterizou-se ainda, o estado fundamental ( $X^{1} \Sigma^{+}$) da molécula CaO .

Do conjunto de diatômicas estudados, a molécula CaO é a única bem caracterizada experimentalmente. As moléculas formadas pelos átomos de Be e Mg ( $\mathrm{BeB}, \mathrm{BeC}, \mathrm{MgB}$ e MgC ) e a molécula CaC já haviam sido caracterizadas teoricamente em trabalhos prévios, o que possibilita a comparação com nossos resultados e estimula os cálculos para as moléculas ainda não caracterizadas teoricamente e experimentalmente, como é o caso para as espécies CaB e CaN . De modo geral, a metodologia utilizada neste trabalho se mostra adequada para a obtenção de resultados condizentes com resultados prévios, inclusive para os cálculos de transiçōes eletrônicas, onde foi possível fazer uma comparação com resultados prévios para as moléculas BeC e MgC. Comparando os valores da distância internuclear de equilibrio ( $\mathrm{R}_{\mathrm{e}}$ ) dos estados fundamentais das moléculas formadas por cálcio, observa-se a seguinte tendência: $R_{e}(C a B)>$ $\mathrm{R}_{\mathrm{e}}(\mathrm{CaC})>\mathrm{R}_{\mathrm{e}}(\mathrm{CaN})>\mathrm{R}_{\mathrm{e}}(\mathrm{CaO})$. Para a energia de dissociação, não se observa uma tendência regular. O conjunto de informações espectroscópicas obtidas neste trabalho pode auxiliar futuras investigações sobre estas espécies, já que a maioria delas não foi caracterizada experimentalmente. (FAPESP, CNPq, CENAPAD-SP).
[1]M. Pelegrini, O. Roberto-Neto, F. B.C. Machado, Int. J. Quantum Chem., 95 (2003) xxx.
[2]H. H. Takada, M. Pelegrini, O. Roberto-Neto, F. B.C. Machado, Chem. Phys. Lett., 363 (2002) 283.
[3]M. Pelegrini, O. Roberto-Neto, F. B.C. Machado, Chem. Phys. Lett., 375 (2003) 9.

# ESTUDO DA GEOMETRIA E DA FREQÜÊNCIA VIBRACIONAL DA MOLÉCULA METLLAMHA PELO MÉEODO COUPLED CLUSTER 

Marina Pelegrini ${ }^{1}(\mathrm{PG})$, Orlando Roberto-Neto ${ }^{2}$ (PQ), Francisco B. C. Machado ${ }^{1}$ (PQ)<br>marinape@ief.ita.br<br>${ }^{1}$ Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brasil.<br>${ }^{2}$ Instituto de Estudos Avançados, Centro Técnico Aeroespacial, São José dos Campos, SP, Brasil. Palavras-chave: freqüências vibracionais, parâmetros geométricos, barreira de rotação.

A molécula metilamina é rica em aspectos estruturais, pois trata-se de uma molécula totalmente flexível, o que tem motivado estudos experimentais. Ela também é pequena o suficiente para estudos teóricos de alto nível de cálculo.

Neste trabalho, utilizamos o método coupled cluster com excitações simples e duplas e com contribuições de triplas $\operatorname{CCSD}(\mathrm{T})$ com o objetivo de verificar a convergência dos conjuntos bases cc-pVDZ, cc-pVTZ e cc-pVQZ de Dunning em relação à geometria de equilíbrio, freqüência vibracional e barreira de rotação da molécula metilamina. Realizou-se ainda um estudo da importância da correlação caroço-valência utilizando o conjunto base ccpCVTZ. A molécula metilamina tem dois confôrmeros, um sob a forma estrelada, que é a estrutura mais estável, e a forma eclipsada, o qual é um estado de transição obtido pela rotação interna da forma estrelada. Desta forma, um dos nossos objetivos foi também obter resultados para a barreira de rotação desta molécula.

Considerando a adição dos efeitos da extensão dos conjuntos base até cc-pVQZ e a correlação caroço-valência, pode-se obter bons resultados para os parâmetros geométricos, como demonstrado por Martin e Taylor [1]. Desta forma, neste trabalho, também calculamos os "melhores valores estimados" como:

$$
r \approx r(c c-p V Q Z, \text { valência })+r(c c-p C V T Z, ~ f u l l)-r(c c-p C V T Z, \text { valência }),
$$

onde o conjunto base cc-pCVTZ tem coeficientes otimizados para a correlação do caroço.
Para a forma estrelada, os resultados teóricos indicam dois valores distintos para o valor de $\mathrm{r}(\mathrm{CH})$, visto que a ligação onde o hidrogênio encontra-se em posição anti com relação ao par isolado do nitrogênio é levemente maior do que as outras duas ligações CH do grupo metil. Os resultados obtidos com o método $\operatorname{CCSD}(\mathrm{T})$ utilizando o conjunto base ccpVTZ são iguais a $r(C N)=1,4672 \AA, r(N H)=1,0129 \AA$ e $\theta(C N H)=109,04^{\circ}$. Os valores experimentais obtidos através de espectro de microondas [2] são iguais a $r(C N)=1,4714 \AA$, $r(N H)=1,0096 \AA$ e $\theta(C N H)=110.16^{\circ}$. A importância da correlação caroço-valência, também foi verificada utilizando o conjunto de funções base cc-pCVTZ, onde pode-se notar que correlacionando todos os elétrons, os resultados para distâncias de ligação sistematicamente diminuem. Os resultados foram comparados com os resultados obtidos com os métodos MP2 e B3LYP com os mesmos conjuntos de funções base utilizados com o método $\operatorname{CCSD}(\mathrm{T})$. Por exemplo, utilizando o método B3LYP, observa-se que conforme aumentamos o conjunto base (de cc-pVDZ a cc-pV5Z), os valores para distâncias de ligação diminuem, e estes valores praticamente não mudam quando comparamos as funções base cc-pVQZ e cc-pV5Z. Entretanto, os valores dos ângulos entre as ligações ainda não convergem quando comparamos estas duas funções base. (FAPESP, CNPq, CENAPAD-SP).

[^36]
# CONFORMATIONAL ANALYSIS AND VIBRATIONAL STUDY OF DI-N-PROPYL AND DI-I-PROPYLPHOSPHONATES BY MM/QM METHOD. 

Alexandre N. M. Carauta(PQ) , Claudio A. Téllez S.(PQ) and José W. M. Carneiro(PQ)<br>ancarauta@uol.com.br.

Departamento de Química Inorgânica. Instituto de Química. Universidade Federal Fluminense UFF - Outeiro de S. J. Baptista, s/n, Niterói - Centro. Cep-24020-150, Rio de Janeiro. Brazil Keywords: dyalkilphosphonates, conformational analysis, MM/QM.

Full band assignment of the vibrational spectra of dialkylphosphonates compounds is not trivial due to high coupling degree among the vibrational modes in the region between 1200 and $900 \mathrm{~cm}^{-1}$ [1]. The conformational behaviour of these compounds is highly determined by the alkyl groups bonded to the phosphor atoms, as these alkyl groups have high degreee of freedom.

The goal of this work is to undertake a conformational analysis of the di-n-propyl (DNP) and di-l-propylphosphonates(DIP) using a MM (Monte Carlo/MMFF) and QM (B3LYP/6-31G*) combined methodology, and to calculate the vibrational spectra of the global minima. Computed parameters are compared to experimental ones and to data obtained by other methods (RHF/6-31G* and AM1)[2].

The MM calculations were performed with the Titan program package and the QM calculations were performed with Gaussian 98 program package.

The five lowest energy (hartree) conformer for each compound are listed below:

| Conformer | DNP | DIP |
| :---: | :---: | :---: |
| 1 | -804.75470 | -804.76505 |
| 2 | -804.75457 | -804.76155 |
| 3 | -804.75379 | -804.76154 |
| 4 | -804.75379 | -804.76154 |
| 5 | -804.75379 | -804.76154 |

Selected calculated frequencies ( $\mathrm{cm}^{-1}$ ) are given below:
DNP - B3LYP/6-31G*: 2539(0.21) $v(\mathrm{P}-\mathrm{H}) ; 1289(0.17)$, 1284(0.12) $v(\mathrm{P}=\mathrm{O})+$ wag $\left(\mathrm{CH}_{2}\right)$; $854(0.10) v_{a s}(P O C) ; 814(0.06) v_{s}(P O C)$.

DIP - B3LYP/6-31G*: 2538(0.18) v(P-H) ; 1281(0.29) $v(P=O)+\delta(O P H) ; 1025(0.11) v_{\mathrm{as}}(\mathrm{POC})+$ $\delta(\mathrm{OPH})+\rho\left(\mathrm{CH}_{3}\right) ; 997(0.22) v_{s}(\mathrm{POC})+\delta(\mathrm{OPH})+\rho\left(\mathrm{CH}_{3}\right)$.

The energy difference between conformers 1 and 2 of DNP is $0.08 \mathrm{kcal} / \mathrm{mol}$. These conformers diferer only by rotation of the methyl group. This is the reason for the small energy difference. The energy difference between conformes 1 and 2 of DIP is $2.20 \mathrm{kcal} / \mathrm{mol}$. In this case, the energy difference between the two conformers is more important.

Calculated harmonic wavenumbers agree with the experimental ones.
It was possible to attain an accurate definition of the vibrational spectra in the region of $1200-850 \mathrm{~cm}^{-1}$, which is usually a complicated region.
[1] Claudio A. Téllez S., Judith Felcman and Andréa M. Silva, Spectrochim. Acta A, 56 (2000) 1563. [2] Alexandre N. M. Carauta, Claudio A. Téllez S. and E. Hollauer, Spectrochim. Acta A. (submitted).

# ANÁLISE CONFORMACIONAL E ESTUDO DA DIMERIZAÇÃO DE ESTRUTURAS MÉDIAS DE ASFALTENOS. 

Alexandre N. M. Carauta ${ }^{1}(\mathrm{PQ})$, Júlio C. G. Correia ${ }^{2}(\mathrm{PQ})$, Peter R. Seidl ${ }^{3}(\mathrm{PQ})$, Daniel M. Silva ${ }^{1}$ (IC). ancarauta@uol.com.br<br>1- Departamento de Química Inorgânica. Instituto de Química. Universidade Federal Fluminenese - UFF. Outeiro de S. J. Batista s/n. Niterói - RJ. Cep.: 24020-150<br>2- Núcleo de Modelagem Molecular. Centro de Tecnologia Mineral - CETEM. Av. do Ipê, 900. Ilha do Fundão. Rio de Janeiro - RJ. Cep.: 21941-590<br>3- Programa de Pós-Graduação em Química Orgânica. Instituto de Química - Universidade<br>Federal Fluminense - UFF. Outeiro de S. J. Batista s/n. Niterói - RJ. Cep.: 24020-150<br>Palavras-chave: asfaltenos, análise conformacional, dimerização.

Um dos principais problemas em tubulações de óleo é a presença de obstruções provocadas por compostos poliaromáticos pesados presentes no óleo crú que são insolúveis em solventes parafínicos chamados de asfaltenos. É bem conhecido que os asfaltenos formam agregados que são responsáveis pela oclusão do fluxo de petróleo.

O objetivo deste trabalho é realizar uma análise conformacional dos monômeros e dímeros de uma estrutura média de asfalteno contendo um heteroátomo e analisar o processo de agregação utilizando métodos de mecânica e dinâmica molecular com campo de força $\mathrm{MM}+$, e mecânica quântica (AM1).

Da estrutura inicial, foram obtidos 8 enanciômeros resultantes da combinação das possíveis isomerias Re S dos três carbonos quirais presentes na estrutura. Cada um desses monômeros foi submetido às seguintes etapas de cálculos: uma otimização de geometria inicial através de um cálculo de mecânica molecular (MM+), um processo de dinâmica molecular de 35 ps e uma nova otimização de geometria das cinco estruturas de menor energia através da mecânica molecular. Por último, um cálculo de otimização de geometria utilizando um método semiempírico (AM1) da estrutura de mais baixa energia obtida na etapa anterior, foi realizado.

As energias potenciais calculadas pelo método AM1 são as seguintes:

| Enanciômero | Energia (kcal/mol) |
| :---: | :---: |
| RRR | $-9400,32$ |
| RRS | $-9395,11$ |
| RSR | $-9395,81$ |
| RSS | $-9394,33$ |
| SRR | $-9402,07$ |
| SRS | $-9396,94$ |
| SSR | $-9395,06$ |
| SSS | $-9399,81$ |



Dos resultados obtidos, o enanciômero SRR é o mais estável e possivelmente a estrutura representativa para este asfalteno (figura acima).

Para o estudo do processo de dimerização os três monômeros de menor energia foram utilizados: RRR, SRR e SSS. Um "docking" manual, utilizando a mesma seqüência de cálculos, foi realizado para obter a melhor estrutura representativa do dímero.

As energias de estabilização da formação do agregado ( $\Delta \mathrm{E}_{\text {EST }}=\mathrm{E}_{\text {DIM }}-2 \mathrm{E}_{\text {MON }}$, onde $\mathrm{E}_{\text {DIM }}$ é a energia do dímero e $E_{\text {MON }}$ é a energia do monômero) obtida para os três dímeros são as seguintes:

| Dímero | $\Delta \mathrm{E}_{\text {EST }}(\mathrm{kcal} / \mathrm{mol})$ |
| :---: | :---: |
| RRR | $-1,36$ |
| SRR | $-0,27$ |
| SSS | $-0,23$ |

O dímero mais estável é o formado pelos monômeros RRR, pois os monômeros SRR sofrem um maior impedimento estérico devido às duas cadeias alquílicas estarem em lados opostos do núcleo poliaromático. Na formação do dímero, é provável que estas cadeias se alinhem de um mesmo lado de cada núcleo.

# ESTUDO DFT DE $\left[\mathrm{Fe}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{HOPr}^{\prime}\right)_{4}\right] \infty-$ UM NOVO material de partida para a síntese de complexos DE FERRO(II) 

Eduardo L. de Sá (PQ) ${ }^{1}$, Pedro H. C. Camargo (PG) ${ }^{1}$, Rúbia C. R. Bottini (IC) ${ }^{1}$, Giovana G. Nunes (PG) ${ }^{1}$, George J.Leigh (PQ) ${ }^{2}$, Peter B. Hitchcock (PQ) ${ }^{2}$, David J. Evans (PQ) ${ }^{3}$, Jaísa F. Soares (PQ) ${ }^{1}$<br>edulsa@quimica.ufpr.br<br>${ }^{1}$ Departamento de Química, Universidade Federal do Paraná - Curitiba, PR<br>${ }^{2}$ School of Chemistry, Physics and Environmental Science - University of Sussex - UK<br>${ }^{3}$ Department of Biological Chemistry, John Innes Centre, Colney, Norwich - UK

Palavras-chave: dft, ferro(ii), polinuclear

Nosso interesse recente tem estado centrado na preparação de complexos de ferro(II) e de vanádio(II) com ligantes $O$-doadores, por causa de sua aplicação potencial na síntese de catalisadors da fixação de nitrogênio [1]. Neste trabalho, o composto $\left[\mathrm{Fe}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{HOPr})_{4}\right]_{\infty}$ (I), um alcoolato polimérico de $\mathrm{Fe}(\mathrm{II})$, teve suas propriedades eletrônicas estudadas por meio de Teoria do Funcional de Densidade. A geometria molecular utilizada neste trabalho foi aquela obtida por meio de difratometria de raios-X. A multiplicidade de spin $(\mathbf{2 S}+\mathbf{1})$ no estado fundamental para a unidade repetitiva $\left\{\mathrm{Fe}_{2} \mathrm{Cl}_{2}(\mu\right.$ $\left.\mathrm{Cl}_{2}(\mathrm{HOPr})_{4}\right\}$, calculada utilizando-se a parametrização semi-empírica INDO/S [2], mostrou ser um noneto. Sua energia está 60 e $186 \mathrm{~kJ} \mathrm{~mol}^{-1}$ abaixo das multiplicidades 7 e 11, respectivamente. Este resultado é concordante com medidas de susceptibilidade magnética, no sólido e em solução, e com resultados de espectroscopia Mösbauer. Os cálculos DFT de I, no estado fundamental, foram executados empregando-se o funcional de troca de Becke e o funcional de correlação de Lee-Yang-Parr (B3LYP), metodologia disponível no pacote GAMESS [3] em ambiente FreeBSD (versão 4.7). A representação de I, em forma de estrutura de bastões, e o seu contorno de densidades eletrônicas está mostrado na figura ao lado. Os dois átomos de Fe , que se apresentam em ambientes de coordenação distintos (octaédrico e tetraédrico), têm diferenças significativas na sua carga parcial: a carga do primeiro é cerca de 4 vezes maior que a do segundo. Os dois átomos de Cl que constituem a ponte $\mu$ apresentam-se com uma carga parcial menos negativa que as dos centros de cloro terminais. Os orbitais de fronteira, HOMO e LUMO, apresentam uma diferença de energia de $3,05 \mathrm{eV}$, sendo que o primeiro corresponde a uma ligação $\sigma$ entre orbitais d do Fe (tetraédrico) e orbitais $p$ dos átomos de Cl terminais, enquanto o segundo é constituído por sobreposições entre orbitais dos átomos de Fe (principalmente o de simetria octaédrica) e orbitais $p$ dos átomos de oxigênio e cloro vizinhos. (PRONEX, CNPq, CAPES, FUNDAÇÃO ARAUCÁRIA, UFPR)


[^37]
# ESTUDO DFT DE $\left[\mathrm{V}_{2}(\mu \text {-OPr' })_{2}\left(\mathrm{OPr}^{\prime}\right)_{6}\right]_{\infty}-$ UM MATERIAL DE PARTIDA PARA A SÍNTESE DE COMPLEXOS DE FERRO/VANÁDIO 

Eduardo L. de Sá (PQ) ${ }^{1}$, Vivian D. R. de Freitas (IC) ${ }^{1}$, Giovana G. Nunes (PG) ${ }^{1}$, George J. Leigh (PQ) ${ }^{2}$, Peter B. Hitchcock (PQ) ${ }^{2}$, David J. Evans (PQ) ${ }^{3}$, Serge I. Gorelski (PQ) ${ }^{4}$, Jaísa F. Soares (PQ) ${ }^{1}$, edulsa@quimica.ufpr.br<br>${ }^{1}$ Departamento de Química, Universidade Federal do Paraná - Curitiba, PR<br>${ }^{2}$ School of Chemistry, Physics and Environmental Science - University of Sussex - UK<br>${ }^{3}$ Department of Biological Chemistry, John Innes Centre, Colney, Norwich - UK<br>${ }^{4}$ Departament of Chemistry, Stanford University, Stanford, California - USA

Palavras-chave: DFT, vanádio, compostos de coordenação
Nosso interesse recente tem estado centrado na preparação de complexos heteronucleares de ferro(II) e de vanádio(II) com ligantes $O$-doadores, devido a sua aplicação potencial na síntese de catalisadores da fixação de nitrogênio [1]. Neste trabalho, o composto $\left[\mathrm{V}_{2}\left(\mu-\mathrm{OPr}^{i}\right)_{2}\left(\mathrm{OPr}^{i}\right)_{6}\right] \infty$ (I), um alcóxido polimérico de $\mathrm{V}(\mathrm{II})$, teve suas propriedades eletrônicas estudadas utilizando-se ferramentas de mecânica-quântica em nível semi-empírico (INDO/S)[2] e Teoria do Funcional de Densidade. A geometria molecular utilizada neste trabalho foi aquela obtida por meio de difratometria de raios-X. A multiplicidade de spin ( $\mathbf{2 S}+\mathbf{1}$ ) no estado fundamental para a unidade repetitiva de $\mathbf{I}$, empregando-se os hamiltonianos ROHF e UHF, mostrou ser um tripleto. Sua energia está 244 e $475 \mathrm{~kJ} \mathrm{~mol}^{-1}$ abaixo das multiplicidades 1 e 5 , respectivamente. Este resultado é concordante com medidas de susceptibilidade magnética, no sólido e em solução. Os cálculos DFT de I, no estado fundamental, foram executados empregando-se o funcional de troca de Becke e o funcional de correlação de Lee-Yang-Parr (B3LYP), metodologia disponível no pacote GAMESS [3] em ambiente FreeBSD (versão 4.7). A representação de I, em forma de estrutura de bastões, e a representação de seu orbital LUMO é mostrado na figura ao lado. Os átomos metálicos apresentam-se em um ambiente químico razoavelmente simétrico, isto é refletido nos valores iguais de suas cargas parciais de Mulliken. Os oxigênios em ponte $\mu$ apresentam-se com cargas parciais mais negativas que os seus congêneres terminais, o que indica uma forte retrodoação vinda dos átomos de vanádio. Os orbitais HOMO ( $E=-6,0622$ eV ) e LUMO ( $E=-2,4047 \mathrm{eV}$ ) são consituídos por orbitais d dos átomos de vanádio. (PRONEX, CNPq, CAPES, FUNDAÇÃO ARAUCÁRIA, UFPR).


[^38]
# DISSOCIAÇÃO DE AGREGADOS MOLECULARES DE LACTONITRILA COM ÁGUA 

Roberto Rivelino (PQ) e Sylvio Canuto (PQ)<br>rivelino@if.usp.br.<br>Instituto de Física, CP 66318, Universidade de São Paulo, 05315-970 São Paulo, SP<br>Palavras-chave: ligação de hidrogênio, dissociação, Lactonitrila

Estudos sobre a degradação de lactonitrila $\left(\mathrm{CH}_{3} \mathrm{CHOHCN}\right)$ em água são de grande interesse em ciências ambientais, uma vez que sua decomposição em solução alcalina pode levar a formação de HCN. Entretanto, embora $\mathrm{CH}_{3} \mathrm{CHOHCN}$ seja miscível em água, sua degradação em meio aquoso neutro não ocorre facilmente. Por este motivo o vapor de lactonitrila pode ser absorvido do ar utilizando-se água. Potencialmente, uma molécula de lactonitrila contém três sítios para a formação de ligação de hidrogênio com água: OH (doador e aceitador de próton), CH (doador de próton) e CN (aceitador de próton). A ligação de hidrogênio $\mathrm{OH} \cdots \mathrm{O}$ formada entre lactonitrila e água (Fig. 1) é particularmente de grande interesse para entender o mecanismo da dissociação de $\mathrm{CH}_{3} \mathrm{CHOHCN}$ em solução aquosa diluída.


Figura 1. Possível agregado entre lactonitrila com água formando uma ligação $\mathrm{OH} \cdots \mathrm{O}$.

Portanto, nesta comunicação apresentamos um estudo $a b$ initio detalhado para três possíveis agregados moleculares de lactonitrila com água, onde comparamos os efeitos das ligações de hidrogênio nas propriedades dos diferentes complexos hidratados. Este estudo envolve cálculos das energias de ligação, geometrias de equilíbrio e dos deslocamentos espectrais vibracionais após a formação das ligações de hidrogênio. Resultados preliminares indicam que o agregado mostrado na Fig. 1 é da ordem de $2-3 \mathrm{kcal} / \mathrm{mol}$ mais estável do que os outros complexos formados com os sítios CH e CN . Isto mostra que esse agregado pode fornecer uma importante rota para a decomposição de $\mathrm{CH}_{3} \mathrm{CHOHCN}$ em $\mathrm{CH}_{3} \mathrm{CHO}$ e HCN . (Financiamento: FAPESP).

# RESULTADOS DA ANÁLISE DO pH VIA EQUAÇÕES DE POISSON-BOLTZMANN E DEBYE-HÜCKEL EM SISTEMAS COM SIMETRIA ESFÉRICA 

Tereza Pereira de Souza ${ }^{1 *}$ (PG), Augusto Agostinho Neto ${ }^{2}$ (PQ), Dino Zanette ${ }^{3}$ (PQ), Hernan Chaimovich ${ }^{1}$ (PQ), Iolanda Midea Cuccovia ${ }^{1}$ (PQ).<br>terezapsouza@yahoo.com.br<br>1- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 2-Departamento de Física, Instituto de Biociências Letras, e Ciências Exatas, Universidade Estadual Paulista, 3-<br>Departamento de Química Orgânica, Instituto de Química, Universidade Federal de Santa Catarina<br>Palavras-chave: Poisson-Boltzmann, Debye-Hückel, pH

Utilizamos um sistema que mimetiza com um certo grau de aproximação algumas propriedades das interfaces presentes na célula para compreender o efeito destas em reações químicas em processos biológicos. O sistema é constituido de micelas de SDS nas quais se insere sondas sensíveis a variação de pH . Os efeitos da variação da concentração de SDS e concentração de NaCl são estudadas.

As sondas 2-hidroxi-5-[(2-dimetilhexadecilamônio) etanoil] benzoato, 2-hidroxi-5-[(6dimetilhexadecilamônio) hexanoil] benzoato, 2 -hidroxi-5-[(11-dimetilhexadecilamônio) undecanoil] benzoato, ácido-2-hidroxi-5-dodecanoil-benzóico foram sintetizadas a partir do ácido salicílico. O número de grupos $\left(\mathrm{CH}_{2}\right)$ entre o anel aromático e o grupo amônio varia entre 1 e 10. Desta forma deveriam, em tese, varrer diferentes distâncias da superfície da micela.

Dos resultados experimentais observa-se que o $\mathrm{pK}_{1}$ e $\mathrm{pKa}_{2}$ das sondas é aumentado quando na presença de [SDS] até 25 mM , com o aumento da [SDS] ocorre uma diminuição dos $\mathrm{pK}_{1}$ e $\mathrm{pKa}_{2}$. A presença de NaCl no meio contendo SDS leva a uma diminuição dos pKas de todas as sondas.

O modelo teórico é baseado na equação de Poisson-Boltzmann com simetria esférica. E a apartir dos resultados do potencial reduzido na posição das sondas podemos calcular o pKa das mesmas. Este modelo foi capaz de "corrigir" suposições de que as sondas ocupariam distintas regiões na micela. Uma comparação com os valores experimentais nos garente uma confortável concordância, o pKa das sondas em regiões de baixa [de SDS] apresenta valores elevados, e com o aumento da [SDS] ocorre um descréscimo muito similar ao encontrado expeimentalmente. Quando examinamos a variação na $[\mathrm{NaCl}]$ os valores do pKa teórico também apresentam um decréscimo, seguindo o mesmo comportamento experimental.

O valor do potencial reduzido, na solução da equação de Debye-Huckel, próximo a superfície da micela, é sempre menor que o valor correspondente a solução da equação de Poisson-Boltzmann. A diferença entre os valores é tanto menor quanto maior a força iônica. Assim os valores para o pH nas proximidades da micela, determinados a partir da solução da equação de Debye-Hückel são superiores aos valores determinados experimentalmente.

Uma comparação entre os resultados nos mostra que a equação de PoissonBoltzmann com simetria esférica descreve melhor o sistema que a equação de Debye-Huckel com simetria esférica. (FAPESP $n=01 / 10217-0$ ).

# DETERIMINAÇÃO TEORIICA DO COEFICIENTE DE DIFUSÃO DE HIDROCARBONETOS EM ZEÓLITAS: IMISTURAS DE ETILENO E ISOBUTANO EM ZSM-5 

João Otávio M. A. Lins (PQ), Marco Antonio Chaer Nascimento (PQ)<br>jomal@chaer.iq.ufri.br Departamento de Físico-Química, Instituto de Química da UFRJ Centro de Tecnologia, bloco A, sala 412 - Cidade Universitária<br>21949-900 Rio de Janeiro, RJ - Brasil<br>Palavras-chave: dinâmica molecular, coeficiente de difusão, zeólitas

Dando prosseguimento a um estudo anterior [1], procuramos determinar a influência que um modelo estrutural mais acurado, para a representação da zeólita, e a carga de substratos, no interior da mesma, possam ter na determinação do coeficiente de difusão de misturas de etileno e isobutano. Para isso realizamos simulações com misturas eqüimoleculares 1:1, 2:2 e 4:4 no interior de uma estrutura da zeólita ZSM-5 com 12 células unitárias e relação $\mathrm{Si} / \mathrm{Al}$ de 95 , empregando-se condições periódicas de contorno tridimensionais. Os campos de força utilizados para a descrição do sistema foram o Burchart [2], para a zeólita, e o Dreiding II [3], para os hidrocarbonetos. Foi ainda necessário o desenvolvimento de parâmetros para o átomo de hidrogênio no caso da zeólita.

O estudo compreendeu simulações partindo-se tanto da face <100> quanto da face <010> do cristal. Os resultados obtidos nos sugerem que dois efeitos são mais significativos para a explicação dos fenômenos observados: a obstrução do caminho devido a geometria da zeólita e a interação atrativa entre os hidrocarbonetos. As simulações no sentido <100> por si só não nos permitem tirar uma conclusão de qual efeito prevalece em cada caso. Ao contrário disso, as simulações partindo-se da face <010> demonstram claros efeitos cooperativos entre as moléculas, elevando os valores dos coeficientes de difusão de ambos os compostos. No caso do isobutano, os valores obtidos se encontram dentro da faixa esperada [1] para o composto, exceto na simulação <100> com relação 2:2 dos compostos, já que este praticamente obstrui o canal onde se instala.

Nos resultados abaixo, valores separados por barras (/) indicam mais de um conjunto de valores para a mesma simulação.

Coeficientes de difusão para a simulação no sentido $<100>\left(\times 10^{5} \mathrm{~cm}^{2} / \mathrm{s}\right)$

|  | 2 moléculas | 4 moléculas | 8 moléculas |
| :--- | :--- | :--- | :--- |
| Etileno | 1,58 | 0,07 | 0,48 |
| Isobutano | 0,04 | 7,68 | 0,58 |

Coeficientes de difusão para a simulação no sentido $\langle 010\rangle\left(\times 10^{5} \mathrm{~cm}^{2} / \mathrm{s}\right)$

|  | 2 moléculas | 4 moléculas | 8 moléculas |
| :--- | :--- | :--- | :--- |
| Etileno | 3,55 | $10,07 / 6,73$ | $25,87 / 7,54$ |
| Isobutano | 0,07 | 0,23 | 0,97 |

Serão discutidos ainda os efeitos da utilização ou não de cargas atômicas sobre os resultados obtidos, além da demonstração gráfica dos sítios preferenciais de ação. (CNPq, FAPERJ, Instituto do Milênio de Materiais Complexos).

1) João O.M.A. Lins and Marco A. Chaer Nascimento: Mol. Engineering 7, 309-316 (1997).
2) E. D. Burchart et al.: J. Chem. Soc. Faraday Trans. 88, 2761 (1992).
3) Antony Rappé et al.: J. Phys. Chem. 95, 3358 (1991).

## P330

## CORRELAÇÃO ESTRUTURA-ESTABILIDADE EM RADICAIS LVRES DE FLAVONÓIDES

Alexandre da S. Antunes (PG), Ana Carla M. da Silva (IC), Ricardo M. Kuster (PQ), Antonio J. R. da Silva (PQ) e Mauro B. de Amorim (PQ)<br>mbamorim@nppn.ufri.br<br>Núcleo de Pesquisas de Produtos Naturais (NPPN) - Centro de Ciências da Saúde - Universidade Federal do Rio de Janeiro (UFRJ).<br>Palavras-chave: flavonóides, radicais Livres, orbitais moleculares.

Os flavonóides, metabólitos secundários largamente distribuídos no reino vegetal, possuem uma pluralidade de atividades farmacológicas (tais como antitumoral, antiviral e antioxidante). Sua capacidade de seqüestrar ou inibir a formação de radicais livres (atividade antioxidante), tem sido alvo de intensos estudos no campo do estresse oxidativo celular.

Estudos relatados na literatura sobre a relação de estrutura-atividade (SAR) dos flavonóides em sua ação como antioxidante não são conclusivos. Eles indicam como aspectos estruturais relevantes à atividade antioxidante: (i) a presença da hidroxila em 3 (flavonóis, $\mathrm{R}_{1}=\mathrm{OH}$ e flavonas, $\mathrm{R}_{1}=\mathrm{H}$ ); (ii) presença da ligação dupla $\mathrm{C} 2-\mathrm{C} 3$ conjugada com o grupo 4-oxo; e (iii) o ângulo de torção do anel B com o anel benzo- $\gamma$-pirânico.


Este trabalho envolve a análise conformacional de alguns flavonóides e de seus respectivos radicais no oxigênio em $4^{\prime}\left(1, R_{3}=\bullet\right)$, bem como da estabilidade relativa destes últimos, em nível da teoria de funcional de densidade (B3LYP), de modo a se racionalizar o efeito da hidroxila em posição 3 (nos flavonóis) na suas estabilidades relativas.

Os cálculos teóricos foram efetuados com o pacote Gaussian 98, como implementado no ambiente do CENAPAD/UNICAMP. A localização dos mínimos de energia potencial para os flavonóides e correspondentes radicais livres em 4' foi realizada através da varredura do perfil conformacional em torno da ligação C2-C1', em nível B3LYP/6-31G(d), de $0^{\circ}$ a $360^{\circ}$ com intervalos de $10^{\circ}$. Tais mínimos tiveram então suas geometrias otimizadas sem quaisquer restrições no mesmo nível de teoria.

Os resultados obtidos (Tabela 1) indicam que: (i) as estruturas de energia mínima desses radicais apresentam 0 anel B coplanar com o sistema benzo- $\gamma$-pirânico; (ii) a presença da hidroxila em C3 aumenta a estabilidade do radical formado, além de causar o aumento da barreira rotacional em torno da ligação C2-C1'.
A análise das alterações geométricas das flavonas e flavonóis e dos respectivos radicais em $4^{\prime}$ indica que a doação de densidade eletrônica por ressonância da hidroxila em C-3 para o anel B é a principal responsável pela estabilização dos radicais livres formados.

Tabela 1. Parâmetros avaliados dos radicais em 4'.

| Parâmetros Avaliados | Radicais em 4' |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Quercetina $\mathrm{R}_{1} \in \mathrm{R}_{2}=\mathrm{OH}$ | Luteolina $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{H}$ | Quempferol $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$ | Apigenina $\mathrm{R}_{1} \mathrm{eR}_{2}=\mathrm{H}$ |
| Conformação de menor energia $\left({ }^{\circ}\right.$ ) | 180 | 0 | 180 | 0 |
| Conformação de maior energia ( ${ }^{\circ}$ ) | 90 | 90 | 90 | 90 |
| Barreira Rotacional ( $\mathrm{kcal} / \mathrm{mol}$ ) | 9,1237 | 6,7275 | 9,5536 | - |
| Energia de dissociação ( $\triangle \mathrm{E})^{*}$ | 84,19 | 85,66 | 84,02 | 86,28 |

${ }^{*} \Delta \mathrm{E}=\mathrm{E}_{\text {radical }}-0,5002728-\mathrm{E}_{\text {flavonoide parente }}$

# POLARIZATION EFFECT ON THE STRUCTURE AND DYNAMICS OF MOLTEN $\mathrm{NaClO}_{3}$ 

Leonardo J. A. Siqueira (PG), Sérgio M. Urahata (PQ) and Mauro C. C. Ribeiro* (PQ)<br>Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil

Palavras-chave: molecular dynamics, molten salts, polarizable model
Throughout the last three decades, molecular dynamics (MD) simulations have been played a fundamental role in improving our understanding of structure and dynamics of molten salts in a microscopic level. Either technologically relevant or fundamental issues have been addressed by MD simulations of these important systems, for instance, diffusion coefficients, ionic conductivity, viscosity, etc., have been calculated for many different salts or mixtures of molten salts. The vast majority of these studies are concerned with atomic ionic systems, molten alkali halides certainly being the most investigated ones. More scarce are MD simulations of molten salts in which polyatomic ions are involved, molten nitrates $\left(\mathrm{NO}_{3}{ }^{-}\right)$being the most investigated systems. Mixtures of molten alkali carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ have been the subject of previous MD simulations, as they are usual electrolytes in fuel cells. Several MD simulations of salts with polyatomic anions, such as perchlorate $\left(\mathrm{ClO}_{4}{ }^{-}\right)$, sulphate $\left(\mathrm{SO}_{4}{ }^{2-}\right.$ ), and cyanide ( CN ) , were devoted to the crystalline phases in order to reveal the cation transport mechanisms or due to the interesting orientationally disordered phases (plastic crystal) which these systems exhibit. In this work, the structure and the dynamics of molten sodium chlorate, $\mathrm{NaClO}_{3}$, is investigated by using MD simulations. Molten alkali chlorates have been used as a medium for synthesising processes such as the production of $\mathrm{Al}-\mathrm{Ti}-\mathrm{B}$ alloys, the oxidation of $\mathrm{UO}_{2}$, and in preparing lead magnesium niobate powders. Lithium chlorate has been proposed as a molten electrolyte. Fundamental experimental data on molten chlorates, such as thermodynamic, conductance and viscosity data, are known. Very recently, inelastic neutron scattering measurements of molten $\mathrm{NaClO}_{3}$ and $\mathrm{KClO}_{3}$ have been carried out by Ushida et al. ${ }^{1}$, who reported the corresponding static structure factors, $S(k)$. Our simulation showed that the calculated $S(k)$ of molten $\mathrm{NaClO}_{3}$ agrees with the experimental one, what gives us reliance on the adequacy of the model used in the present MD simulations. A characteristic feature of the $\mathrm{ClO}_{3}{ }^{\circ}$ anion in comparison with the other simple anions mentioned above $\left(\mathrm{NO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{ClO}_{4}{ }^{\circ}, \mathrm{SO}_{4}{ }^{2}\right)$ is the permanent dipole of $\mathrm{ClO}_{3}{ }^{-}$proper to its pyramidal geometry $\left(\mathrm{C}_{3}\right)$.

In the present work, ab initio calculations at several levels of the theory point in fact to a rather large dipole momentum of the $\mathrm{ClO}_{3}{ }^{-}$anion (ca. 2.2 D). Certainly, the structure of molten $\mathrm{NaClO}_{3}$ is mainly determined by the charge ordering effect, as a given ion will be surrounded by ions of opposite charge. Nevertheless, it could be discerned in the calculated radial distribution functions that anions can penetrate the first-neighbour shell of a given anion with a definite dipole ordering. Thus, there is a preferential orientation between a pair of anions in close approach, so that dipole ordering also plays a role in determining the short-range structure in molten chlorates, besides of course the well-known effect of charge ordering.

We have found that the structure of molten $\mathrm{NaClO}_{3}$ seems to be reasonable captured by a nonpolarizable pair-wise potential model. However, the model seems to be a too stiff one as the calculated conductivity was rather low in comparison with experimental data, although the calculated viscosity was in reasonable agreement with the experimental one. It is known that including polarization effects in MD simulations of molten salts increases the ionic conductivity. Thus a polarizable model for the $\mathrm{ClO}_{3}{ }^{\circ}$ anion has been proposed here on the basis of the fluctuating charge model (FCM). The FCM is an implementation of the so-called electronegativity equalization method (EEM), which has been extensively used in calculating partial charges of (isolated) complex molecules. In the FCM, the electrostatic interactions are represented by partial charges assigned to the atoms in a given polyatomic anion, as it is usual in MD simulations of molecular systems, but these partial charges are not fixed. Instead, the partial charges are allowed to fluctuate as the anion experience a changing environment along the MD run. The FCM, as previously proposed by Rick et al. ${ }^{2}$ for MD simulations of liquid water, has been applied in MD simulations of molten nitrates. In a previous publication, we reported ab initio calculations performed in order to obtain the parameters of the FCM for the $\mathrm{NO}_{3}^{-}$anion. A similar methodology has been applied here for the development of the FCM for the $\mathrm{ClO}_{3}{ }^{-}$anion, that is, $a b$ initio calculations were performed for the anion submitted to a external electrostatic potential given by probe charges The parameters of the model are obtained by comparing the $a b$ initio dipole moment with the one predict by the EEM. Thus the aim of the ab initio calculations which are also reported here was twofold: to obtain (fixed) partial charges for the non-polarizable model, and to obtain the parameters of the FCM for the polarizable model counterpart. Although including polarization effect in the MD simulations of molten $\mathrm{NaClO}_{3}$ does not change significantly the structure of the simulated system, it increases the ionic mobility in a significant amount.

[^39]
# ESTUDO QUÂNTICO DE ÁTOMOS E MOLÉCULAS CONFINADOS EM GAIOLAS DE FULERENOS 

Luis S. Costa ${ }^{1 *}$ (PQ), Frederico V. Prudente ${ }^{2}$ (PQ), Angelo M. Maniero ${ }^{1}$ (PQ) e José David M. Vianna ${ }^{1,2}$ (PQ) luis@fis.unb.br 1) Instituto de Física, Universidade de Brasília, 70919-900, Brasília, DF, Brasil<br>2) Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA, Brasil

Palavras-chave: sistemas quânticos confinados, gaiolas de fulerenos, método da representação da variável discreta

Sistemas Quânticos Confinados têm recebido uma considerável atenção durante os últimos anos (veja Jakólski, Phys. Rep. 271 (1996) 1). Esses sistemas podem ser: átomos e moléculas confinados em bolhas a alta pressão, em zeólitos, e em agregados como fulerenos, elétrons em pontos quânticos, etc. Em particular, considerando átomos metálicos aprisionados em gaiolas de carbono formam-se sistemas denominados metal-fulerenos endoedrais $M @ C_{N}$. Estes sistemas possuem um grande interesse pois são tratados como novas moléculas quasi-esféricas podendo originar novos materiais (Bethune et al., Nature 366 (1993) 123), tendo grande interesse devido a suas aplicações tecnológicas e ao recente progresso na sua síntese macroscópica (Campbell and Rhomund, Rep. Prog. Phys. 63 (2000) 1061; Shinohara, Rep. Prog. Phys. 63 (2000) 843). Recentemente, este tipo de confinamento foi estendido para outros átomos (Moro et al., J. Chem. Phys. 97 (1993) 6801; Gromov et al., Chem. Commum. 20 (1997) 2003) e o estudo da influência do confinamento sobre o átomo capturado se torna de interesse. Do ponto de vista teórico, o entendimento do processo de formação desses complexos e de suas estruturas passa pelo estudo da estrutura eletrônica, da dinâmica dos átomos e moléculas hóspedes e das propriedades de estado sólido (Bethune et al., Nature 366 (1993) 123). Em particular, a dinâmica vibracional e rotacional é um interessante aspecto desses sistemas pois a anisotropia do potencial de interação faz com que o movimento do átomo ou molécula confinados seja bastante complexo (Hernández-Rojas et al., J. Phys. Chem. Solids 58 (1997) 1689). Neste trabalho nós estamos interessados no estudo da dinâmica vibracional e rotacional de átomos e moléculas confinados em gaiolas de fulerenos. Esse estudo da dinâmica vibracional e rotacional é realizado utilizando-se métodos numéricos difundidos na área de dinâmica dos núcleos de moléculas livres. Em particular, empregamos tanto o método da representação da variável discreta (Prudente et al., J. Mol. Struct. (Theochem) 394 (1997) 169; Costa e Soares Neto, Braz. J. Phys. 28 (1998) 1) como o método do elemento finito (Prudente e Soares Neto, Chem. Phys. Lett. 302 (1999) 43). Além disso, o potencial de interação entre o sistema hóspede e a gaiola de fulereno deve ser obtido a partir de cálculos da estrutura eletrônica, que têm sido feitos usando métodos Hartree-Fock (Chang et al., J. Chem. Phys. 94 (1991) 5004), do funcional da densidade local (Poirier et al., Phys. Rev. B 49 (1994) 17403) e semiempíricos (Hernández-Rojas et al., Chem. Phys. Lett. 222 (1994) 88). Os resultados obtidos têm apresentado uma certa discordância entre si, nomeadamente na determinação da geometria de equilíbrio do sistema hóspede dentro da gaiola do fulereno e na própria forma do potencial de interação. Portanto, em um primeiro momento, procuraremos calcular as propriedades eletrônicas desses sistemas (geometria de equilibrio, energia eletrônica para várias configurações nucleares, etc.) seja utilizando técnicas ab initio seja empregando métodos semi-empíricos na tentativa de solucionar essa discordância. Nosso objetivo principal é demonstrar a capacidade de tais métodos no estudo de sistemas quânticos confinados [um estudo semelhante realizado foi o de elétrons em átomos de pontos quânticos (Costa et al., J. Phys. B 32 (1999) 2461)]. Os sistemas considerados no presente estudo são: $\mathrm{H} @ \mathrm{C}_{\mathrm{N}}$ (Connerade et al., J. Phys. B 34 (2001) 2505) e o sistema $\mathrm{H}_{2} @ \mathrm{C}_{\mathrm{N}}$ Os primeiros resultados estão em boa concordância com os apresentados na literatura.

# ESTUDO DE CLUSTERS MOLECULARES COM APLICAÇOZES PARA O $\left(\mathrm{H}_{2}\right)_{3}$ 

Luis S. Costa ${ }^{11^{*}}(P Q)$, David C. Clary (PQ) ${ }^{2}$<br>luis@fis.unb.br<br>1) Instituto de Física, Universidade de Brasilia, 70919-900, Brasília, DF, Brasil<br>2) Chemistry Department - Oxford University - United Kingdom

Palavras-chaves: Trímeros moleculares, níveis de energia vibracional, método da representação da variável discreta.

Muitos progressos experimentais e teóricos têm sido realizados para o entendimento da estrutura e da dinâmica dos clusters de moléculas fracamente ligados. Por muitos anos, a ênfase foi em buscar o entendimento de moléculas de van der Waals (por exemplo, $\mathrm{Ar}-\mathrm{H}_{2}, \mathrm{Ne}-\mathrm{HF}$ ), entretanto o desenvolvimento teórico e experimental possibilita atualmente o estudo de grandes clusters de sistemas químicos de interesse real. Como exemplo citamos o estudo por meio da espectroscopia de infravermelho com alta resolução aplicado para clusters de moléculas de água tais como, $\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$. Além disto, tem sido objeto de estudos de alta resolução, sistemas hidratados tais como o fenol-( $\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$. Estes avanços experimentais apresentam um grande desafio para a teoria, tanto no desenvolvimento de superfícies de energia potencial para a descrição destes sistemas, como no desenvolvimento de métodos de dinâmica para o cálculo do espectro ro-vibracional destes sistemas.

Muitos métodos têm sido desenvolvidos para o cálculo de espectro de dímeros fracamente ligados. Dímeros de moléculas diatômicas tais como $(\mathrm{HF})_{2}$ e $(\mathrm{HCl})_{2}$ atualmente podem ser estudados rigorosamente, e os níveis de energia do espectro podem ser calculados para regiões do infravermelho distante. Comparações destes cálculos com os resultados experimentais para o $\left(\mathrm{HCl}_{2}\right.$ conduzem ao desenvolvimento de novas superfícies de energia potencial para este sistema. Este resultado enfatiza a importância crucial do uso de métodos rigorosos para o cálculo de estados ligados, com o objetivo de se testar as superfícies de energia potencial propostas em relação aos espectros de resultados experimentais existentes. Cálculos de sistemas como o $(\mathrm{HCl})_{2}$ envolvem a solução de nove graus de liberdade acoplados, se as moléculas de HCl possuírem vibrações intra-moleculares e se o momento angular total J for diferente de zero. Além disto, o estudo do sistema $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ requer um mínimo de nove graus de liberdade mesmo quando os monômeros de água são considerados como rotores rígidos. Cálculos destes dois dímeros representam atualmente o estado da arte para cálculos rigorosos de estados ro-vibracionais de sistemas fracamente ligados. O maior desafio neste momento para os teóricos é a extensão destes cálculos para trímeros e clusters mais complexos.

Trímeros fracamente ligados são uma importante classe de sistemas que formam uma ponte entre dímeros e clusters maiores. Em particular, forças de muitos corpos (isto é, forças de três corpos) existem em trímeros. A descrição e parametrização das forças de muitos corpos intra-moleculares são importantes não somente para o estudo de espectros em fase gasosa, mas para muitas simulações de sistemas moleculares incluindo simulações de dinâmica molecular de sistemas em fases condensadas. Isto é particularmente importante para o entendimento das propriedades da água. Portanto, o desenvolvimento de teorias que possam prever o espectro de trímeros fracamente ligados e o uso destes cálculos para o teste das superfícies de energia potencial realizará um importante papel na melhoria destas superfícies permitindo que as simulações moleculares façam previsões mais precisas.

Recentemente realizamos o primeiro cálculo quântico preciso dos níveis de energia de trímeros fracamente ligados por meio de métodos quânticos precisos. Em particular, aplicamos inicialmente para o sistema $\left(\mathrm{H}_{2}\right)_{3}$. Para isto determinamos o sistema de coordenadas mais adequado para o problema, obtivemos a Hamiltoniana correspondente a esta escolha e no desenvolvemos o código computacional para realizar o cálculo.

# THE LOWEST SINGLET AND TRIPLET ELECTRONIC STATES OF NIC REVISED 

Antonio Carlos Borin ${ }^{1}$ (PQ), Luiz Guilherme M. de Macedo ${ }^{2}$ (PG)<br>ancborin@iq.usp.br<br>${ }^{1}$ Instituto de Química, USP, SP, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP<br>Departamento de Química e Física Molecular, Instituto de Química de São Carlos, USP, CP 780, 13560-970, São Carlos, SP

Due to the fractional occupation of the $d$ shells, transition metals (TM) are characterised by a high density of close lying atomic states able to form chemical bondings, posing major problems to computational quantum chemists dealing with this kind of system, because it is necessary to treat not only the near-degeneracy problem, but also the strong dynamical correlation effects due to the tightly packed electrons in the d shell. A good strategy to better understand the bonding properties in TM compounds is to study diatomic species containing TM, as pointed out by J. F. Harrison (Chem. Rev., 100 (2000) 679). Although the interest in this kind of system is increasing significantly, not much is known for the nickel carbide, as we mentioned in a recent paper (Chem. Phys. Lett., $\underline{244}$ (2001), 99). In that opportunity, the $\mathrm{A}^{1} \Pi$ state of NiC and the $\mathrm{A}^{1} \Pi-\mathrm{X}^{1} \Sigma^{+}$electronic transition were investigated for the first time by ab initio calculations at the multireference configuration interaction (MRCI) level with extended basis sets. We showed that the $A^{1} \Pi$ is located at $9427 \mathrm{~cm}^{-1}$ above the ground state; that is, the $X^{1} \Sigma^{+}$ground state is much more separated from the manifold of excited states than had been supposed earlier by I. Shim and K. A. Gingerich ( $T_{e}=6465$ $\mathrm{cm}^{-1}$, Chem. Phys. Lett., 303 (1999), 87), based on complete active space self-consistent-field (CASSCF) calculations.

In the present work, the other lowest lying singlet and triplet electronic states of NiC were revised using the multireference configuration interaction approach. The methodology employed has been already described by us (Chem. Phys. Lett., $\underline{274}$ (2001), 99), but for the sake of completeness it will be summarised here. The nickel atom was described by Watchers' (14s11p6d3f)/[8s6p4d1f] basis set, and the carbon atom by the cc-pVTZ one. The zeroth-order CASSCF wave functions were built with the valence 3d and 4 s Ni orbitals and the $2 \mathrm{~s}, 2 p \mathrm{C}$ ones in the active space. The final MRCl wave functions were obtained allowing all single and double excitations from the whole CASSCF active space, plus those from the 3 s , and $3 p \mathrm{Ni}$ orbitals. The energetical order of the electronic states has been found to be in variance with that obtained using the CASSCF approach, re-emphasising the need of including non-dynamical and dynamical correlation effects into the wave functions for systems containing transition metals. (CNPq, FAPESP, LCCA-USP)

# PROPRIEDADES NMR DAS LIGAÇÕES DE HIDROGÊNIO NOS CLUSTERS $\mathrm{CH}_{3} \mathrm{OH}^{\circ 000 \mathrm{OH}_{2}} \mathrm{E} \mathrm{CH}_{3} \mathrm{HO}^{\circ 00} \mathrm{H}_{2} \mathrm{O}$. UM ESTUDO AB INITIO 

Eudes Eterno Fileti (PG) e Sylvio Canuto (PQ)<br>fileti@if.usp.br<br>Instituto de Fisica da Universidade de São Paulo<br>Palavras-chave: NMR, metanol-água, ligação de hidrogênio

Misturas de methanol-água têm sido largamente estudadas devido a sua importância, tanto na área biológica como na área industrial. Para se entender os processos que ocorrem em tais misturas uma descrição microscópica de tais reações torna-se necessária. Ultimamente uma técnica que tem sido empregada nesse tipo de análise é a espectroscopia NMR, que descreve o ambiente químico de cada átomo do sistema em estudo. Neste trabalho analisaremos as mudança das propriedades NMR, como a blindagem magnética e o desvio químico, devido à formação de ligação de hidrogênio entre as moléculas de metanol e água.

Estudamos as ligações de hidrogênio dos clusters de methanol-água através de cálculos ab initio de parâmetros NMR. Obtivemos assim uma completa descrição do ambiente químico de cada núcleo no cluster de maneira que pudemos verificar os efeitos relativos sobre os núcleos que participam da ligação através da análise dos desvios químicos isotrópico ( $\square^{\text {iso }}$ ) e anisotrópicos ( $\square^{\text {anis }}$ ) bem como das componente paralela ( $\square / / /$ ) e perpendiculares ( $\square \perp$ ) do tensor em relação ao eixo da ligação de hidrogênio.


Realizamos os cálculos das propriedades nos níveis SCF, MP2 e DFT/B3LYP, empregando o conjunto de funções base $6-311++\mathrm{g}(2 \mathrm{~d}, 2 \mathrm{p})$. Para o cluster $\mathrm{CH}_{3} \mathrm{HO}^{\circ} 0 \circ \mathrm{H}_{2} \mathrm{O}$ (com o metanol aceitador de próton, vide figura) os valores do desvio químico isotrópico é de -6.96 ppm para o átomo de oxigênio e de -3.51 ppm para o átomo de hidrogênio obtidos com o método DFT enquanto para o desvio anisotrópico esses valores são -9.35 ppm e -11.58 ppm . Esses valores para os outros átomos se mostraram despreziveis, exceto no caso do desvio anisotrópico do átomo de oxigênio da molécula de água que chegou a 11.50 ppm no nível MP2. Para o cluster $\mathrm{CH}_{3} \mathrm{OH}^{000} \mathrm{OH}_{2^{\prime}}$ (com o metanol doador de próton), os desvios quimicos são -3.35 ppm para o átomo de hidrogênio e - 7.59 ppm para o átomo de oxigênio da ligação de hidrogênio no nível DFT. O desvio anisotrópico é 11.38 ppm para o átomo de hidrogênio e -8.40 ppm para o átomo de oxigênio. Nossos resultados mostram que os átomos da molécula doadora tornam-se mais blindados (desvios positivos) enquanto na molécula aceitadora os átomos tornam-se mais 'desblindados' (desvios negativos). Para o próton que participa da ligação, as componentes do desvio químico perpendiculares à ligação de hidrogênio, $\square_{\perp}$, são mais sensíveis a complexação do que a componente paralela, $\square_{l /}$. No caso do átomo aceitador (oxigênio) esta tendência se inverte, isto é a componente paralela é mais sensível complexação que as componentes perpendiculares. Em todos nossos cálculos levamos em conta o erro de superposição de base. Para o oxigênio do metanol doador o erro foi de -5.15 ppm para a blindagem anisotrópica no nivel DFT. Os resultados mostraram um erro insignificante para a blindagem dos átomos de hidrogênio, menos de $0.3 \%$ para os átomos de hidrogênio do grupo metil e menos de $1.0 \%$ para os outros átomos nos três níveis teóricos.

Como era esperado, os desvios químicos isotrópico e anisotrópico são mais sensíveis para os átomos que participam diretamente da ligação de hidrogênio. Além disso, verificamos que o desvio químico anisotrópico é mais sensível que o isotrópico, o que abre perspectiva para a caracterização de clusters e líquidos. (FAPESP)

# NOVOS MODELOS PARA CÁLCULO DE ENERGIA LIVRE DE SOLVATAÇÃO EM SIMULAÇÕES DE DINÂMICA MOLECULAR. 

Paulo Fernando Bruno Goncalves (PQ), Hubert Stassen (PQ).<br>paulo@iq.ufrgs.br<br>Grupo de Química Teórica - Instituto de Química - UFRGS<br>Palavras-chave: Simulação, Dinâmica Molecular, Energia Livre

Combinando métodos computacionais da eletrostática e dinâmica molecular, este trabalho permitiu descrever processos de solvatação em sistemas quimicamente importantes. Foram obtidas propriedades termodinâmicas necessárias para o entendimento do processo de solvatação. Uma nova abordagem para o cálculo de energia livre de solvatação foi desenvolvida proporcionando a obtenção acurada e eficiente dessa propriedade, dentro do enfoque da dinâmica molecular. Nessa nova abordagem, novas metodologias para a geração de cavidades moleculares foram propostas e avaliadas. As energias livres de solvatação obtidas estão em boa concordância com os valores experimentais. O modelo de geração da cavidade inicialmente utilizado neste trabalho foi o GEPOL e que provou-se útil na geração de cavidades em sistemas geometricamente anisotrópicos. Para sistemas com geometria anisotrópica, desenvolveu-se um algoritmo baseado na reconstrução de superfícies utilizando triangulação de Voronoi-Delaunay a partir de um conjunto de coordenadas representando pontos ao redor da molécula de solvente. A energia livre de solvatação foi divida em três termos O termo eletrostático de interação soluto-solvente foi baseado na resolução da equação de Poisson do sistema, resultando na seguinte equação:

$$
\Delta G_{E l}=\frac{1}{2} \sum_{i} q_{i} V_{m o l}^{*}(r)-\sum_{i} q_{i}^{0} V_{m o l}^{0}
$$

O termo de cavitação é calculado conforme a SPT (Scaled Particle Theory) modificada por Claverie.

$$
\Delta G_{C A V}=\sum_{i}^{E \operatorname{Effmss}} \frac{A_{i}}{4 \pi R_{i}^{2}} \Delta G_{C A V}\left(R_{i}\right)
$$

O termo de curta distância (Van der Waals) é calculado conforme as interações aos pares no sistema.

$$
\Delta G_{S R}=\sum_{\alpha} \sum_{i=1}^{N} \sum_{\beta} u\left(r_{\alpha \beta}\right)
$$

Simulações (NVT) para um grande conjunto de pares soluto-solvente foram realizadas e os resultados mostraram-se bastante satisfatórios em pequeno tempo de CPU. O algoritmo utilizando superfícies de Voronoi-Delaunay não se restringe ao estudo de somente sistemas geometricamente isotrópicos. Ë também incluída na metodologia com superfícies de VoronoiDelaunay a anisotropia eletrostática. Como exemplo, tem-se abaixo a correlação entre valores experimentais e calculados para sistemas onde os solventes são: octanol, $\mathrm{CHCl}_{3}$ e água.




# UTILIZAÇÃO DE UM NOVO MODELO PARA CÁLCULO DE ENERGIA LIVRE DE SOLVATAÇÃO NO CÁLCULO DE LogP. 

Paulo Fernando Bruno Goncalves (PQ), Hubert Stassen (PQ)<br>paulo@iq.ufrgs.br<br>Grupo de Química Teórica - Instituto de Química - UFRGS<br>Palavras-chave: simulação, coeficiente de partição, energia livre

Como aplicação da química teórica/computacional na farmacologia, apresenta-se aqui uma série de cálculos de coeficiente de partição água/octanol para fármacos. O logaritmo do coeficiente de partição entre a água e n-octanol, representa uma medida da interação lipofílica de uma molécula. A principal característica do $n$-octanol que o leva a sua importância é seu caráter anfipático. A aplicação dessa medida na farmacologia é de extrema importância. Sabe-se que, para um fármaco agir sobre algum sistema de reações em uma célula qualquer, o fármaco deve ter alguma interação com a membrana celular. Diversos modelos já foram propostos para cálculo do coeficiente de partição água/octanol, praticamente todos relacionados com a soma de contribuições de grupos. Apresenta-se aqui, o uso do modelo para cálculo de energia livre de solvatação utilizando cavidades de VoronoiDelaunay, modelo que permite obter o coeficiente de partição formalmente definido como derivado da energia livre de transferência entre a fase aquosa e a fase não aquosa, conforme a equação:

$$
\Delta G_{t r}=\Delta G_{o}-\Delta G_{\mathrm{w}}
$$

onde $\square G_{0}$ é a energia livre de solvatação em octanol, $\square G_{w}$ é a energia livre de solvatação em água e $\square \mathrm{G}_{\mathrm{tr}}$ é a energia livre de transferência. Define-se a partição como a exponencial da energia de transferência $\square G_{t r}$, como na equação:

$$
P_{o W}=\exp \left(\frac{-\Delta G_{t r}}{R T}\right)
$$

O coeficiente de partição é o logaritmo da partição e é definido como:

$$
\log P=\log _{10} P_{\text {OW }}
$$

Na figura a seguir, apresenta-se as correlações entre valores experimentais e calculados para simulações de diversos fármacos, como atropina, captopril, diazepam, haloperidol, ibuprofeno, entre outros.


Pode-se concluir que a aplicação da metodologia aqui apresentada no cálculo do coeficiente de partição água/octanol é capaz de fornecer valores razoáveis. O cálculo de LogPow a partir de resultados de energia livre de solvatação em água e em n-octanol pode levar a propagação de erros. Admitindo uma propagação quadrática de erro na energia livre de solvatação calculada e que o erro é medido pelo desvio padrão, a incerteza no cálculo de LogPow pode ser estimada em 1 unidade. Valores muito próximos em unidades logarítmicas e até abaixo do erro experimental não representam que o cálculo está superando a precisão experimental, mas simplesmente um dado estatístico possível de ser calculado. Esses resultados representam o uso da metodologia aqui desenvolvida para um cálculo formal do coeficiente de partição sem nenhum uso de contribuições de grupo, ou outros fatores empíricos, senão os parâmetros dos campos de força SPC/E e OPLS, além das constantes dielétricas dos solventes.

## P338

# UM ESTUDO DO EFEITO DE ACOPLAMENTOS NÃOAdIAbÁTICOS SOBRE A SEÇÃO DE CHOQUE DE FOTODISSOCIAÇÃO USANDO UM MÉTODO DE PROPAGAÇÃO TEMPORAL DO PACOTE DE ONDA 

Frederico V. Prudente (PQ) e Luiz A. C. Malbouisson (PQ)<br>prudente@ufba.br<br>Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, Brasil. Palavras-chave: processos não adiabáticos, fotodissociação molecular, métodos dependentes do tempo.

Efeitos de acoplamentos não-adiabáticos entre diferentes superfícies de energia potencial desempenham um papel fundamental na dinâmica de muitos processos moleculares [Yarkoni, J. Phys. Chem. 100 (1996) 18612]. Nestes casos, a dinâmica dos núcleos fica mais complexa e interessante com o aparecimento de ressonâncias. A análise e a caracterização desses estados quase-ligados (cujo efeito aparece claramente na seção de choque) tornam-se cruciais para o entendimento de tais processos. Devido à inequívoca natureza quântica deste fenômeno, é de grande importância o desenvolvimento de procedimentos numéricos eficientes para tratar sistemas onde duas ou mais superfícies de energia potencial acopladas estão envolvidas.

Uma metodologia que tem sido usada para tratar processos moleculares dentro da aproximação de Born-Oppenheimer é a propagação dependente do tempo do pacote de onda [Balakrishnan et al., Phys. Rep. 280 (1997) 79], não sendo muito empregada para tratar processos não-adiabáticos. Além disso, a análise detalhada de ressonâncias devido a acoplamentos não-adiabáticos não é muito comum nos estudos dependentes do tempo devido à necessidade de realizar uma longa propagação temporal. Recentemente realizamos um estudo detalhado dos estados ressonantes da reação eletronicamente não-adiabática Cl + H2 [Prudente, Marques e Riganelli, Phys. Chem. Chem. Phys. 5 (2003) 2354] usando o método de propagação temporal de Lanczos [Park and Light, J. Chem. Phys. 85 (1986) 5870].

No presente trabalho empregamos a mesma metodologia para caracterizar as ressonâncias que podem aparecer na fotodissociação de moléculas devido ao acoplamento não-adiabático dos estados eletrônicos excitados. Em particular, estudamos o processo de fotodissociação da molécula de CO a partir do estado fundamental $X^{1} \Sigma^{+}$para o estado de Rydberg $\mathrm{B}^{1} \Sigma^{+}$acoplado ao estado de valência $\mathrm{D}^{1} \Sigma^{+}$. Utilizamos como potenciais eletrônicos as curvas obtidas experimentalmente [Tchang-Brillet et al., J. Chem. Phys. 96 (1992) 6735; Lê Floch, Mol. Phys. 72 (1991) 133]. Os nossos resultados obtidos são então comparados com os publicados na literatura a partir de diferentes metodologias independente do tempo [Andric et al., J. Phys. B 32 (1999) 4729; Bitencourt, Prudente and Vianna, (2003) em preparação], sendo observado uma excelente concordância. (Parcialmente financiado pelo CNPq)

# OBTENÇÃO DE SUPERFÍCIES DE ENERGIA POTENCIAL USANDO REDES NEURAIS ARTIFICIAIS 

Vivianni M. L. dos Santos* (PG) \& Ricardo L. Longo (PQ)<br>vivianni@ufpe.br Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco.

Palavras-chave: redes neurais artificiais, superfície de energia potencial, água.
A descrição quantitativa das superfícies de energia potencial é essencial para o estudo das propriedades estruturais e termodinâmicas de líquidos. Representações analíticas são, em geral, muito complexas, e a aproximação de interação entre pares é utilizada para a simplificação desta descrição. Mesmo com esta aproximaçã̃o, para líquidos contendo muitos sítios de interação, sua aplicação em simulações de Monte Carlo ou de dinâmica molecular apresenta alta demanda computacional. Logo, pretende-se representar estas superfícies de energia potencial por redes neurais artificiais (RNAs) e mínimos quadrados parciais (PLS parcial least square). Inicialmente escolheu-se o modelo TIP5P (cinco sítios) para descrever a superfície de energia potencial da água. A amostragem do espaço configuracional foi realizada de forma sistemática em coordenadas internas. No modelo TIP5P existem 25 distâncias entre os sítios, as quais foram reduzidas a 4 distâncias com a utilização de técnicas de análises de componentes principais e de sensibilidade. Para minimizar o tempo computacional as RNAs foram treinadas para os quadrados das distâncias.

Os resultados expressos em termos de erros relativos percentuais, desvio padrão e predições para dados de teste, indicam que as RNAs têm um melhor desempenho que a descrição por PLS.


As Figuras acima mostram as superfícies de energia potencial obtidas usando o modelo TIP5P e aquela obtida usando um modelo de RNAs 4 neurônios nas camadas de entrada e escondida e um na camada de saída (4:4:1), gerando um total de 20 pesos e 4 bias, que são os parâmetros da rede neural ajustados usando o algoritmo backpropagation.

O tempo computacional necessário para calcular as energias de interação de um milhão configurações de pares utilizando a RNA 4:4:1 foi aproximadamente quatro vezes menor que a expressão analítica do modelo TIP5P. Além disso, as descrições de superfícies de energia potencial por RNAs independem do número de sítio das moléculas, e podemos concluir que as RNAs serão ainda mais eficientes que os modelos analíticos para solventes com muitos átomos, como por exemplo, líquidos iônicos, que estão sendo tratados em nosso laboratório com RNAs. (CNPq, CENAPAD-SP, FINEP, IMMC, PADCT, RENAMI)

# VIBRATIONAL SPECTRA OF NEW BISPERYLENE DERIVATIVES 

Cíntia B. Oliveira ${ }^{1}$ (PG), Milan Trsic ${ }^{\star 1}$ (PQ), Ricardo F. Aroca ${ }^{2}$ (PQ)<br>milan@iqsc.usp.br<br>${ }^{1}$ Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 380, 13560-970, São Carlos, SP, Brazil<br>${ }^{2}$ Materials and Surface Science Group, School of Physical Sciences, University of Windsor, Windsor, On. N9B 3P4 Canada

keywords: perylene derivatives; am1; ir spectra
The interest in new materials based in perylene tetracarboxylic (PTC) derivatives is due to their interesting photoactive and electroactive properties. The presence of two chromophores in these kind of molecules improve their technological applicability. Their main properties are concentrated in the chromophore region. The substituents attached to the ends of the chromophores are key factors in the determination of their structure when they form thin films. So, the different side chains and the chains between the chromophores affect the aggregation phenomenon. The substituents in the nitrogens of the imide groups affect the intermolecular structure and the ring system overlap. The side chains can also interact strongly with the water layer under the film, lifting the molecules to an almost perpendicular position with respect to the aqueous plane, favoring the excimer emission. In a previous work [1], we studied the interactions between a series of perylene derivatives and a water layer, using the rigid docking method. We observed that the presence of different kinds of substituents on both sides of the derivatives does determine a preferred orientation for their deposition on a water surface. Some of the orientations found suggested the possibility of excimer emission. There are many techniques to produce solid thin films from these organic materials, including Langmuir-Blodgett.

In the present work, we tested the versatility of the AM1 Hamiltonian from Gaussian 98 to reproduce the main vibrational modes of the bisperylene derivatives, comparing our results with the experimental data. The derivatives studied are shown in Figure 1.


Figure 1: Chemical structures of the bisperylene derivatives: (a) 1,3 bis (chlorobenzylimide perylene) propane ( P 1 ); (b) 1,8 bis (chlorobenzylimide perylene) octane (P2); (c) 1, 2 bis (propylimide perylene) ethane ( P 3 ); 1, 6 bis (propylimide perylene) hexane (P4).

All the structures presented $\mathrm{C}_{1}$ symmetry. Their great number of degrees of freedom generated more than 300 vibrational modes The AM1 tends to overestimate the oscillator strength between 1500 and $1600 \mathrm{~cm}^{-1}$ and above $3000 \mathrm{~cm}^{-1}$. We also see a displacement to higher frequencies (about $250 \mathrm{~cm}^{-1}$ ). Despite the limitations of the semiempirical methodology, a good agreement between the calculated and the experimental spectra was observed. (FAPESP, CNPq).
[1] C. B. Oliveira, I. Caracelli, M. Trsic, Mat. Chem. Phys. 80 (2003) 457-60.

# ESTRUTURAS METAL-ORGÂNICAS: DESENVOLVIMENTO E FUNCIONALIZAÇÃO 

Claudia de F. Braga (PG) e Ricardo L. Longo (PQ)<br>claudiafb2003@yahoo.com.br<br>Departamento de Química Fundamental - CCEN<br>Universidade Federal de Pernambuco<br>Recife - PE - Brasil<br>Palavras-chave: materiais nanoporosos, redes metal-orgânicas, simulação computacional.

Novos materiais híbridos metal-orgânicos (metal-organic framework, MOF) contendo nanoporos podem ser aplicados em catálise, separação, estocagem de gás, reconhecimento molecular e como novos meios reacionais. As combinações possíveis entre os diversos espaçadores orgânicos e os agregados inorgânicos são grandes, e metodologias para o desenvolvimento racional destes materiais são importantes para projetá-los de tal forma a ter-se uma grande diversidade topológica e funcionalidades químicas.

A cela unitária da MOF-5 consiste de 400 átomos ( Zn e O tetraédricos, CeH e como ilustrados na figura-1. Para tratar sistemas como este os métodos ab initio se tornam inviáveis. Métodos de Mecânica Molecular (UFF, DREIDING) foram testados, não apresentando bons resultados. Também foram validados os métodos semi-empirícos AM1, PM3 e MNDO para cálculo de energia e otimização de geometria.



Figura-1. Estrutura da MOF-5, em destaque a unidade básica de construção.
O método AM1, apesar de não ter sido parametrizados para estruturas como MOF's forneceu valores de entalpia de formação condizentes com a alta estabilidade termodinâmica destes materiais, além de estrutura molecular concordante com os resultados experimentais, apresentado erros inferiores a $0,1 \AA$ para as distâncias de ligação. A substituição do anel aromático da MOF $\left(\mathrm{CH}_{3} \mathrm{OH},-\mathrm{Br}, \mathrm{NH}_{3}\right)$ não afetou significativamente a geometria da MOF-5, no entanto gerou regiões de potencial negativo em seu interior. Além de uma unidade da MOF-5 foram estudadas duas unidades da MOF-5 e a variação da energia potencial durante a migração do benzaldeído entre as duas unidades da MOF-5. A estrutura molecular de uma unidade cúbica da MOF contendo fenantreno como grupo orgânico espaçador também foi determinada com o método AM1.
A metodologia aplicada se mostrou adequada para tratar este tipo de sistema conseguindo prever mudanças no ambiente químico no interior da MOF para os diferentes substituintes. (CNPq, FINEP, CENAPAD-SP, $I^{2}{ }^{2} \mathrm{C}$, PADCT, RENAMI)

# UM ESTUDO DA RALAÇÃO ESTRUTURA-ATIVIDADE (SAR) DE QUINONAS COM ATIVIDADE ANTI-CHAGÁSICA 

Fábio A. de Molfetta (PG), Albérico B. F. da Silva (PQ) famolfetta@iqsc.sc.usp.br<br>Instituto de Química de São Carlos, Departamento de Química e Física Molecular - USP<br>Caixa Postal 780, CEP 13560-970, São Carlos - SP<br>Palavras-chave: T. cruzi, quinona, dft.


#### Abstract

Estima-se que cerca de 16 a 18 milhões de pessoas estão infectadas com o parasita Trypanossoma cruzi, o agente etiológico da doença de Chagas, sendo que 2 a 3 milhões apresentam os sintomas clínicos que caracterizam o estágio crônico da doença e que 45 mil delas morrem a cada ano. A doença atinge cerca de um quarto da população da América Latina, representando um dos mais importantes problemas médico-sanitários em 17 paises, incluindo o Brasil, não só pela grande extensão geográfica que atinge, mas também devido a taxa de mortalidade e seus prejuízos cardíacos crônicos. Só no Brasil são 6 milhões de infectados. É a única doença infecciosa, dentre as grandes endemias brasileiras, que não tem tratamento eficiente, fazendo parte das 6 doenças endêmicas parasitárias reconhecidas como prioridade pela Organização Mundial da Saúde (OMS). Portanto, a busca por novas drogas mais eficientes e seguras, e por métodos de esterilização do sangue em áreas endêmicas se fazem necessárias.

A estrutura da quinona é comum a numerosos produtos naturais e está associada com atividades anticâncer, antibacteriana, antimalárica, fungicida e por sua atividade contra o Trypanosoma cruzi (atividade antichágasica ou tripanosomida). Na maioria dos casos a atividade biológica está relacionada com a habilidade das quinonas em aceitar um ou dois elétrons para formar o correspondente ânion radical ou espécies diânions. A capacidade variável das quinonas em aceitar elétrons é devida aos substituintes aceptores ou doadores de elétrons as quais modulam as propriedades redox responsáveis pelo estresse oxidativo.

O método de Química Quântica (DFT/6-31G*) foi empregado para calcular um conjunto de propriedades físico-químicas e estruturais de 26 quinonas usadas para treinamento e 3 novos compostos, os quais foram utilizados para previsão. As estruturas dos compostos foram otimizadas pelo mesmo método e todos os cálculos DFT foram realizados através do programa computacional GAUSSIAN 98. No total foram calculadas cerca de 80 variáveis.


Para processar os dados assim obtidos, fez-se uso de métodos quimiométricos como Análise de Componentes Principais (PCA), Análise Hierárquica de Agrupamentos (HCA), K-ésimo vizinho mais próximo (KNN) e Modelos Independentes de Similaridade (SIMCA) utilizando PCA, disponíveis no programa PIROUETTE 2.0.

A PCA, a HCA, o KNN e o SIMCA mostraram que as variáveis responsáveis pela separação entre os compostos ativos e inativos foram: Carga no átomo 9, Volume do substituinte dois, Carga total no substituinte um, HOMO-1 e ordem de ligação 17. Estas técnicas possibilitaram-nos obter uma relação entre as variáveis calculadas (descriptores) e o grau de atividade tripanosomida, separando as quinonas em dois grupos: compostos ativos e compostos inativos. (CAPES)

# EFEITO DA CONFORMAÇÃO MOLECULAR SOBRE AS CARGAS ATÔMICAS 

Edgardo García ${ }^{1}(P Q)$ e Glauciete S. Maciel ${ }^{2}(P G)$<br>ciete@unb.br<br>Laboratório de Química Computacional -Instituto de Química Universidade de Brasilia, Brasilia-DF, 70910-900, Brasil ${ }^{\text {1,2 }}$<br>Palavras-chave: cargas, conformação, transferibilidade.

No estudo de transferibilidade de cargas ${ }^{1}$, observamos que uma vizinhança radial 5 para cada átomo do sistema, é o suficiente para garantir o efeito da vizinhança sobre a carga. Cada tipo de átomo, com seus 5 vizinhos radiais, recebe uma carga média, que corresponde a carga de todos os átomos de mesmo código. Nossos resultados mostram que esta metodologia constitui-se em uma boa representação, o que pode ser observado pela qualidade dos momentos dipolos gerados, embora os descritores utilizados não incluam efeito conformacional.

Neste trabalho exploramos o efeito das conformações sobre os valores de cargas e a necessidade de criarmos um descritor 3D. Avaliamos como a dependência geométrica afeta os momentos dipolos resultantes em comparação com o modelo adotado de cargas fixas. Foram usadas neste estudo cargas CHELPG para 18 moléculas obtidas usando o método funcional de densidade híbrido (B3LYP//6-31G*) e o ab initio Hartree-Fock (HF//6$31 \mathrm{G}^{*}$ ), ambos com geometria HF/6-31G*. Os diedros para as 18 moléculas foram obtidos com intervalos de 15 graus e cargas foram calculadas para cada conformação. O impacto da dependência da carga atômica com a geometria tem sido estimado por comparação entre os desvios médios absolutos sobre os momentos dipolos calculados com as cargas de cada conformação e os dipolos do modelo de cargas fixas médias.

O estudo mostra que o desvio padrão nas cargas com as torções é de 0,014e para o B3LYP e 0,017e para o HF, sendo os desvios máximos de $0,034 e$ e $0,052 e$, para B3LYP e HF , respectivamente. O rrms é de $12 \%$ para o B3LYP e $10 \%$ para o HF , quando são descartados erros provenientes de cargas muito pequenas. Sendo o conjunto de cargas e suas flutuações de difícil comparação e avaliação, adotamos o momento dipolo como a propriedade a ser observada.

A investigação revelou que o efeito da vizinhança sobre as cargas é bem maior que o efeito da conformação. Enquanto o uso de um único vizinho radial gera, no momento dipolo, desvios superiores a $1,0 \mathrm{D}$, o uso de cargas médias promove desvios médios de $0,06 \pm 0,03 \mathrm{D}$, sendo sua média de máximos de $0,1 \mathrm{D}$ e máximo absoluto, para o conjunto estudado, de 0,5 D. Erros médios inferiores a 3\% e máximos de 5\% devem ser esperados ao adotarmos o modelo de cargas fixas.

Assim, os dados obtidos indicam que a utilização de um maior número de vizinhos é mais importante para uma boa representação das cargas que a utilização de um descritor tridimensional. (CNPq)
[1] García, E. e Maciel, G.S., Estudo de Transferibilidade de Cargas para Uso em Campos de Força Clássicos, X SBQT, Caxambú, Novembro, 1999.

# APLICAÇÃO DA TEORIA DE MATRָIZ DENSIDADE NA ANÁLISE DE EFETTOS PROVENIENTES DE FUNÇÕES DE BASE PARA CÁLCULOS COM PSEUDOPOTENCIAL. 

Ednalva D. R. da Silva Duarte (PG) ${ }^{1,2}$, Rogério Custodio (PQ) ${ }^{1}$<br>csr@iqm.unicamp.br<br>1. Instituto de Química / Unicamp Caixa Postal 6154 CEP 13083-970 Campinas - SP<br>2. DQ/CCT-UFRR, Campus do Paricarana s/n, Boa Vista-RR, CEP 69.270-310<br>Palavras - chave: teoria de matriz densidade, funções de base, pseudopotenciais

Uma das limitações a serem controladas em cálculos Hartree-Fock-Roothaan são as funções de base. Após definir-se o tipo de função de base, usualmente funções gaussianas, devese definir o número de primitivas. Um espaço completo de funções de base leva os resultados numéricos a atingir o que se denomina limite Hartree-Fock. Na prática, entretanto, este limite dificilmente é atingido por restrições computacionais. O tratamento das equações de Hartree-FockRoothaan é feito com um número limitado de funções e controlado freqüentemente através do teorema variacional.

Uma alternativa formal utilizada para definir-se um espaço completo de funçōes é utilizar-se transformadas integrais. Esta alternativa vem sendo aplicada com sucesso na previsão qualitativa de deficiências da escolha dos expoentes dos conjuntos de base em diversas situações. As dificuldades deste tipo de análise residem na necessidade de analisar-se a tendência de cada transformada para cada simetria de função de base em cada orbital molecular sobre cada átomo em uma molécula qualquer. Quanto maior o número de orbitais, maior será o número de transformadas por átomo. Uma forma condensada de avaliar-se deficiências por simetria e por átomo utilizando-se este procedimento pode ser obtido através do uso da teoria de matriz densidade. Neste formalismo, cada simetria de função de base em cada núcleo será representada por uma única superfície contínua no espaço de expoentes dos conjuntos de base, permitindo visualizar deficiências dos conjuntos de base ou limites definidos para o tipo de cálculo realizado. Neste trabalho foram feitas aplicações do método de matriz densidade utilizando-se transformadas integrais em cálculos utilizando-se pseudopotenciais. As figuras abaixo correspondem às superfícies de matrizes densidade para funções do tipo $s$ de átomos de Ar que foram calculadas com conjuntos de base 17 s 11 p com todos os elétrons (a esquerda) e com pseudopotencial de Steven, Bash e Krauss (a direita). A comparação das duas superfícies deixa claro que o pico pronunciado nos dois diagramas corresponde à densidade eletrônica no espaço de exponentes do orbital atômico de valência deste átomo. O pico eliminado no cálculo com pseudopotencial está obviamente associado à eliminação do orbital atômico 1s. A superfície calculada com pseudopotencial deixa claro que, embora o orbital atômico interno tenha sido eliminado do cálculo Hartree-Fock, o ajuste variacional da transformada integral introduz perturbações na superfície de densidade que estão associadas à penetração da densidade eletrônica na barreira produzida pelo pseudopotencial ou conseqüente efeito de separação inadequada dos elétrons de valência em relação aos internos. Estas superfícies permitem determinar efeitos não perceptíveis na análise convencional empregando-se transformadas integrais. (Fapesp, CNPq)



# MONTE CARLO QUÂNTICO E O VÍNCULO FORAAL COMA A TEORIA DE MATRIZ DENSIDADE. 

José Roberto dos Santos Politi (PQ) ${ }^{1,2}$, Juliana L. Paschoal (IC) ${ }^{1}$ e Rogério Custodio (PQ) ${ }^{1}$<br>roger@iqm.unicamp.br<br>1. Instifuto de Química / Unicamp Caixa Postal 6154 CEP 13083-970 Campinas - SP<br>2. Instituto de Química / Universidade Federal de Brasilia/ Caixa Postal 4478/70919-970 Brasilia, DF<br>Palavras - chave: Monte Carlo Quântico, Teoria De Matriz Densidade, Método De Fokker-Planck

O método Monte Carlo Quântico tem sido utilizado nos últimos anos como uma alternativa aos métodos quânticos usuais de estrutura efetrônica. Este método utiliza uma abordagem estocástica para resolver a equação de Schrödinger e tem produzido diferentes métodos dentre as quais destacam-se os métodos Monte Cario Variacional (MCV) e Monte Carlo de Difusão (MCD). Em qualquer um destes casos, a ineficiência das simulações exige a busca de algoritmos que acelerem a convergência das propriedades utilizadas como critério de convergência. Uma das alternativas mais utilizada é a amostragem preferencial. Neste caso, emprega-se uma função de onda que represente aproximadamente o sistema e utiliza-se o formalismo de Fokker-Planck para orientar a busca por um estado estacionário $f(x, t)$ durante a simulação. Essencialmente, o processo de caracterização dessa densidade estacionária está baseado na equação: $\partial f / \partial t=\sum D \partial / \partial X_{i}\left(\partial / \partial X_{i}-F_{i}(\mathbb{X})\right) f$, em que $D$ é uma constante de difusāo, $F_{i}$ é um "atrator" e $x$ as coordenadas idas configurações que representam o sistema. Para que a densidade $f(x, t)$ atinja o equilibrio é necessário que $\partial f / \partial t=0$. Assim sendo, verifica-se que o termo "atrator" deve ser representado como: $\bar{H}=(\nabla f) / f=2(\nabla \Psi) / \Psi$. o termo à direita da definição do "atrator" corresponde à utilizaçāo de uma função de onda que permite orientar a busca de configuraçōes de maior probabilidade. Tanto para determinar o valor médio da propriedade desejada quanto para calcular-se o termo "atrator" utiliza-se o artificio de fatorar-se funções de onda representadas por determinantes de Slater em termos de um produto de um determinante que contém apenas os elétrons com spin a por um determinante que contém apenas os elétrons com $\operatorname{spin} \beta$, ou seja, $\Psi=\Psi_{\alpha} \Psi_{\beta}$. Esta aproximação, embora conveniente por possibilitar o cálculo de gradientes e laplacianos, introduz o inconveniente de violar a indistinguibilidade eletrônica e em alguns casos, violar a anti-simetria da função de onda total.

Neste trabalho estudamos a aplicabilidade da teoria de matriz densidade no método MCV e DMC em cálculos de energias de átomos e moléculas explorando o espaço de configurações utilizando-se o formalismo modificado de Fokker-Planck. O programa MCV com Fokker Planck foi desenvolvido considerando-se que o termo "atrator" utilizou a função densidade $f$ definida em

$$
\Omega^{(n)}\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{2}^{\prime} \ldots \mathbf{X}_{n}^{\prime} \mid \mathbf{X}_{\mathbf{1}} \mathbf{X}_{2} \ldots \mathbf{X}_{\mathbf{n}}\right)=\iint \ldots \int \Gamma^{(n)}\left(\mathbf{r}_{1}^{\prime} \mathbf{1}_{2}^{\prime} \ldots \mathbf{r}_{\mathbf{n}}^{\prime} \mid \mathbb{1}_{\mathbf{1}}^{*} \mathbf{r}_{\mathbf{2}}^{*} \ldots \mathbf{r}_{\mathbf{n}}^{*}\right) d \xi_{1} d \xi_{2} \ldots d \xi_{n}
$$

em que $\Gamma^{(n)}=\Psi^{*} \Psi^{\text {. As funções de onda foram construídas com funçōes de base de Slater e testadas em átomos do }}$ segundo periodo da tabela periódica e moléculas diatômicas envolvendo estes elementos. Como esperado nesta fase de testes, os resultados sāo equivalentes aos obtidos pelo método empregando separação de spins e a convergência dos cálculos utilizando o método de Fokker-Planck atinge convergência mais rápida em relação aos cálculos sem este recurso, embora o tempo de processamento seja equivalente, uma vez que o cálculo do "atrator" aumente significativamente o tempo de cpu.

A matriz densidade de ordem $n$ também permite utilizar determinantes de Slater sem qualquer distinção entre elétrons com spin $\alpha$ e $\beta$ preservando a anti-simetria da função de onda e a indistinguibilidade eletrônica. Análise da superficie definida pela matriz densidade comparada com aquela obtida com separação de spins apresenta diferenças. Os resultados obtidos para energias em sistemas de camada aberta não demonstram sensibilidade em relação às diferenças observadas nas densidades eletrônicas. Considerando que este tratamento pode afetar as propriedades nodais da densidade eletrônica, espera-se que a utilização da matriz densidade no método MCD em sistemas de camada aberta seja sensivel a esta alternativa. Algoritmo para utilização do MCD e teoria de matriz densidade encontra-se em fase de conclusão. (Fapesp, CNPq)

# AS INTENSIDADES DE INFRAVERMELHO E O TENSOR POLAR DO CH3NC 

Roberto L.A. Haiduke (PG), Yoshiyuki Hase (PQ), Roy E. Bruns (PQ)<br>haiduke@iqsc.usp.br<br>Instituto de Química, Universidade Estadual de Campinas, CP 6154, CEP 13083-970 Campinas, SP, Brasil.<br>Palavras-Chaves: tensor polar, intensidades, análise de componentes principais


#### Abstract

O isocianeto de metila é um exemplo típico de molécula na qual os dados do espectro experimental de infravermelho não são suficientes para a determinação da intensidade de todas as suas bandas fundamentais. Primeiramente, a única fonte da literatura que apresenta dados de intensidade para esta molécula, obtida por Khilifi et al, ${ }^{1}$ não apresenta nenhuma informação sobre a banda $v_{7}$. Em segundo lugar, existe sobreposição de dois pares de bandas fundamentais $v_{1}-v_{5}$ e $v_{3}-v_{6}$. Entretanto, para a obtenção dos tensores polares atômicos (TPAs) é necessário o conhecimento das freqüências e intensidades experimentais de todas as bandas fundamentais. Desta maneira, para a separação das intensidades das bandas sobrepostas pode-se recorrer à realização de cálculos teóricos.

A primeira etapa do trabalho consistiu no ajuste de um campo de força de simetria com a finalidade de reproduzir as freqüências experimentais de infravermelho do isocianeto de metila e sua espécie deuterada e obter as coordenadas normais de todos os modos vibracionais fundamentais. A concordância das freqüências experimentais e as obtidas com este campo de força apresentou erros que não ultrapassaram $2,2 \mathrm{~cm}^{-1}$. A seguir, foram efetuados cálculos MP2(FC), B3LYP e QCISD com a função de base $6-311++\mathrm{G}(3 \mathrm{~d}, 3 \mathrm{p})$ para separar as intensidades dos pares de bandas sobrepostas, $\mathrm{v}_{1}-\mathrm{v}_{5}$ e $v_{3}-v_{6}$. Tais cálculos mostraram que a banda $v_{7}$ apresenta uma intensidade desprezivel, entre $0,14 \mathrm{e}$ $0,94 \mathrm{~km} \mathrm{~mol}^{-1}$. Para os pares de bandas sobrepostas foram preditas razōes $A_{1} / A_{5}$ entre 1,7 e 3,1 e $A_{3} / A_{6}$ entre 0,21 e 0,38 . Por fim, resolveu-se a ambigüidade de sinais das derivadas do momento dipolar em relação às coordenadas normais, $\partial \vec{p} / \partial Q_{i}$, com o auxilio dos cálculos teóricos anteriormente citados e análise de componentes principais. Os resultados desta análise podem ser vistos na fig. 1 para os elementos de simetria $A_{1}$.




Fig. 1: Gráfico de componentes principais do CH 3 NC para a espécie de simetria A1 (unidades de carga, e).
Nesta figura, pode-se observar que os pontos cheios, referentes aos dados experimentais das intensidades submetidos às três diferentes maneiras de separação, quase se superpõem. Isto indica que os elementos do tensor polar são pouco afetados pelo fato da separação se dar com o resultado dos cálculos MP2(FC), B3LYP ou QCISD. Os pontos vazios representam os resultados dos cálculos teóricos, os quais apontam como conjunto de sinais mais apropriados para as $\partial \vec{p} / \partial Q_{i}$ aquele situado ao alto e à esquerda na fig. 1. A espécie de simetria $E$ foi analisada de maneira análoga. Os TPAs obtidos são matrizes $3 \times 3$. Por sua vez, a derivada média do momento dipolar é um escalar dado pela terça parte do traço desta matriz. Os valores obtidos para estas derivadas médias são $0,347,-0,419$, 0,016 e 0,018 e, respectivamente para C 1 (carbono do grupo metil), $\mathrm{N}, \mathrm{C} 2 \mathrm{e} \mathrm{H}$. Os tensores polares atômicos da molécula de $\mathrm{CH}_{3} \mathrm{NC}$ foram obtidos a partir dos dados experimentais das freqüências e intensidades vibracionais em fase gasosa. Para tanto, os cálculos teóricos revelaram-se uma valiosa ferramenta na separação das bandas sobrepostas. As derivadas médias, que podem ser associadas com cargas atômicas, indicam que o carbono do grupo metil é bastante positivo, enquanto o outro átomo de carbono é quase neutro. (FAPESP).
[1] M. Khilifi, P. Paillous, P. Bruston, F. Raulin Icarus (1996) 124, 318.

# A IMIPORTÂNCIA DE DIPOLOS ATÔMICOS E FLUXOS DE CARGA E DIPOLO ATÔMICOS NA ANÁLISE DE PROPRIEDADES MOLECULARES 

Roberto L.A. Haiduke (PG), Roy E. Bruns (PQ)<br>haiduke@iqsc.usp.br<br>Instituto de Química, Universidade Estadual de Campinas, CP 6154, CEP 13083-970 Campinas, SP, Brasil.<br>Palavras-chave: AIM, cargas atômicas, dipolos atômicos

O formalismo de átomos em moléculas desenvolvido por Bader ${ }^{1}$ baseia-se nas características topológicas da densidade de carga eletrônica molecular (mínimos, máximos e pontos de sela) para definir os limites de cada átomo dentro da molécula. Assim, uma vez feito isto, é possível obter facilmente os diversos multipolos atômicos (carga, dipolo, quadrupolo, etc). Normalmente têm-se considerado somente o primeiro termo, a carga de cada átomo, em diversos estudos que visam descrever propriedades moleculares. Entretanto, como já apontado na literatura, ${ }^{2}$ esta descrição é muito simplificada e muitas vezes incapaz de atingir seu objetivo.

Neste trabalho serão tratadas 13 moléculas lineares $\left(\mathrm{H}_{2}, \mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{LiH}, \mathrm{NaH}, \mathrm{CO}, \mathrm{HCN}, \mathrm{OCS}, \mathrm{CO}_{2}, \mathrm{CS}_{2}\right.$, HCCH e NCCN ), 2 planares $\left(\mathrm{H}_{2} \mathrm{O}\right.$ e $\left.\mathrm{H}_{2} \mathrm{CO}\right)$ e uma tetraédrica $\left(\mathrm{CH}_{4}\right)$. Foram calculadas cargas e dipolos atômicos bem como seus fluxos com o nivel MP2(FC)/6-311++G(3d,3p).

$$
u_{x}=\sum_{i} q_{i} x_{i}+\sum_{i} m_{i, x}
$$



Fig. 1: Momentos de dipolo moleculares obtidos com MP2(FC)/6-311++G(3d,3p) e com as cargas e dipolos atômicos de Bader.

O momento de dipolo molecular pode ser dado, em termos das cargas e dipolos atômicos, como (1) onde $x$ representa uma coordenada genérica. A fig. 1 apresenta os momentos de dipolo moleculares previstos com a eq. 1 a partir do formalismo de Bader e os valores obtidos diretamente com MP2(FC)/6-311++G(3d,3p). Pode-se observar nesta figura que o ajuste entre as duas quantidades é bem satisfatória. Os maiores erros são observados para as moléculas de HF (erro de $0,13 \mathrm{D}$ ) e $\mathrm{H}_{2} \mathrm{O}$ (erro de $0,09 \mathrm{D}$ ). As derivadas do momento dipolar em relação aos deslocamentos atômicos podem ser dadas como derivadas da eq. 1. Assim nestas quantidades estarăo incluídos termos como fluxos de carga e dipolo atômicos. A concordância entre as derivadas obtidas com MP2(FC)/6-311++G(3d,3p) e com o formalismo de Bader é novamente satisfatória, com maiores erros entre 0,055 e 0,082 e ocorrendo para algumas derivadas das moléculas de HF, NaH e $\mathrm{H}_{2} \mathrm{O}$.

Finaimente, pode-se ilustrar a importância dos termos que vāo além da carga pontual para representar a força entre uma partícula carregada ( $+0,1$ e) e uma molécula. As moléculas abordadas nesta etapa final foram o HF e o CO em dois arranjos, perpendicular e colinear. As quantidades de Bader permitem interpretar e entender a origem e os termos determinantes destas forças.

Os termos do multipolo atômico que vão além da carga pontual e seus fluxos são imprescindiveis na descrição das derivadas do momento dipolar molecular frente a deslocamento atômicos, que dăo origem às intensidades vibracionais, e da força entre partículas carregadas e moléculas. O uso da carga somente não é nem mesmo capaz de reproduzir a anisotropia observada entre as forças nos dois arranjos estudados.
[1] R.F.W. Bader Atoms in Molecules: A Quantum Theory, Clarendon Press: Oxford (1990).
[2] R.F.W. Bader, A. Larouche, C. Gatti, M.T. Carrol, P.J. MacDougall, K.B. Wiberg J. Chem. Phys. (1987) 87, 1142. (FAPESP)

# DETERMINAÇÃO TEÓRICA DOS VALORES DAS CONSTANTES DE DESPROTONAÇÃO (PKA) PARA A HISTAMINA 

Heitor A. de Âbreu (PG)^, Vivagner B. de Álmeida (PQ) e Hélio A. Duarte (PQ) heitor@dedalus.Icc.ufmg.br<br>Laboratório de Quimica Computacional e Modelagem Molecular - LQC-MM Departamento de Quimica - Instituto de Ciencias Exatas - UFMG

PALAVRAS-CHAVES: Histamina, pKa, ab initio
A capacidade de determinar com precisão as constantes de desprotonação (pKa) de substảncias químicas pode ser extremamente útil. Apesar do fato de a química computacional estar alcançando o ponto onde cálculos com precisão química em cerca de $1 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$, a determinação dos valores de pKa's, com precisão ainda näo foi alcançada, apesar de grandes esforços terem sido dispensados nesta área'. É nesse ponto que realizamos esse trabalho, com o intuito de desenvolver uma metodologia simples e eficiente para o cálculo de tais propriedades. Em nossa metodologia conseguimos evitar o tratamento teórico do próton solvatado, que é uma espécie presente no meio e de dificil descrição. Para tal uma molécula com pKa conhecido experimentalmente (ácido acético/acetato) foi utilizada como padrāo para a determinaçảo do pKa da histamina. E através de um ciclo termodinàmico e da relação ( $\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}$ ), conseguimos determinar a constante de desprotonação da histamina.

A figura 1 mostra a reaçảo da primeira desprotonação da histamina, e a tabela 1 mostra os resultados obtidos para esta reação.


Figura 1 - Reação para a primeira desprotonação da histamina.
Tabela 1 - Resultados obtidos para o primeiro processo de desprotonação da histamina. Todas as energias estão em kcal $\mathrm{mol}^{-1}$, o valor experimental do pKa é 6,04 .

|  |  | $\Delta \mathrm{E}_{\text {dle }}$ mute $^{\text {gas }}$ | $\Delta \mathrm{G}_{\mathrm{T}}$ | $\Delta \mathrm{E}_{\text {sol }}{ }^{\text {PCKH }}$ | $\triangle \mathrm{G}$ | pKa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HF | 6-31G(d,p) | -203,35 | 1,08 | 192,66 | -9,61 | -2,28 |
|  | 6-31++G( $\alpha, p)$ | -195,17 | -0,24 | 192,50 | 1,08 | 5,55 |
|  | 6-311++G(d, $)^{\text {c }}$ | -195,96 | -0,20 | 190,05 | -6,10 | -0,28 |
|  | $6-311++G(2 d, 2 p)$ | -196,72 | -0,14 | 187,88 | -8,98 | -1,82 |
|  | 6-311++G(2df, 2pd) | -195,95 | -0,22 | 188.48 | -7.69 | -0,88 |
| BLYP | 6-31G(d,p) | -201.43 | 0.06 | 191.12 | -10,25 | -2.75 |
|  | $6-31++\mathrm{G}(\mathrm{d}, \mathrm{p})$ | -186,39 | 0,20 | 189,69 | 3,50 | 7,32 |
|  | 6-311++G(d,p) | -188,18 | 1,36 | 187,44 | 0.62 | 4,30 |
|  | $6-311++\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p})$ | -191,98 | 0,11 | 185,20 | -6,67 | -0,13 |
|  | $6-311++G(2 d f, 2 p d)$ | -191,08 |  |  |  |  |
| MP2 | 6-31G(d.p) | -206,95 | -0,31 | 192,10 | -15,16 | -6,35 |
|  | $6-31++\mathrm{G}(\mathrm{d}, \mathrm{p})$ | -194,78 | -0.51 | 190,95 | -4,34 | 1,57 |
|  | 6-311++G(d,p) | -197.93 |  |  |  |  |
|  | $6-311++G(2 d, 2 p)$ | -197,14 |  |  |  |  |
|  | $6.311++G(2 d f, 2 p d)$ | -197,57 |  |  |  |  |
| MP4 | 6-31G(d,p) | -214,91 |  |  |  |  |
|  | $6-31++\mathrm{G}(\mathrm{d}, \mathrm{p})$ | -201,29 |  |  |  |  |
|  | 6-311++G(d,p) | -205,16 |  |  |  |  |
|  | 6-311++G(2d,2p) | -198,34 |  |  |  |  |

De acordo com os dados da tabela 1, podemos observar que a contribuiçāo da energia eletrönica está praticamente estabilizada com a melhora na função de base utilizada, enquanto que a contribuição da energia de solvatação está variando razoavelmente. Assim sendo, acreditamos que um dos motivos da ineficácia em se determinar tais propriedades está contida na energia de solvatação, a qual precisa ser melhor descrita pela metodologia. E a forma com que analisamos os dados ${ }^{2}$, através da decomposição da energia de solvatação, nos permitiu ter uma visäo mais ampla dos pontos a serem reforçados neste tipo de estudo.
1 - Jorgensen, W. L., Briggs, J. M., J. Am. Chem. Soc., 111 (1989), 4190.
2 - Santos, H. F., Almeida, M. V., Almeida, W. B., Theor. Chem. Acc., 107 (2002) 229.
APOIO: CNPq, FAPEMIG

# ESTRUTURA E ESTABILIDADE DO HOMODÍMERO (PCCP) ${ }_{2}$ 

Cleber P.A. Anconi(PG), Heitor A. De Abreu(PG), Eder S. Xavier(PG), Mauro L. Franco(PG), Hélio A. Duarte(PQ), Wagner B. De Almeida(PQ)<br>wagner@netuno.qui.ufmg.br<br>Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31.270-901, Brasil

Palavras-chaves : PCCP, complexos de van der Waals, Ab initio
O estudo da estrutura molecular e estabilidade de dímeros fracamente ligados na fase gasosa é de grande relevância para o modelamento de forças intermoleculares, principalmente na investigação de complexos moleculares de interesse para a química atmosférica. O dímero (PCCP $)_{2}$ foi primeiramente analizado pelo nosso grupo ha' alguns anos atrás, onde foi utilizada uma metodologia bastante modesta com cálculos no nível Hartree-Fock (HF) com funções de base moderadas, e um tratamento simplificado de efeitos devido a correlação eletrônica [W.B. De Almeida, S.M. Resende, H.F. Dos Santos, Mol. Phys., 81 (1994) 1397]. Neste trabalho incluiu-se também um cálculo aproximado do coeficiente de dispersão $\left(\mathrm{C}_{6}\right)$ a partir de valores calculados para propriedades de um elétron.

Dado o interesse de nosso grupo na aplicação e desenvolvimento de novos métodos de Funcional de Densidade (DFT), decidimos utilizar estes métodos, visando estabelecer os limites de aplicação da DFT para a área de interações intermoleculares, tendo como padrão de comparação métodos ab initio altamente correlacionados.

Vários estados estacionários foram localizados na superfície de energia potencial (PES) sendo caracterizados como mínimos verdadeiros e estados de transição. Estão mostradas abaixo.as estruturas otimizadas no nível MP2/aug-cc-pVDZ para os mínimos paralelos e em forma de " $T$ ",





Fig. Estruturas otimizadas no nível MP2/aug-cc-pVDZ.
Tabela. Energias de associação utilizando o modelo da supermolécula. Valores entre parênteses são referentes ao erro de superposição de base ( $\left.\Delta E^{B S S E}\right)$.

| $\Delta \mathrm{E}_{\text {ele-nuc }} / \mathrm{kcalmol}^{-1}$ | MP2/aug-cc-pVDZ | BLYP/aug-cc-pVDZ |
| :--- | :--- | :--- |
| Estrut. Paralela | $-4,58(0,94)$ | $0,02(-0,02)$ |
| Estrut. "T" | $-3,40(1,01)$ | $-0,02(-0,16)$ |

Pode-se notar claramente pela tabela acima a diferença entre o nível correlacionado Pós-Hartree-Fock MP2 e o método de Funcional de Densidade utilizando o funcional BLYP para prever as energias de estabilização do dímero (PCCP) ${ }_{2}$.

Neste trabalho, ênfase será dada na avaliação da performance de vários funcionais para a previsão da estrutura molecular e energias de associação, com o intuito de investigar, quantitativamente, a contribuição de dispersão para a energia de estabilização que cada funcional fornece, tendo como base de comparação cálculos ab initio Pós-Hartree-Fock. Nosso objetivo principal é o de obter explicações, com bases sólidas, sobre as deficiências dos funcionais de troca e correlação usualmente utilizados na DFT para o estudo de complexos fracamente ligados. (CNPq, FAPEMIG).

# APLICAÇÃO DE UM CAMPO DE FORÇA EMPÍRICO PARA COMPLEXOS SIDERÓFOROS $\alpha$-HIDROXICARBOXILATOS-Fe III. 

Anna M. Canavarro Benite ${ }^{1}(\mathrm{PG})$, Bianca da C. Machado ${ }^{1,2}(\mathrm{PQ})$, Juan Omar MachucaHerrera ${ }^{1}(P Q)$ e Sergio de P. Machado ${ }^{1}(P Q)$<br>sergiopm@iq.ufrj.br<br>1-Laboratório de Química Inorgânica Computacional, Instituto de Química, UFRJ. 2-Departamento de Química Geral e Inorgânica, Instituto de Química, UFF.<br>Palavras-chave: sideróforos, modelagem molecular


#### Abstract

A insuficiência de dados estruturais sobre uma determinada molécula, ou seu complexo metálico, remete-nos a utilização de técnicas de modelagem molecular como uma das estratégias capazes de superar, em parte, estes obstáculos, contribuindo desta forma, para a formulação ou proposição de modelos mais precisos das interações micro-biomacromoleculas'. Este trabalho apresenta a aplicação de um campo de força para compostos de coordenação do tipo sideróforos $\alpha$ -hidroxicarboxilatos-Felll, compostos estes de grande interesse devido a sua atividade biológica e aplicações na indústria e agricultura ${ }^{2}$. Desta forma, na tentativa de biomimetizar ligantes da classe $\alpha$-hidroxicarboxilatos, utilizamos como complexo modelo a estrutura apresentada na fig.1.




Figura 1. Estrutura do complexo modelo N1,1-oxo-3-hidroxi-3,4-dicarboxibutil-FellI.
Com base neste modelo, empregando o programa FORCES desenvolvido no laboratório de química inorgânica computacional da UFRJ,os cálculos revelaram um ambiente de coordenação distorçido ortorrombicamente caracterizado pelos três pares de distancias $\mathrm{Fe}-\mathrm{O} 1.89 \AA, 1,87 \AA$ e 1,85 Å. Ainda para este modelo foram obtidos os resultados de freqüência vibracional dispostos na tabela1. As constantes de força, envolvendo o centro de coordenação, pertinentes a estes resultados teóricos são apresentadas na tabela 2.

Tabela 1. Freqüências vibracionais $\left(\mathrm{cm}^{-1}\right)$ para o complexo modelo.

|  | $v_{\mathrm{C}-\mathrm{O}}$ | $v_{\text {N-C amida }}$ | $\delta_{\mathrm{C} \cdot \mathrm{H}}$ |
| :---: | :---: | :---: | :---: |
| Teórico | 1495 | 1481 | $1419,1402,1318$ |
| Experimental $^{3}$ | $1770^{3} ; 1703^{3}$ | $1640^{3} ; 1625^{3}$ | $1443^{3}, 1412^{3}, 1376^{3}$ |

Tabela 2. Constantes de força de ligação (mdynas/Å) e de ângulo (mdynas.Å/rad ${ }^{2}$ ) para o centro de coordenação do complexo modelo.

| Ligação | Constante | Ângulo | Constante |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}-\mathrm{O}_{\mathrm{S}}$ | 1,5 | $\mathrm{O}_{\mathrm{S}}-\mathrm{Fe}-\mathrm{O}_{\mathrm{S}}$ | 0,5 |
| $\mathrm{O}_{\mathrm{S}}-\mathrm{C}_{\mathrm{S}}$ | 5,5 | $\mathrm{Fe}-\mathrm{O}_{\mathrm{S}}-\mathrm{C}_{\mathrm{S}}$ | 0,25 |
| $\mathrm{O}_{\mathrm{S}}-\mathrm{C}_{\mathrm{D}}$ | 6,0 | $\mathrm{Fe}-\mathrm{O}_{\mathrm{S}}-\mathrm{C}_{\mathrm{D}}$ | 0,6 |

A geometria de equilíbrio obtida através da utilização deste campo de força revela um centro de coordenação ortorrômbico, o que esta de acordo com dados experimentais de espectroscopia EPR e Mossbauer ${ }^{4}$. As freqüências vibracionais teóricas também demonstram equivalência, quando comparadas com valores experimentais ${ }^{3}$. Desta forma podemos concluir que tais resultados demonstram a validade do campo de força empírico aplicado neste trabalho.

[^40]
# SOLUÇÃO INDIRETA DA EQUAÇÃO DE HILL-WHEELER PARA O ÁTOMO DE HIDROGENIO 

Wagner F. D. Angelotti (PG), Milan Trsic (PQ)<br>angelotti@iqsc.usp.br<br>Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo.<br>Palavras-chave: método da coordenada geradora, equação de hw, átomo de hidrogênio.

O Método da Coordenada Geradora foi introduzido em 1953 por Hill e Wheeler com o objetivo de relacionar o movimento coletivo com o das partículas individuais no problema da fissão. Tal método consiste na resolução de uma equação integral não trivial dada por

$$
\int[H(\alpha, \beta)-E S(\alpha, \beta)] f(\beta) d \beta,
$$

onde $H(\alpha, \beta)$ e $S(\alpha, \beta)$ são hermitianos e são denominados os "kernels" da equação e $f(\beta)$ é a função peso a ser determinada. Esta equação é também conhecida como equação de HillWheeler.

Neste trabalho, inicia-se a busca de uma nova metodologia para o MCG com uma técnica matemática ainda não testada para a equação de HW: Integração por Partes. Partindo-se da fórmula de integração por partes

$$
f g=\int f^{\prime} g d \tau+\int f g^{\prime} d \tau
$$

a equação de Hill-Wheeler passa a ter a seguinte forma
$[H(\alpha, \beta)-E S(\alpha, \beta)] f(\beta)=\int[H(\alpha, \beta)-E S(\alpha, \beta)]^{\prime} f(\beta) d \beta+\int[H(\alpha, \beta)-E S(\alpha, \beta)]^{\prime}(\beta) d \beta$.
Esta metodologia é testada para o átomo de hidrogênio, usando-se uma função de prova gaussiana não normalizada, já que se tem a forma explícita para a energia de qualquer estado. Usando o resultado de um teorema feito neste trabalho obtém-se que a soma das duas integrais da equação acima é zero e, sendo assim, tem-se o seguinte fato.

$$
E=H(\alpha, \beta) / S(\alpha, \beta),
$$

com a hipótese de que $S(\alpha, \beta) \neq 0$.
Os resultados obtidos mostram que a aplicação de Integração por Partes na equação HW é extremamente viável, apesar de ser testada para um modelo simples (no caso o átomo de hidrogênio), pois obteve-se valores com pelo menos dez casas decimais de precisão para os valores das energias do estado fundamental e dos onze primeiros estados excitados. (FAPESP, CNPq).

[^41]
# ESTUDO TEÓRICO DE TAUTÔMEROS DA FLORETINA 

Alexanuite L. A. Bentes (PG), Cláuudio N. Alves (PQ) albentes@ufpa.br<br>Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110 Belém, PA, Brasil.<br>Palavras-Chaves: 2,6-di-hidroxiacetofenona; pcm; hf/6-311g**.

Recentemente, Bashir M. Rezk [1] e colaboradores estudaram a atividade antioxidante da floretina, uma hidroxi-chalcona do grupo dos flavonóides. Estas moléculas são responsáveis pela inibição de doenças causadas pela presença de oxigênio e nitrogênio reativos, tais como câncer, cardiovasculares, pulmonares e doenças neurológicas. Segundo os pesquisadores a atividade antioxidante esta relacionada com a estabilidade de seus radicais via o tautomerismo ceto-enol.

Neste trabalho foi utilizado o método ab initio em nível de teoria HF, com o conjunto de base $6-311 \mathrm{G}^{* *}$, para estudar o tautomerismo ceto-enol da 2,6 -di-hidroxiacetofenona. O efeito do solvente foi considerado com o método continuo polarizável (PCM). Foram feitos cálculos do potencial químico e dureza molecular usando energias do HOMO e do LUMO.

Na tabela 1 são mostrados os valores de energias, barreiras de energias e dureza molecular para as formas cetona (1), enol (2) e estrutura de transição (ET) da 2,6-dihidroxiacetofenona (Figura 1). Os cálculos mostram que o isômero ceto adquire uma maior estabilidade em relação ao isômero enol de $21,18 \mathrm{kcal} \mathrm{mol}^{-1}$ no vácuo e $19,88 \mathrm{kcal} \mathrm{mol}^{-1}$ em água, as barreiras de energia observadas foram $83,36 \mathrm{kcal} \mathrm{mol}^{-1}$ no vácuo e $83,49 \mathrm{kcal} \mathrm{mol}^{-1}$ em água. Na estrutura de transição o valor de dureza molecular é mínimo ( $5,20 \mathrm{eV}$ ), enquanto que a energia é máxima. Isto está de acordo com a validade do princípio da máxima dureza (PMD), o qual afirma que sistemas moleculares em equilibrio tendem a estados de alta dureza [2], para reações de transferência de próton intramolecular. (CAPES, CNPq, UFPA).

Tabela 1: Energias totais (em Hartree) e barreiras de energias (em kcal mol ${ }^{-1}$ )

| Composto | Energia (vácuo) | Energia <br> (água) | $\Delta \mathrm{E}$ <br> (vácuo) | $\Delta \mathrm{E}$ <br> (água) | $\eta$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $-532,331298$ | -532.343831 | 0 | 0 | 5,31 |
| ET | $-532,198460$ | -532.210784 | 83,36 | 83,49 | 5,20 |
| 2 | -532.297532 | -532.312144 | 21,19 | 19,88 | 5,79 |



1


2


ET

Figura 1: Estruturas 1, 2 e ET otimizadas com o método HF/6-311G**
Referências:
[1] B. R. Rezk; G. R. M. M. Haenen ; Biochemical and Biophysical Research 295 (2002) 9-13
[2] Pearson, R. G. Chemical Hardness; Wiley-VCH : New York, 1997.

# UM ESTUDO QUIMIOMÉTRICO DE FLAVONÓIDES COM AÇÃO ANTI-HIV-I USANDO REGRESSÃO LINEAR MÚLTIPLA 

Jerônimo L Silva ${ }^{1}$ (IC), Cláudio N Alves ${ }^{1}(\mathrm{PQ})$<br>Isjeca@bol.com.br<br>${ }^{1}$ Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará. Palavras-chave: qsar, flavonóides, pm3

A síndrome da imunodeficiência adquirida (AIDS) é um sério problema de saúde pública no Brasil e em muitos países do terceiro mundo. Segundo a OMS o vírus da Imunodeficiência Humana Tipo-I (HIV - I) já dizimou mais de 4 milhões de pessoas em todo o planeta e estima-se que seja hóspede no organismo de outros 22 milhões.

No tratamento de pacientes de AIDS são basicamente utilizados dois compostos: o AZT e o DDI, sendo que sua ação não-específica contribui para o efeito tóxico dessa classe de compostos. Logo se torna necessário encontrar novos compostos, que tenham baixa toxicidade e preferencialmente uma maneira diferente de inibição da replicação viral. Alguns compostos de Flavonóides têm mostrado uma potente atividade anti-HIV-I, assim como uma baixa toxidade. Os flavonóides (figura abaixo) são substâncias largamente distribuídas no reino vegetal, eles são um grupo de aproximadamente 4000 compostos de ocorrência natural e estão presentes em todas as plantas vasculares.


Nesse trabalho foram estudadas 27 moléculas de Flavonóides modeladas com o método semi-empírico PM3.Para essas moléculas foram calculados uns conjuntos de propriedades físico-químicas a fim de correlacioná-las com atividade antiviral (Log $1 / E C_{50}$ ). Usando o método de regressão linear múltipla (RLM), as propriedades que se mostraram mais importantes foram coeficiente de partição (ClogP), potencial eletrostático no átomo $3\left(P_{3}\right)$, a carga no átomo $6\left(Q_{6}\right)$ e a eletronegatividade $(\chi)$. O modelo obtido é mostrado abaixo, onde $R^{2}$ é o quadrado do coeficiente de correlação, $Q^{2}$ é o quadrado do coeficiente de correlação cruzada, PRESS é a soma dos quadrados dos erros de previsão, SEP é o desvio padrão da avalidação cruzada e $F$ é o teste de Fischer.
$\log 1 / E C_{50}=0.6033 C L \log P+0,4394 \mathrm{P}_{3}-0.4143 \mathrm{Q}_{6}+0.2270 \chi$
$R^{2}=0.90 \mathrm{R}^{2}$ ajus $=0.88 \quad \mathrm{Q}^{2}=0.82$ PRESS $=4.71 \quad \mathrm{SEP}=0.42 \quad \mathrm{~F}=42.39$

O modelo obtido explica em torno de $88 \%$ variabilidade dos dados. Essa equação é muito relevante, pois apresenta um valor de $R^{2}$ e $Q^{2}$ relativamente altos, apresentam também um valor baixo para o desvio padrão e um valor alto para $F$, isso implica dizer que esses dois modelos têm um elevado grau de significância e uma boa previsibilidade, e dessa forma pode ser usado na previsão de atividades anti-HIV de outras moléculas de flavonóides, podendo também futuramente ajudar na síntese de fármacos mais potentes contra o vírus HIV-I. (CNPq, UFPa)

# SIMULATION OF ULTRA-VIOLET ABSORPTION SPECTRA USING QM/MM HYBPID SIMULATIONS WITH EXPLICIT SOLVENT REPRESENTATION 

Marcos Serrou do Amaral ${ }^{1}$ (PQ), Amando Siuiti Ito ${ }^{2}$ (PQ), Michel Loos ${ }^{3}$ (PQ)<br>msamaral@ceuc.ufms.br<br>${ }^{1}$ Departamento de Ciências Exatas, Campus de Corumbá, Universidade Federal de Mato Grosso do Sul<br>${ }^{2}$ Departamento de Física e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo<br>${ }^{3}$ Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Key-words: indo-s/cis, absorption spectrum, molecular mechanics

In this work, we present and compare several methods for the theoretical determination of ultra-violet absorption spectrum of large molecules in solution. All simulations were performed using the THOR package of programs.

The presented methods result from the combination of a method producing molecular geometries of the solute (and the solvent when relevant): (10) geometry optimization of the solute in vacuo (10) geometry optimization of the solute with a dielectric continuum representing the solvent (1)classical molecular mechanics of the solute + solvent.
(10hybrid $\mathrm{QM} / \mathrm{MM}$ dynamics the solute being treated by QM , the solvent by MM .
With a method simulating absorption spectra (INDO/S-CIS):
(10in vacuo
(1) using a dielectric continuum model
(10)using the explicit charges of the classical water
(1)using explicitly some water molecules in the quantum calculation with or without the remaining classical charges.

The solute molecule was described quantum chemically with the AM1 Semiempirical Hamiltonian, whereas the water molecules were explicitly represented and treated classically by the extended simple-point-charge (SPC/E) model.

Preliminar results for anionic 5 -hidroxy-tryptophan molecule were used and compared with recent experimental results. The conformational behaviour of the dihedral angles chi1 and chi2 is discussed and absorption spectra are compared to calculated vacuum spectra and to experimental results. (FUNDECT).


Figure 1: The 5-hydroxy-tryptophan absorption spectrum obtained using INDO/S-CIS with MD simulations.

# THEORETICAL STUDY OF THE REACTIONS $\mathrm{BF}_{3}+\mathrm{BH}$ 

Patrícia R.P. Barreto ${ }^{1}(P Q)$, Eberth de A. Corrêa ${ }^{2}(P G)$, Alessandra F. A. Vilela ${ }^{2}(P G)$, and Ricardo_Gargano ${ }^{2}$ (PQ)<br>eberth@ig.com.br<br>${ }^{1}$ Laboratório Associado de Plasma - LAP, Instituto Nacional de Pesquisas Espaciais - INPE/MCT, CP515, São José dos Campos, SP, CEP 12+247-970, Brazil<br>${ }^{2}$ Instituto de Física, Universidade Brasilia, CP04455,<br>Brasilia, DF, CEP 70919-970, Brazil<br>Key words: boron trifluoride, Transition State Theory, rate constant.

A kinetic mechanism describing the growth of boron nitride films was developed. The gas-phase mechanism includes 35 species and 1012 reactions and also extends a previous mechanism that contained 26 species and 67 elementary reactions. Rate constants for 117 elementary reactions were obtained from published experimental/theoretical data and those for the other 895 reactions should be estimated using transition state theory. In this work we present the rate constants for the gas-phase reactions $\mathrm{BF}_{3}+\mathrm{BH}$ over the temperature range of 200 - 4000K. To develop this study, using the Transition State Theory (TST), we must know the geometries, frequencies, and the potential energy for reactants and saddle point. These information are obtained from accurate electronic structure calculation performed using the GAUSSIAN98 program. To determine the reaction rate for title reaction, by using conventional transition state theory, we use a simple code developed for this work.(CNPq, CENAPAD-SP).

# PIGMENTOS DE ALUMINA/FERRO: ANÁLISES MECÂNICO quântica E Experimental 

Renata C. Lima*(PG), Marcos A. Santos(PG), Maria Fernanda C. Gurgel(PG), Elson Longo(PQ), Edson R. Leite(PQ)<br>renatacl@dq.ufscar.br<br>CMDMC - LIEC/DQ/UFSCar - Via Washington Luiz, Km 235; Caixa Postal 676; CEP 13.565-905 São Carlos - SP - Brasil<br>Palavras-chave: Ab-initio, Pigmentos, Alumina

A maior parte dos pigmentos cerâmicos consiste de substâncias que possuem uma estrutura cristalina determinada. Em linhas gerais, estruturalmente, um pigmento cerâmico está formado por uma rede hospedeira, em que se integra o componente pigmentante, ou cromóforo (normalmente um cátion de transição ou transição interna) e os possíveis componentes modificadores que estabilizam, conferem ou reafirmam as propriedades pigmentantes (poder pigmentante e o tom da cor). No presente trabalho objetiva-se sintetizar por intermédio do método dos precursores poliméricos (Pechini), pigmentos tendo como matriz a alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, dopada com ions ferro(III). Foram sintetizados pigmentos com diferentes concentrações de dopante ( $2,4 \mathrm{e} 8 \% \mathrm{em} \mathrm{mol}$ ) que posteriormente receberam tratamento térmico de 700 a $1100 \square C$. A evolução de fases foi acompanhada por Difração de Raios X , onde a 1100 ロC observou-se a fase mais estável da alumina (corundum). Por Espectroscopia Raman pode-se verificar a mudança de geometria da alumina, de cúbica para romboedral, com o aumento da temperatura de calcinação. Por Microscopia Eletrônica de Transmissão observou-se o tamanho das partículas na faixa de 7 a 11 nm , para a fase gama da alumina obtida à $900^{\circ} \mathrm{C}$. Por UV-vis e análises colorimétricas verificou-se os efeitos do dopante e das temperaturas de calcinação na intensidade da cor amarela dos pigmentos. Realizou-se também um estudo utilizando o método mecânico quântico computacional por meio da aproximação de modelos periódicos (Crystal 98) à nível ab-initio. A finalidade do mesmo foi a descrição mais detalhada das propriedades ópticas, estruturais e eletrônicas do ferro na fase gama da alumina, visando dar suporte as investigações e interpretações de resultados experimentais obtidos em nosso grupo de pesquisa. Os resultados teóricos são concordantes com os dados experimentais, sendo que as análises pelo DOS mostram que a energia de gap diminui com relação a alumina pura permitindo a transferência do elétron da banda de valência para a banda de condução. Por outro lado, as estruturas de bandas caracterizam a influência do ferro principalmente por intermédio dos orbitais $d$. (FAPESP-CEPID, CNPq, CAPES, FINEP)

## UNIVERSAL BASIS SETS FOR LOW-LYING EXCITED STATES OF POSOTIVE AND NEGATIVE IONS

## Cezar Laurence Barros (PG), Francisco Elias Jorge (PQ).

 cezarl@cce.ufes.brDepartamento de Física, Universidade Federal do Espirito Santo, 29060-900 Vitória, ES, Brasil.
Palavras-chave: univeral basis sets, molecular improved generator coordinate hartree-fock method, low-lying excited states electron correlation energies.

From the results obtained in this work and by Jorge and Martins [ Chem.Phys. 233 (1998) 1], Jorge and Fantin [Chem. Phys 249 (1999) 105 ], Jorge and Franco [Chem. Phys 253 (2000) 21], we can conclude that it is possible to generate a unique basis set of Gaussian-Type Functions or Slater-Type Functions to describe ground and excited states of a set atomic systems.

For all low-lying excited states of the positive and negative ions presented here the HF total energies calculated in this work with universal basis sets of Gaussian-Type Functions and Slater Type Functions are always lower than the corresponding ones obtained with the UBSs generated by Da Silva Trisic [ Can. J. Chem. 74 (1996) 1526 ]. Besides this, in general the results obtained with our UBS of STFs are better than those computed by Clementi and Roetti [ At. Data Nucl. Data tables 14 (1974) 177].

# RELATIVISTIC EFFECTS ON NONCLASSICAL $\left[\mathrm{Hg}(\mathrm{CO})_{2}\right]^{2+}$ 

Luiz G. ili.de inacedo ${ }^{1}$ (PG), Jacek Siyszynski ${ }^{2}$ (PQ)<br>jstysz@uoo.univ.szczecin.pl<br>(1) IQSC/USP, Av. Trabalhador Sao Carlense 400, Centro 13566-590 Sao Carlos, SP (2) Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451, Szczecin, Poland

Keywords: Relativistic quantum chemistry, non classical carbonyls, transition metal chemistry.
The nature of bonding between transition metals and carbon monoxide is one of the most fundamental aspects of organo-transition metal chemistry. Virtually any discussion of such bonding involves the C-O stretching frequencies ( $v_{\mathrm{CO}}$ ) of metal carbonyls, which are believed to be determined by the relative magnitudes of $\mathrm{M} \rightarrow \mathrm{CO} \pi$-back-bonding and $\mathrm{C} \rightarrow \mathrm{M} \sigma$-bonding. Whereas $\pi$-back-bonding clearly induces a decrease in $v_{c o}, \mathrm{C} \rightarrow \mathrm{M} \sigma$-bonding tends to receive less attention but is generally believed to increase $v_{c o}$. The magnitude of the $\pi$-back-bonding effect is widely accepted as much greater than that of $\sigma$-bonding, in accord with the observation that $v_{c o}$ values of most metal carbonyls are significantly lower than that of free CO. By the way recently, a new and very intriguing class of late-metal complexes has been discovered: homoleptic noble metal carbonyl cations, termed "non-classical carbonyls". Carbonyl frequencies in these complexes are found to be greater than that for free CO.

In order to understand the possible role on relativity on these class of complexes, relativistic 4-component Dirac-Fock, Dirac-Fock-Breit, MP2,CCSD and $\operatorname{CCSD}(\mathrm{T})$ calculations have been performed on MOLFDIR package to study the character of metal-CO bonding of $\left[\mathrm{Hg}(\mathrm{CO})_{2}\right]^{2+}$, the only known mercury carbonyl to date. For the estimation of relativistic effects, corresponding non-relativistic calculations has also been performed. Results show that the Hg CO bonding is weak and is mainly $\sigma$ in character, its bond length is contracted in about $10 \%$ due to relativistic effects, as well negligible $\mathrm{Hg} \rightarrow \mathrm{CO} \pi$ back-bonding, resulting that the $v_{C O}$ increase is probably due to polarization effects.

# CALCULO DA FORÇA DE OSCILADOR GENERALIZADA EM EXCITAÇÕES DE CAMADA INTERNA DO BUTADIENTO E DO NAFTALENO 

M. Barbatti (PQ) e C. E. Bielschowsky (PQ)<br>biel @iq.ufrj.br<br>GET. Grupo de Espectroscopia Teórica<br>Departamento de Físico-Química, Instituto de Química - Universidade Federal do Rio de Janeiro, http://www.iq.ufrj.br/get/<br>Palavras-chave: Especroscopia Molecular, Excitação Eletrônica, Fôrça do Oscilador

Estamos calculando as forças de oscilador generalizada e ótica, para a excitação de elétrons de camada interna por impacto de elétrons de alta energia, das moléculas de butadieno e naftaleno.

As funções de onda dos estados fundamental e excitado são obtidas em nível de interação de configurações com excitações simples e duplas, sobre um conjunto de funções de base construído especificamente para obter grande flexibilidade na descrição da região de caroço. Os estados excitados são otimizados de forma independente, levando-se em conta o forte efeito de relaxamento que ocorre quando da excitação de elétrons de camadas interna. As funções de onda são obtidas com o novo módulo GENCl do pacote de programas GAMESS.

As forças de oscilador generalizadas são obtidas no contexto da Primeira Aproximação de Born. Para calculá-las e também as forças de oscilador óticas, utilizamos o conjunto de programas Born-Colp, desenvolvidos pelo nosso grupo. Atualizações recentes no código Born-Colp permitiram uma maior flexibilidade na entrada das funções de onda necessárias ao cálculo, abrindo a possibilidade de trabalhar com moléculas maiores e com ligações conjugadas.

A escolha do butadieno como primeiro exemplo para ser estudado nesta nova fase de nosso projeto de pesquisa, se deve à sua relativa simplicidade estrutural. Já o naftaleno foi escolhido respondendo à demanda de resultados teóricos para auxiliar a análise dos espectros de perda de energia por impacto de elétrons, obtidos por colaboradores experimentais. (CNPq, FAPERJ).

# ESPECTROSCOPIA DE FOTOELÉTRONS LIMIARES DO BENZENO 

Cleber D. Moreira ${ }^{1}(P G)$, Helder Couto ${ }^{1}(P Q)$, Danilo P. Almeida ${ }^{2}(P Q)$, Eduardo N. de Azevedo ${ }^{1}$ (PG), Marcelo P. Gomes ${ }^{1}$ (PG), Maria Cristina A. Lopes ${ }^{1 *}$ (PQ) criss@fisica.ufjf.br.<br>1) Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora - MG, 36036-330, Brasil<br>2) Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, 88040-560, Brasil Palavras-chave: TPES, Benzeno, Radiação Síncrotron

A Espectroscopia de Fotoelétrons Limiares (Threshold Photoelectron Spectroscopy TPES) é uma excelente técnica para o estudo de estados eletrônicos de íons atômicos e moleculares, produzindo informações que não podem ser obtidas com a Espectroscopia de Fotoelétrons convencional (Photoelectron Spectroscopy - PE), dado que a TPES é mais sensível a processos indiretos que levam à ionização. Neste trabalho aplicamos TPES no estudo da camada de valência externa do benzeno, abrangendo a região de energia de 13 a 34 eV . O espectro TPE do benzeno foi registrado utilizando um espectrômetro de campo penetrante construído em nosso laboratório, que foi implantado junto à linha de luz TGM do Laboratório Nacional de Luz Síncrotron (LNLS). Na TPES a energia dos fótons é variada continuamente enquanto o analisador é sintonizado para detectar somente fotoelétrons com energia nominalmente zero. Quando a energia dos fótons cruza um limiar de ionização, elétrons com energias zero são produzidos, tal que o espectro TPES retrata diretamente a energia dos estados iônicos. Dentro de nosso conhecimento, reportamos pela primeira vez o espectro TPE do benzeno (Fig. 1) obtido pela técnica de campo penetrante.


Fig. 1: Espectro de Fotoelétrons Limiares do Benzeno obtido na linha de luz TGM do LNLS.
Este espectro, obtido em passo de energia de 10 meV , para uma resolução variando continuamente de 18 meV em 13 eV até 47 meV em 34 eV , apresenta seis picos registrados em 13.86, 14.71, 15.42, 16.90, 19.02, 22.59 eV que são resultantes da ionização dos orbitais 3 $e_{1 u}, 1 b_{2 u}, 2 b_{1 u}, 3 a_{1 g}, 2 e_{2 g}$ e $2 e_{1 u}$ respectivamente. A calibração da escala da energia dos fótons foi realizada pela medida do espectro TPE do argônio na região bem conhecida dos estados iônicos $\mathrm{Ar}^{+}{ }^{2} \mathrm{P}_{3 / 2,1 / 2}$. Verifica-se que todo sistema de bandas registrado no espectro TPE do benzeno concorda com o observado pela PE [1], exceto que algumas bandas são mais intensas e com perfis modificados, devido à formação de estados neutros altamente excitados (estados de Rydberg) do $\mathrm{C}_{6} \mathrm{H}_{6}$, que decaem por autoionização, produzindo estados iônicos. Esta diferença nos espectros TPES e PE fornece informações sobre a importância da contribuição de processos indiretos na dinâmica de formação do íon $\mathrm{C}_{6} \mathrm{H}_{6}{ }^{+}$. (LNLS, CNPq e CAPES).

# Análise da pré-dissociação acidental no estado $A^{1} \Sigma^{+}$da molécula alcalina mista de NaLi 

Carlos E. Fellows ${ }^{1}(P Q)^{*}$, Ana Carla P. Bitencourt ${ }^{2}(P G)$, José David M. Vianna ${ }^{2.3}(P Q)$ e Frederico V. Prudente ${ }^{2}(\mathrm{PQ})$<br>E-mail: fellows@if.uff.br<br>${ }^{1}$ Laboratório de Espectroscopia e Laser, Instituto de Fisica, Universidade Federal Fluminense;<br>${ }^{2}$ Instituto de Fisica, Universidade Federal da Bahia;<br>${ }^{3}$ Instituto de Fisica, Universidade de Brasilia<br>Palavras chaves: Pré-dissociação acidental, moléculas diatōmicas, representação da variável discreta

O desvio de posições de linhas espectroscópicas devido à interação entre estados ligados é um fenômeno muito conhecido em Espectroscopia Molecular. Todavia, a pré-dissociação acidental é um tipo de perturbação observado com bem menos freqüência que outros tipos de perturbação. Experimentalmente, a pré-dissociação acidental manifesta-se com decréscimo marcante do tempo de vida dos niveis de rotação-vibração envolvidos no processo. Estudos deste tipo de perturbação foram realizados na molécula de $\mathrm{Li}_{2}{ }^{1}$ de forma experimental e teórica.

Este tipo de perturbação ocorre, no caso do NaLi, devido ao acoplamento rotacional ente os estados eletrônicos $b^{3} \Pi$ e $a^{3} \Sigma^{+}$. O acoplamento spin-órbita entre o estado $b^{3} \Pi$ e o $A^{1} \Sigma^{+}$ gera, por sua vez, uma drástica variação dos tempos de vida radiativos deste último. Neste trabalho apresentamos um tratamento, experimental e teórico, da pré-dissociação acidental para o estado eletrônico $\mathrm{A}^{1} \Sigma^{+}$da molécula de NaLi .

A observação experimental do fenômeno é feita usando a Espectroscopia de Fourier de alta resolução através de Fluorescência Induzida por Laser, onde da variação das intensidades das relaxaçōes colisionais na transição $A^{1} \Sigma^{+} \rightarrow X^{1} \Sigma^{+}$, podemos aferir as variações de população dos niveis excitados e, consequentemente, seus tempos de vida. A análise teórica é feita a partir das curvas de energia potencial dos estados envolvidos. As curvas dos estados $A^{1} \Sigma^{+}$e $X^{1} \Sigma^{+}$são determinadas pelo método RKR e dos estados $b^{3} \Pi$ e $a^{3} \Sigma^{+}$usando-se métodos $a b$ initio, assim como os termos de acoplamento entre os estados eletrônicos $b^{3} \Pi$ e $A^{1} \Sigma^{+}$e os estados eletrônicos $b^{3} \Pi$ e $a^{3} \Sigma^{+}$, e do posterior cálculo dos elementos de matriz dos acoplamentos entre estados rovibracionais associados aos estados eletrónicos envolvidos no problema, usando o método da representação da variável discreta (DVR).

A comparação dos dados experimentais e teóricos mostra uma concordância extremamente satisfatória, indicando as regiões de maior acoplamento entre os estados envolvidos e abrindo possibilidades para experiências futuras, onde análise de espectros "bound-bound" entre o estado $b^{3} \Pi$ e o estado $a^{3} \Sigma^{+}$poderão ser realizadas através de Espectroscopia Laser de alta resolução.

[^42]
# COMPARATIVE THEORETICAL STUDY OF TWO NITROMMDAZOLES ASSAIED AGASNT TRYPANOSOMA CRUZI 

Flávia P. Rosselli ${ }^{1}$ (PG), Albérico B. F. da Silva ${ }^{1}$ (PQ), Cristina N. de Albuquerque ${ }^{2}$ (PQ)<br>frosselli@iqsc.usp.br<br>1 Departamento de Química e Física Molecular (DQFM), Grupo de Química Quântica, Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP), São Carlos - SP<br>2 Departamento de Tecnologia Bioquímico-Farmacêutica (FTB), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo - SP<br>Palavras-chave: megazol, quantum-chemistry, chagas

The megazol, chemically 1-methyl-2-(5-amino-1,3,4-thiadiazole)-5-nitroimidazole, shows a notable anti-parasitary activity, specially against the Trypanosoma. cruzi, the agent responsible by the Chagas disease. But the toxicity of megazol makes necessary to search new compounds having low toxicity or, if possible, devoid of toxicity. The analogous of the megazol, which have been synthesizing by Cristina Northfleet de Albuquerque researcher, have been studying by quantum-chemistry methods. From a study realized by PM3 semiempirical calculations for these analogous, one structure called the attention on account of having, practically, the same structural and electronic features of the megazol, such as conformation, lipophilicity and distribution of charges (derivatives of the electrostatic potential) and, however, being devoid of activity. Previous studies about Chemometrics were not also able to show outstanding differences between the two structures. So, one realized another theoretical study, with other quantum-chemistry methods (B3LYP, MP2), in the attempt to seek differences between the two compounds, which could help us in the design of future derivatives. The two methods - B3LYP and MP2 - showed similar results, however, the results are different from PM3. The PM3 calculations were done with the AMPAC 6.55 computation program and B3LYP and MP2 were done with the Gaussian 98. (CAPES).

# ESTUDO DO EQUILÍBRIO TAUTOMÉRICO PARA COMPOSTOS 1,3-DICARBONÍLICOS 

Valéria C. F. Rustici (PG), Sérgio E. Galembeck* (PQ)<br>segalemb@usp.br<br>Laboratório de Modelagem Molecular, Departamento de Química, FFCLRP, Universidade de São<br>Paulo - Avenida dos Bandeirantes 3900, Ribeirão Preto, 14040-901, SP, Brasil<br>Palavras-chave: $\beta$-dicetonas, equilíbrio tautomérico, métodos ab initio

A química de coordenação das $\beta$-dicetonas, compostos que existem em ambas as formas cetoenol e diceto, tem sido estudada pois são espécies químicas que podem reagir com um ion metálico para produzir uma série de complexos metálicos ${ }^{(1)}$ os quais são empregados como aditivos para combustíveis, fluidos supercríticos e em reações de condensação ${ }^{(2)}$. Este trabalho estuda o fenômeno do equilibro tautomérico e a análise conformacional de algumas $\beta$-dicetonas (Figura 1) pela completa otimização destas estruturas foi realizada utilizando o modelo B3LYP/6-31+G(d,p). Não foram encontrados estudos teóricos ou experimentais que analisem as conformações e o tautomerismo para estes compostos.

Figura 1: Representação dos compostos de interesse




III


IV

O mínimo global apresenta a conformação $\mathrm{g}^{+} \mathrm{g}^{+}$para I e II, pela minimização da repulsão entre as carbonilas. Esta conformação foi obtida também para a 2,4-pentanodiona. O estudo conformacional para os possíveis tautômeros de I e II (3-hidroxibut-2-enoato de etila e 3-etoxi-3hidroxipropenoato de etila respectivamente) mostra uma maior estabilização deste sobre a forma diceto, o que não foi observado para os tautômeros de III e IV (4-hidroxibut-4-eno-nitrilo e 3iminoacrilonitrilo, respectivamente), confirmando a baixa reatividade destes compostos por reações de oxidação eletrocatalítica mediada por $\mathrm{Ce}^{\mathrm{IV}(3)}$.

Os cálculos em solvente (solvatação continua) foram realizados em água, metanol e clorofórmio para os compostos I e lll e seus tautômeros. As estruturas de mínimo, para as formas diceto, apresentaram maior estabilização em água e metanol. Para as formas cetoenolicas, observamos aumento na barreira torcional da curva potencial durante a busca conformacional (Figura 2). (FAPESP, LCCA, CNPq, CAPES)

Figura 2: Energias livres relativas para os tautômeros I e III


3-hidroxibut-2-enoato de etila


4-hidroxibut-4-eno-nitrilo

1. Pulkkinen J.T., Laatikainen R., Vepsalainen J.J., Ahlgren M.J. Magn. Reson. Chem. 1999, 37, 119-126.
2. Rodrigues F., Canac Y., Lubineau A., Chem. Commun. 2000, 20, 2049-2050.
3. Cho L.Y, Maduro J.M., Romero J.R., Journal Catal. 1999, 186, 31-35.

# CONSTRUÇÃO DE CONJUNTOS DE FUNÇÕES DE BASE PARA O CÁlCULO DE FREQUÊNCIAS VIBRACIONAIS DE MOLÉCULAS POLIATÔMICAS FORMADAS POR ÁTOMOS DO 10 E $2^{\circ}$ PERÍODOS 

llfran da Silva Nava Junior ${ }^{1}$ (IC), Jardel Pinto Barbosa ${ }^{1,2}(P G)$, José Ciriaco Pinheiro<br>${ }^{1}(\mathrm{PQ})$, Oswaldo Treu Filho ${ }^{3}$ (PQ), Rogério T. Kondo ${ }^{4}(\mathrm{PQ})$<br>ilfranjunior@bol.com.br<br>${ }^{1}$ Laboratório de Química Teórica e Computacional, Departamento de Química, UFPa, 66075-110 Belém, PA, Amazônia, Brasil<br>${ }^{2}$ Colegiado de Ciência Agrárias, Campus de Altamira, Universidade Federal do Pará 68370-000<br>${ }^{3}$ Instituto de Química, Universidade Estadual Paulista 14801-970 Araraquara, SP, Brasil<br>${ }^{4}$ Centro de Informática de São Carlos, Universidade de São Paulo 13560-970 São Carlos, SP, Brasil<br>Palavras-chave: gassianas, conjunto, vibracional


#### Abstract

A qualidade de cálculos atômicos e moleculares depende do conjunto de base usado. A técnica convencional empregada que se usa em estudos de estruturas eletrônicas e vibracionais de moléculas envolvem a expansão de funções de onda em termos de um número finito de funções de base, contendo um conjunto de parâmetros que são otimizados especificamente para um sistema em investigação. A utilização do método da coordenada geradora Hartree-Fock (CGHF) na escolha de conjuntos de funções de base possibilita a dispensa de tratamento a todos os orbitais dos sistemas estudados, por outro lado, tem-se uma drástica redução do tempo de computação pela estratégia do método.

Conjuntos de funções de base gaussianas para os átomos H (base estendida 13s), C (base estendida 24 s 15 p ), N (base estendida 24 s 15 p) e O (base estendida 24s15p) foram construídos com a ajuda do método da coordenada Hartree-Fock (CGHF).Esses conjuntos foram contraídos [H(Base contraída 3s), C(Base contraída 4s3p, $5 s 4 p$ e $6 s 5 p$ ), $N($ Base contraída $4 s 3 p, 5 s 4$ p e $6 s 5 p$ ) e $O$ (Base contraída $4 s 3 p, 5 s 4 p$ e $6 s 5 p$ )] através da utilização do esquema de Dunning e enriquecido com funções de polarização.

Os conjuntos obtidos resultantes foram usados em cálculos de freqüências vibracionais de moléculas em vários níveis de correlação eletrônica (HF, MP2, CISD e b3LIP). Os resultados obtidos mostram uma boa performance dos conjuntos de bases na descrição da propriedade estudada. (CNPq / CENAPAD - SP).


# ESTUDO AB INITIO DAS FORMAS PURA E HIDRATADA DA $\alpha-$ CYCLODEXTRINA E COMPLEXOS DE INCLUSÃO: $\mathrm{CH}_{3} \mathrm{HgCl}$ 

Charles M. Aguilar ${ }^{1}$ (IC), Roberta P. Dias ${ }^{1}$ (IC), Cleber P.A. Anconi ${ }^{1}$ (IC), Eder S. Xavier ${ }^{1}$ (PG), Clebio S. Nascimento Jr. ${ }^{1,2}$ (PG), Willian R. Rocha ${ }^{3}$ (PQ), Hélio F. Dos Santos ${ }^{2}$ (PQ), Wagner B. De Almeida ${ }^{1}$ (PQ)*

wagner @ netuno.qui.ufmg.br
${ }^{1}$ Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31.270-901, Brasil
${ }^{2}$ Núcleo de Estudos em Química Computacional (NEQC), Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário Martelos, Juiz de Fora, MG, 36036-330, Brasil.
${ }^{3}$ Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Luiz Freire s/n, Cidade Universitária, Recife, PE, 50740-901, Brasil Palavras-chave: ciclodextrinas, cloreto de metil mercúrio, complexos de inclusão.
Em ambientes aquáticos o Hg é convertido em $\mathrm{CH}_{3} \mathrm{HgCl}$ através de processos de metilação promovidos por microorganismos. Este composto é uma das formas mais tóxicas do mercúrio, sendo absorvido por algas e acumulado através da cadeia alimentar. A inclusão com ciclodextrinas tem sido considerada um procedimento alternativo para retirar esta espécie do meio ambiente. O processo de inclusão envolvendo $\alpha$-ciclodextrina ( $\alpha-\mathrm{CD}$ ) e $\mathrm{CH}_{3} \mathrm{HgCl}$ foi investigado recentemente pelo nosso grupo utilizando o método semi-empírico PM3 [H.F. Dos Santos e col. Chem. Phys. Lett. 319 (2000) 569]. A orientação de inclusão de $\mathrm{CH}_{3} \mathrm{HgCl}$ foi determinada como sendo perpendicular ao centro do macrociclo da $\alpha-C D$ com o átomo de cloro direcionado para a regiāo mais estreita da cavidade (Figura 1). Neste estudo, foi também observado que a inclusão se torna mais favorável quando moléculas de água são explicitamente incluídas no cálculo da energia de estabilização do complexo.


Figure 1. Estrutura do complexo $\mathrm{CH}_{3} \mathrm{HgCl} . \alpha-\mathrm{CD} .3 \mathrm{H}_{2} \mathrm{O}$ otimizada no nivel PM3.
Entretanto, foi constatado que, apesar da entalpia de hidratação da $\alpha-C D\left(\Delta H_{h}\right)$ calculada pelo método PM3 estar em bom acordo com o experimento, a energia livre de Gibbs de hidratação ( $\Delta G_{h}$ ), para o processo abaixo, apresentou valores desacordo com aqueles observados.

$$
\alpha-\mathrm{cd}+6 \mathrm{H}_{2} \mathrm{O} \Rightarrow \alpha-\mathrm{cd}-6 \mathrm{H}_{2} \mathrm{O}
$$

No presente trabalho, o processo de hidratação da $\alpha-C D$ será re-investigado utilizando métodos quânticos ab initio juntamente com um tratamento dos modos normais de baixa freqüencia, o qual tem grande importância no cálculo da correção térmica conforme mostrado recentemente pelo nosso grupo [H.F. Dos Santos, W.R. Rocha and W.B. De Almeida, Chem. Phys. 280 (2002) 31]. Nossos principais objetivos são avaliar os efeitos das baixas frequeências de vibração nas propriedades termodinâmicas de processos de inclusão envolvendo ciclodextrinas, visando encontrar uma explicação com base sólida para o enorme desvio no cálculo da correção entrópica para os processos de hidratação e inclusão com a $\alpha-C D$ utilizando o método PM3. Um sumário de alguns resultados está mostrado na tabela abaixo. (CNPq, FAPEMIG).

Tabela. Dados energéticos e termodinâmicos (em kcal mol ${ }^{-1}$ ) para a reação: $\alpha-\mathrm{cd}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \alpha-\mathrm{cd}-6 \mathrm{H}_{2} \mathrm{O}$


[^43]
# ESTUDO TEÓRICO DA REAÇÃO DE ABSTRAÇÃO DE $\mathrm{HIOROGENNOOCH}_{4}+\mathrm{F} \rightarrow \mathrm{CH}_{3} \div \mathrm{HF}$ 

Orlando Roberto-Neto ${ }^{1}$ (PQ), Francisco B. C. Machado (PQ) ${ }^{2}$<br>orlando@ieav.cta.br<br>${ }^{1}$ Divisão de Fotônica, Instituto de Estudos Avançados, Centro Técnico Aeroespacial,São José dos Campos, 12228-840, São Paulo,<br>${ }^{2}$ Departamento de Química, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, 12228-900, São Paulo<br>Palavras-chave: $\mathrm{CH}_{4}+\mathrm{F}$, dinâmica química, constante de velocidade

A reação de abstração de hidrogênio $\mathrm{CH}_{4}+\mathrm{F} \rightarrow \mathrm{CH}_{3}+\mathrm{HF}$ é um modelo importante de reação exotérmica $\left(\Delta \mathrm{H}_{298}=31,5 \mathrm{kcal} / \mathrm{mol}\right)$ em investigações experimentais e teóricas, pelo fato de ser um sistema poliatômico pequeno, além de fazer parte da classe de lasers químicos, pois o produto HF é gerado com inversão de população vibracional [1]. Várias técnicas experimentais de espalhamento foram usadas para a determinação de parâmetros de colisão, assim como foram efetuadas medidas cinéticas das constantes de velocidade numa grande faixa de temperaturas. Por outro lado, não há dados experimentais cinéticos suficientes envolvendo os isotopômeros $C D_{4}, \mathrm{CD}_{3}$ e DF, de modo a permitir a determinação do efeito cinético isotópico ( $k_{H} / k_{D}$ ) numa faixa ampla de temperaturas. A descrição teórica desse sistema é difícil já que apresenta um baixo valor da energia de ativação ( $-0,5 \mathrm{kcal} / \mathrm{mol}$ ) e uma superficie de energia potencial (SEP) muito plana. Corchado e Espinosa-Garcia [2,3] empregaram métodos ab initio, semi-empíricos PM3-SRP (specific reaction parameter) e uma superficie analítica de potencial para calcular a barreira de energia potencial, entalpia da reação, superfícies de energia potencial, constante de velocidade e os valores de $\mathrm{K}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ na faixa de 100 a 500 K . Nesses cálculos foram obtidos valores sobreestimados da energia de ativação ( $5,9 \mathrm{kcal} / \mathrm{mol}$ ) e valores subestimados para a entalpia da reação ( $\Delta \mathrm{H}_{298} \tilde{=} 27,32 \mathrm{kcal} / \mathrm{mol}$ ), o que se reflete na localização incorreta do estado de transição ao longo da SEP (de acordo com o postulado de Hammond), e conseqüentemente na precisão dos cálculos variacionais das constantes de velocidade. Cálculos realizados com o método $\mathrm{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ [2] predizem um estado de transição $\left(\mathrm{CH}_{4} \mathrm{~F}\right)$ com simetria $\mathrm{C}_{5}$, onde o ângulo $\angle \mathrm{CHF}$ é igual a $161^{\circ}$. Entretanto, medidas experimentais [4] sugerem que o estado de transição tenha um ângulo $\angle \mathrm{CHF}$ próximo à $180^{\circ}$. Neste presente trabalho, empregamos os métodos $B H \& H L Y P, M P 2$ e $C C S D(T)$ e os conjuntos bases aug$c c-p V D Z, ~ c c-p V T Z$ e aug-cc-pVTZ de Dunning para computar as energias, as geometrias e as freqüências vibracionais dos estados estacionários (reagentes, produtos e estado de transição) da reação título, com o objetivo de calcular as barreiras de energia potencial eletrônico das reações direta e reversa, as energia de ativação e a entalpia da reação. O método semi-empírico AM1-SRP foi calibrado para descrever com bastante precisão as propriedades eletrônicas e estruturais dos estados estacionários, calcular as constantes de velocidade, assim como os valores de $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ na faixa de 200 a 2000 K. A teoria variacional do estado de transição com correções interpoladas (TVET-CI) e com a inclusão dos efeitos de tunelamento multidimensional foi empregada nos cálculos dos parâmetros cinéticos. Os resultados encontrados em todos os métodos de cálculos de estrutura eletrônica predizem um estado de transição com geometria quase linear, ou seja, o ângulo $\angle C H F$ é aproximadamente igual a $180^{\circ}$. Cálculos $\operatorname{CCSD}(T) / c c-p V T Z$ fornecem uma barreira de energia potencial igual a $1,8 \mathrm{kcal} / \mathrm{mol}$ e uma energia de ativação de $0,1 \mathrm{kcal} / \mathrm{mol}$, próxima, portanto, ao valor experimental de $0,5 \mathrm{kcal} / \mathrm{mol}$. Este mesmo método prediz um valor da entalpia da reação a 298 K igual a- $32,9 \mathrm{kcal} / \mathrm{mol}$. As constantes de velocidade obtidas com o método AM1-SRP-IC/ $/$ MOMT estão subestimadas em relação aos valores experimentais por um fator menor do que 1,5. O efeito cinético isotópico ( $\mathrm{K}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ ) é igual a 1,71 na temperatura de 283 K , que é comparável ao valor experimental de 1,7 $\pm 0,9$. (FAPESP, CNPq,CENAPAD-SP).
[1] A. Gauss Jr, J. Chem. Phys. 65, 4365 (1976).
[2] J. C. Corchado e J. Espinosa-Garcia, J. Chem. Phys. 108, 3152 (1996).
[3] J. C. Corchado e J. Espinosa-Garcia, J. Chem. Phys. 105, 3160 (1996).
[4] W. W. Harper, S. A. Nizkorodov e D. J. Nesbitt, Chem. Phys. Lett. 335, 381 (2001).

# ESTUDO DOS SUBSTITUINTES EM NEOLIGNANAS BENZODIOXÂNICAS 

Fernando C. Rangel ${ }^{1 *}$ (IC), Raquel F. Santos ${ }^{1}$ (PQ), Pedro Ferri ${ }^{1}$ (PQ) e Elaine Maia ${ }^{2}$ (PQ)<br>fernando.cesario@zipmail.com.br<br>${ }^{1}$ Instituto de Química, Universidade Federal de Goiás, Campus II, Goiânia, Goiás, 74001-970<br>${ }^{2}$ Instituto de Química, Universidade de Brasilia, Campus Darci Ribeiro, Brasilia, DF, 70910-970<br>Palavras-chave: neolignanas benzodioxânicas, AM1.

O sistema 1,4-benzodioxano é importante devido a sua diversidade de atividade biológica. Em particular, o esqueleto 3 -aril-1,4-benzodioxano presente em várias neolignanas naturais, cumarino-, xanto-e flavolignóides possuem atividades citotóxicas, neurotróficas e hepatoprotetoras. Neste trabalho utilizou-se o método semi-empírico AM1 para o estudo das propriedades eletrônicas dos substituintes no núcleo benzodioxânico em produtos naturais, denominados eusiderinas.



> 1 $A^{\prime}=R^{2}=R^{3}=R^{3}=O M E R^{0}=$ AII
> $2 A^{\prime}=R^{2}=O H, A^{3}=R^{4}=O M O, R^{A}=A / A$
> $3 R^{\prime}=O M_{0}, R^{2}=A^{+}=O H \cdot R^{*}=R^{n}=H$
> $4 A^{\prime}=A^{2}=A^{4}=O M E, A^{\prime \prime}=R^{4}=H$
S $R^{\prime}=O M A, R^{*}=A^{+}=C A C . R^{\prime \prime}=R^{n}=H$

Propomos alguns possíveis sítios farmacoforóricos para esta série de neolignanas, comparando-se as classes $A$ e $B$, considerando as diferenças nas posições dos grupos substituintes $R^{4}$ e $R^{5}$, com respeito as nucleofilicidades das espécies, utilizando-se dos mapeamentos de superfícies de densidade eletrônica, potencial eletrostático e orbital HOMO. As minimizações de energia foram feitas pelo método semi-empírico RHF/AM1 (vácuo) implementado em TITAN. As moléculas do grupo 1 não apresentaram caráter nucleofilico marcante, devido ao impedimento estérico nas regiões de maior potencial eletrostático. Quanto ao grupo 2, a molécula 2 A apresentou nucleofilicidade pronunciada, devido a um menor impedimento estérico na região de maior potencial (grupo metoxil ligado ao carbono 5) e também pelo fato de seu orbital HOMO ter um valor de energia de $0,01255 \mathrm{eV}$ superior ao da 2B. Quanto ao grupo 3, a 3B tem um caráter nucleofílico maior, devido a região de maior potencial ser razoavelmente desempedida e o seu orbital HOMO ter um valor de $0,203683 \mathrm{eV}$ superior energeticamente ao da 3 A . Quanto ao grupo 4, 4B apresentou uma superfície de potencial menos desempedida, seu orbital HOMO tem uma energia de $0,065293 \mathrm{eV}$ superior a da 4A. Quanto ao grupo 5, ambas apresentaram caráter nucleofílico, sendo que a 5 B tem superfície de potencial e orbital HOMO mais desempedidos e a energia do orbital HOMO é $0,318438 \mathrm{eV}$ superior ao da 5 A . Comparando-se a nucleofilicidade dos grupos, obteve-se a ordem 5;3;4;2;1. Observou-se que o orbital HOMO situa-se em todos os casos no anel dos substituintes $R^{4}$ e $R^{5}$, os radicais alil nos grupos 1 e 2 causam um impedimento estérico considerável sobre a superfície de potencial e sobre o orbital HOMO, enquanto que para os grupos 3,4 e 5 , as superfícies são desempedidas, pois $R^{5}=H$. Analisando-se o substituinte $R^{4}$ para os grupos 3, 4 e 5 , o substituinte OAc apresentou um potencial eletrostático maior seguido pelo substuintes OH e OMe. (CNPq, FUNAPE e ACCELRYS, Inc.).

# ESTUDO DA MESO-TETRAKIS 2,6DIFLUOROFENILPORFIRINA DE ZINCO (ii) 

Geraldo Roberto Friedermann (PG), Flávio Luíz Benedito (IC), Shirley Nakagaki (PQ), Eduardo Lemos de Sá (PQ)<br>grf@quimica.ufpr.br.

Universidade Federal do Paraná, Setor de Ciências Exatas, Departamento de Química. Curitiba - PR - Brasil - Centro Politécnico - Jardim das Américas - CEP 81531-990 - Caixa Postal 19081
Palavras-chave: INDO, zincoporfirina, cálculo semi-empírico.
Nos últimos anos, as porfirinas sintéticas têm despertado o interesse por seu potencial uso em diversas áreas tecnológica. Zincoporfirinas sintéticas constituem uma classe destes compostos, onde se destaca a sua especial capacidade em modular o band gap de semicondutores, em catalisar a foto-redução da água, além de atuarem como bons transferidores de elétrons em dispositivos coletores de energia solar [1]. Através dos cálculos semi-empíricos, é possível obter-se um bom perfil da estrutura eletrônica e do comportamento vibracional de tais compostos, permitindo que antes do trabalho experimental de síntese seja realizado, um conjunto de propriedades das novas estruturas seja previsto. A porfirina ZnTDFPP (meso-tetrakis 2,6-difluorofenilporfirina de Zinco (II)), pertencente ao grupo espacial C1, foi sintetizada e cristalizada em N - N -dimetilformamida. Os dados cristalográficos foram convertidos em coordenadas cartesianas, a partir das quais foi calculado (MOPAC 6 [2]) o seu espectro vibracional na região do infravermelho. O perfil do espectro teórico é similar ao experimental, entretanto existem diferenças entre as intensidades relativas entre as bandas. Destaca-se no espectro a região de 400 a $1600 \mathrm{~cm}^{-1}$ onde há um conjunto de bandas relacionadas aos diversos modos vibracionais do esqueleto orgânico da porfirina. Visando uma maior comodidade na extração de informações dos cálculos de espectros eletrônico e vibracional, foi desenvolvido um programa em linguagem Perl [3] para a extração e formatação dos dados dos relatórios de saída dos programas de cálculo, o qual está sendo disponibilizado para outros grupos de pesquisa interessados. O espectro eletrônico de ZnTDFPP (mostrado ao lado) foi calculado empregando-se a parametrização INDO/S [4]. No estado fundamental, a multiplicidade é igual a 1. O cálculo de interação de configuração (Cl) foi executado com um conjunto de 13 orbitais ocupados e 3 orbitais virtuais. A primeira transição ocorre entre o orbital HOMO, caracterizado como um grupo de orbitais $2 p(y)$ do conjunto de cinco átomos de carbono do anel porfirínico, para o orbital LUMO envolvendo outros cinco átomos de carbono. As porfirinas apresentam na região do visível uma banda característica com absortividade molar acima de $10^{4}$ L. $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$ denominada Soret. Para a ZnTDFPP, observa-se experimentalmente esta banda em 422 nm . Os resultados dos cálculos apresentaram
 um forte deslocamento hipsocrômico, devido provavelmente a efeitos de solvente e condensação não considerados. Na região do visível observam-se outras duas bandas de menor intensidade, denominadas $Q$, conforme o esperado para as metaloporfirinas (Experimental: 550 e 586 nm , calculado 572 e 582 nm ). Comparando-se os espectros simulados e calculados, observa-se semelhança no perfil do espectro do complexo em relação ao número de bandas, porém com pouca precisão em relação as suas respectivas posições. (PRONEX, CNPq, CAPES, Fundação Araucária, UFPR).

[^44]
# ABORDAGEM TEÓRICA SOBRE O EFEITO DE GRUPOS OSUBSTITUINTES NO MMO-INOSITOL 

Ana M. H. Moniz ${ }^{1}$ (PG), Antônio J. do N. Fernandes ${ }^{1}$ (PG), Maria C. dos Santos ${ }^{2}$ (PQ), Wagner B. Almeida ${ }^{3}$ (PQ), Antônio F. C. Alcântara ${ }^{\text {* }}$ (PQ)<br>anamoniz@zipmail.com.br<br>${ }^{1}$ Depto. de Química, ICE, UFAM; ${ }^{2}$ Depto. de Parasitologia, ICB, UFAM; ${ }^{3}$ LQC-MM, Depto. de Química, ICEx, UFMG

Palavras-chave: Peltodon radicans, mio-inositol, cálculos teóricos.
A Peltodon radicans (paracari) tem vários usos populares na Amazônia, além do tratamento de picadas de escorpião e serpentes. No seu estudo fitoquímico ${ }^{1}$, mio-inositol (I) e $O$-(2-metoxi)-mio-inositol (II) foram isolados. Segundo a literatura ${ }^{2}$, o mio-inositol atua como precursor no ciclo de fosfatidilinositol, na quimioprevenção de tumores pulmonares e no tratamento clínico de depressão. Tais propriedades biológicas dão importância à investigação de propriedades químicas de inositóis. Para isto, neste trabalho é descrito o estudo teórico de metilaçōes, acetilaçōes e fosfatações em diferentes posições do mio-inositol (posições O-2 e O-3) para inferir sobre as propriedades termodinâmicas das reações químicas de cada substituição. Neste trabalho são investigadas reações entre mio-inositol e os seguintes compostos: metanol, ácido acético e ácido fosfórico, com o objetivo de compreender, em nível molecular, a formação de compostos metoxilados, acetilados e fosfatados correspondentes.


mio-inositol metoxilado na posição O-2 (II-2)

Nos cálculos de otimização de geometria foi empregado o método semiempirico AM1, ab initio HartreeFock (HF) e utilizando Teoria de Perturbação de Mфller-Plesset (MP2 e MP4), e Teoria do Funcional da Densidade (DFT) utilizando o funcional BLYP, com as funçōes de base $3.21 \mathrm{G}^{*}$ e $6-31 \mathrm{G}^{*}$. Efeitos devido a temperatura (correção térmica) foram também incluídos utilizando cálculos de freqüências harmônicas nos niveis semiempíricos e HF . Apresentamos abaixo alguns valores para a variação de energia total ( $\Delta \mathrm{E}_{\text {ele-nuc }}$ ), correção térmica padrão $\left(\Delta G^{0}\right)$ e energia livre padrão de Gibbs ( $\Delta \mathrm{G}^{0}$ gas $)$ para as reações do metanol com mio-inusitol nas posições O-2 e O-3, formando respectivamente 2-(O-metoxi)-mio-inositol e 3-(O-metoxi)-mio-inositol (compostos II2 e ll-3). (CNPq, CAPES)

Tabela. Resultados (kcal/mol) para a reação: mio-inositol + metanol $\rightarrow$ mio-inositol metoxilado + água

| $\mathrm{T}=298 \mathrm{~K}$ | Posiçã O2-11-2 |  |  |  |  | Posição | O3-11-3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \mathrm{HFI} \\ & 3-21 \mathrm{G}^{*} \end{aligned}$ | HF/ <br> 6-31G*// <br> HF/321G | $\begin{aligned} & \text { BLYP/ } \\ & 631 \mathrm{G}^{*} / / \\ & \mathrm{HF} / 3-21 \mathrm{G}^{*} \end{aligned}$ | $\begin{aligned} & \hline \text { MP2/ } \\ & 6-31 G^{*} / / \\ & \text { HF/3-21G* } \end{aligned}$ | $\begin{aligned} & \text { MP4/ } \\ & 6-31 G^{*} / / \\ & \text { HF/3-21G** } \end{aligned}$ | $\begin{aligned} & \mathrm{HF} /{ }^{3}-21 \mathrm{G}^{*} \end{aligned}$ | $\begin{aligned} & \mathrm{HF} / \\ & 6-31 \mathrm{G}^{*} / / \\ & H F / 3-21 \mathrm{G}^{*} \end{aligned}$ | $\begin{aligned} & \text { BLYP/ } \\ & 6-31 G^{*} / / \\ & \text { HF/3-21G* } \end{aligned}$ | $\begin{aligned} & \text { MP21 } \\ & 6-31 \mathrm{G} \cdot / / \\ & \mathrm{HF} / 3-21 \mathrm{G}^{*} \end{aligned}$ | $\begin{array}{\|c\|} \hline \mathrm{MP}^{2} / \\ 6-31 \mathrm{G}^{*} / / \\ \mathrm{HF} / 3 \\ 21 \mathrm{G}^{*} \\ \hline \end{array}$ |
| $\Delta E_{\text {ela-nuc }}$ | 0,91 | 1,87 | 1,50 | -1,89 | -1,18 | 0,82 | 1,74 | 1,20 | $-2,04$ | -1,33 |
| $\Delta G^{0} \mathrm{~T}$ | 0,62 | - | - | - | - | 0,67 | - | - | - | - |
| $\Delta G_{\text {gas }}{ }^{\text {a }}$ | 1,53 | 2,49 | 2,12 | -1,27 | -0,56 | 1,50 | 2,41 | 1,87 | -1,37 | -0,66 |
| $\begin{aligned} & \Delta \mathrm{G}_{\text {sol }} \\ & \text { (Metanol) } \end{aligned}$ | $\begin{aligned} & 3,72 \\ & (2,19) \end{aligned}$ | 4,68 | 4,31 | 0,92 | 1,63 | $\begin{aligned} & 3,31 \\ & (1,82) \end{aligned}$ | 4,23 | 2,49 | 0,45 | 1,16 |
| $\Delta \mathrm{G}^{0}{ }_{501}$ (Acetona | $\begin{aligned} & \hline 2,33 \\ & (0,80){ }^{b} \end{aligned}$ | 3,29 | 2,92 | -0,47 | 0,24 | $\begin{aligned} & 2,11 \\ & (0,62) \end{aligned}$ | 3,03 | 1,29 | -0,75 | -0,04 |
| $\Delta G^{0}{ }_{g a}$ parentes | $\begin{aligned} & =\Delta E_{E} \\ & s ; \end{aligned}$ | le-nuc + | $\overline{\Delta G^{0} ; \quad \Delta}$ | sol $=\Delta$ | $\text { gas }+\Delta$ | olv; | $\Delta E_{\text {solv }}$ | $F / 6-31 G$ | $/ / \mathrm{HF} / 3-2$ | $\left.1 \mathrm{G}^{*}\right) \mathrm{er}$ |

Pelos valores de $\Delta G$ pode-se propor que ambos os processos somente ocorrerão espontaneamente na fase gasosa, considerando os estudos realizados nos níveis MP2 e MP4(SDQ). Entretanto, faz-se necessário realizar cálculos incluindo o efeito do solvente. Os valores calculados com o modelo PCM (Polarizable Continuum Model) mostrados na tabela acima confirmam a importância da inclusão do do efeito do solvente. Os resultados mostram que, dentre as posições O-2 e 0-3 do mio-inositol, a metoxilação apresenta-se mais favorecida na posição $0-3$, indicando ser um sitio termodinamicamente mais ativo para a reação com o metanol.

1. Ana M. H. Moniz, projeto de dissertação, Curso de P-Graduação em Química de Produtos Naturais da UFAM. (em andamento).
2. Levine J., European Neuropsychopharmacology. 1997, 7, 147.

# UM ESTUDO TEÓRICO EM NÍVEL AB-INITIO DE HIDRETOS DE AGLOMERADOS DE PRATA E SUAS APLICAGÕES EM CATÁLISE HETEROGÊNEA 

João Otávio M. A. Lins (PQ), Marco Antonio Chaer Nascimento (PQ)<br>jomal@chaer.iq.ufrj.br<br>Departamento de Físico-Química, Instituto de Química da UFRJ<br>Centro de Tecnologia, bloco A, sala 412 - Cidade Universitária<br>21949-900 Rio de Janeiro, RJ - Brasil<br>Palavras-chave: funcional de densidade, hidretos de prata, catálise.

Hidretos de prata com fórmula $\mathrm{Ag}_{n} \mathrm{H}$ [1] são obtidos pela dissociação heterolítica de hidrogênio no interior de zeólitas $Y$ e $A$ impregnadas com prata. No entanto, ainda não se sabe ao certo qual o tamanho deste aglomerado e tão pouco o mecanismo pelo qual promovem os processos catalíticos.

Iniciamos nosso trabalho por determinar o tamanho deste aglomerado no interior das cavidades das zeólitas, comparando os deslocamentos químicos de RMN ${ }^{1} \mathrm{H}$ e freqüências vibracionais com aqueles obtidos experimentalmente [2,3]. Para isso realizamos cálculos em nivel DFT variando os funcionais e bases/pseudopotenciais, para investigar as estruturas moleculares de hidretos de aglomerados de prata ( $\mathrm{Ag}_{n} \mathrm{H}, \mathrm{n}=1 . .4$ ). Realizamos otimizações de geometria completas de diferentes aglomerados, para diferentes grupos de simetria, seguido de uma análise das freqüências vibracionais e posteriormente, para estruturas estáveis, os deslocamentos químicos de RMN ${ }^{1} \mathrm{H}$.

Observamos dois isômeros para o $\mathrm{Ag}_{2} \mathrm{H}$, um em que o H encontra-se entre as duas Ag e outro em que se obtém uma estrutura linear $\mathrm{Ag}-\mathrm{Ag}-\mathrm{H}$. Para o $\mathrm{Ag}_{3} \mathrm{H}$ obtivemos uma estrutura em que os átomos de Ag formam um triângulo, com o H posicionado para fora e ligado a um deles. Já a estrutura do $\mathrm{Ag}_{4} \mathrm{H}$ tem os átomos de Ag formando um losango, com o átomo de H localizado em uma de suas faces e sendo compartilhado entre dois átomos de Ag. Abaixo seguem alguns dos resultados obtidos em nível LSDA/LACV3P**++.

| Composto | Freqüências vibracionais <br> $(\mathrm{cm}-1)$ | Deslocamento químico <br> $(\mathrm{ppm})$ |
| :---: | :---: | :---: |
| AgH | 1786,2 | $-4,05$ |
| $\mathrm{Ag}_{2} \mathrm{H}$ (isom. 1) | $76,0,1103,6,1515,6$ | $-6,62$ |
| $\mathrm{Ag}_{2} \mathrm{H}$ (isom. 2) | $4,7,597,9,2463,2$ | $-5,33$ |
| $\mathrm{Ag}_{3} \mathrm{H}$ | $87,0,132,6,188,1,209,3,263,0$, | $-6,08$ |
| $\mathrm{Ag}_{4} \mathrm{H}$ | $33,6,94,7,104,1,149,0,177,9,193,7$ | $-3,75$ |

Resultados experimentais [2] obtidos no interior da zeólita A atribuem o pico em -1,8 ppm ao composto $\mathrm{Ag}_{3} \mathrm{H}$. Até o momento, no entanto, não pudemos corroborar tais resultados, contudo observamos que com o aumento do número de átomos de Ag no aglomerado, ocorre um deslocamento do sinal de RMN para campos mais baixos. (CNPq, FAPERJ, Instituto do Milênio de Materiais Complexos).

1) Toshihide Baba et al.: Langmuir 15, 7894 (1999).
2) Toshihide Baba et al.: Appl. Catal. A: General 231, 55 (2002).
3) M. D. Baker, J. Godber, G. A. Ozin: J. Phys. Chem. 89, 2299 (1985).

## A QM/MIM HYBRID SIMULATION OF 7-AZA-TRYPTOPHAN

Marcos Serrou do Amaral ${ }^{1}$ (PQ), Amando Siuiti Ito ${ }^{2}$ (PQ), Michel Loos ${ }^{3}$ (PQ)
msamaral@ceuc.ufms.br
${ }^{1}$ Departamento de Ciências Exatas, Campus de Corumbá, Universidade Federal de Mato Grosso do Sul
${ }^{2}$ Departamento de Física e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirăo Preto, Universidade de São Paulo
${ }^{3}$ Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Key-words: molecular dynamics, absorption spectrum, tryptophan

In this work, we present results of quantum mechanics / molecular mechanics (QM/MM) hybrid simulation of a 7-aza-tryptophan (7AW) zwitterionic molecule in a box of water, using the computational package THOR. The 7AW zwitterion is described quantum chemically applying the AM1 Semi-empirical hamiltonian while the water molecules are treated classically by the extended simple-point-charge (SPC/E) model. The behavior of the dhiedral angles chi1 and chi2 is discussed in terms of the exponential fluorescence decay in aqueous solution. Theoretical optical absorption spectra, obtained by INDO/S-CIS Semiempirical Method either in vacuum or in the continuum model using an ellipsoidal cavity are discussed and compared to experimental data and recent results of INDO/S-CIS Semiempirical absorption spectra calculated from optimized geometries obtained with ab initio HF/4-31G in gas phase. (FUNDECT).


Figure 1: The 7-aza-tryptophan absorption spectrum obtained using INDO/S-CIS with MD simulations.

# EXPLORANDO A DISTRIBUIÇÃO DE ANESTÉSICOS VOLÁTEIS EM MEMBRANAS MODELO 

M. Pickholz and M.L. Klein<br>Center for Molecular Modelling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

Neste trabalho estudamos de forma consistente a dependência das propriedades de bio-membranas com a concentração de anestésicos voláteis. Usando um modelo simples (coarse grain) para representar lipídios, anestésicos e água (ver Fig.1), desenvolvimos simulações de dinâmica molecular.

Os anestésicos foram introduzidos numa bicamada de 512 lipídios plenamente hidratada e previamente montada. As simulações de dinâmica molecular foram feitas usando o ensemble NPT (temperatura de 303.15 K e pressão de 1 atm ), durante 5 ns , considerando condições periódicas de contorno.

O modelo provou ser estável nas condições estudadas. Achamos um aumento monotônico da área por lipídio com a concentração, entretanto nenhuma diferença apreciável foi achada na direção perpendicular à membrana.

Os anestésicos localizam-se preferentemente na interface cabeça-cauda dos lipídios na membrana. Os perfis de densidade eletrônica mostram uma distribuição bimodal dos anestésicos dentro da bicamada, em boa concordância com simulações atomísticas e trabalhos experimentais.

Pela estudo do movimento reorientacional das caudas dos lipídios, achamos que a presença dos anestésicos afeta anisotropicamente as propriedades estruturais e as dinâmicas.


Fig. 1: Representações simplificadas do lipidio DMPC (dimyristoylphosphatidylcholine), tripletes de água e anestésico halotano.

# SPARKLE MODEL FOR THE CALCULATION OF LANTHANIDE COMPLEXES - Version IV 

Ricardo O. Freire ${ }^{1}$ (PG), Gerd B. Rocha ${ }^{1}$ (PQ), Gilberto F. de Sá (PQ), Alfredo M. Simas ${ }^{1}$ (PQ),<br>freire_ufpe@hotmail.com<br>${ }^{1}$ Departamento de Química Fundamental, UFPE, 50670-901, Recife, PE, Brazil. Keywords: sparkle model, lanthanide complexes and parameterization.

Our previous version of the SMLC model (sparkle model for the calculation of ground state geometries of lanthanides complexes), version III, was parameterized using a training set of only three Eu(III) complexes with $\beta$-diketone ligands, and proved to be very useful for the prediction of the geometries of the widely used europium complexes coordinated with $\square$ diketone ligands.

In the present work we present a new parameterization to further generalize the applicability of our SMLC model. Our new training set consists of Eu(III) complexes with, not only $\beta$-diketone ligands, but also with ligands as different as nitrates, macrocyclics, tridentates and tris(2-pyridilmethyl) amides as well as dieuropium complexes, where the two Eu(III) ions face each other, totaling fifteen crystallographic structures obtained from "Cambridge Structural Database 2003". In order to be better able to describe the europium-europium interaction, we also introduced sparkle-sparkle core-core repulsion energy parameters in the model.

We also defined a new response function which further takes into consideration the bond angles in which Eu(III) is the vertex and also the Eu-L distances, where L stands for any ligand atom directly coordinating the metal ion.

Upon parameterization, we then verified the reliability of our SMLC-IV by calculating the geometries of 92 other Eu(III) complexes, whose structures are also available from the Cambridge Structural Database 2003. The 92 complexes SMLC-IV unsigned mean error (UME) for the interatomic distances of all atoms in the coordination polyhedra is $0.19 \AA$ and, for the sub-set of Eu-L distances only, it is $0.082 \AA$. In comparison with SMLC-III, these results represent a reduction of approximately $39 \%$ for the polyhedra distances UME, and $60 \%$ for the Eu-L distances UME. Furthermore, with SMLC-IV we can now reproduce structures with europium-europium interaction with an UME of $0.20 \AA$ for the coordination polyhedra and of $0.091 \AA$ for the Eu-L distances. SMLC-IV also corrects some previous difficulties detected in the SMLC-III coordination geometries for europium complexes with nitrate and oxydiacetate ligands.

In order to assess the value of our SMLC-IV, we performed some RHF ab initio calculations with the effective core potential MWB52 of Dolg et al. for europium and either STO3G or $3-21 \mathrm{G}$ for all other atoms. MWB52 includes $46+4 f^{n}$ electrons in the core, leaving the outermost 11 electrons to be treated explicitly. For this comparison, we chose two different europium complexes: NOHLOL (tris(2,6-bis(Diethylamido)pyridinyl)-europium(III) tris(trifluorosulfonate) tetrahydrofuran solvate) and XAWWIB (tris(2,2':6', $2^{\prime \prime}$-Terpyridine)europium(III) triperchlorate acetonitrile solvate).

| Description | UME Polyhedron $(\AA)$ | UME Eu-L(A) | CPU Time (hours) |
| :--- | :---: | :---: | ---: |
| NOHLOL-SMLC IV | 0.0493 | 0.0130 | 1.4 |
| NOHLOL - RHF/STO-3G | 0.0727 | 0.0270 | 47.5 |
| NOHLOL-RHF/3-21G | 0.0836 | 0.0470 | 151.0 |
| XAWWIB - SMLC IV | 0.0792 | 0.0550 | 0.2 |
| XAWWIB - RHF/STO-3G | 0.0402 | 0.0160 | 42.5 |
| XAWWIB - RHF/3-21G | 0.0894 | 0.0640 | 64.0 |

In conclusion, SMLC-IV is capable of predicting geometries of europium complexes, of accuracy equivalent to and in at least two orders of magnitude less computing time than currently available ECP ab initio methods. (Instituto do Milênio de Materiais Complexos, Capes, CNPq, Cenapad/SP, Pronex).



## XII SBQT

## Índice de Autores e

 Participantes

Adalberto Fazzio, P048, P065, P066, P167
Ademir Neves, P175
Adriana do Rocio Lopes, P199
Adriana Mieco Namba, P197, P198
Adriano da Silva, P245
Agnaldo Arroio, P262, P266, P267
Agnaldo da Silva Carneiro, P203
Albérico Borges Ferreira da Silva, P013, P245, P089, P244, P261, P262, P266, P267, P342, P362
Alberto Monteiro Guedes
Alessandra Ferreira Albernaz Vilela, P168, P169, P207, P274, P305, P306, P355
Alessandra Zenatti, P025
Alex Gutterres Taranto, P108, P109, P230
Alex Rodrigues de Andrade, P228
Alexander Martins da Silva, P097, P098
Alexandra Mocellin, P225
Alexandra Pardo Policastro Natalense, P123
Alexandre Abdalla Araújo,
Alexandre Amaral Leitão, P154
Alexandre Braga da Rocha, P154, P155
Alexandre Camilo Jr, P256, P257
Alexandre Carlos Camacho Rodrigues,
Alexandre da Silva Antunes, P330
Alexandre Luiz Almeida Bentes, P352
Alexandre Naves de Brito, P208
Alexandre Nelson Martiniano Carauta, P289, P290, P324, P323
Alfredo Arnóbio de Souza da Gama, P006, P007, P074, P075, P087, P088, P127
Alfredo Mayall Simas, P016, P083, P084, P085
Aline Thaís Bruni, P013
Álvaro Antonio Alencar de Queiroz, P005, P171, P172
Amando Siuiti Ito, P354, P371
Amarilis de Vicente Finageiv Neder, P229
Amary Cesar Ferreira, P054, P153, P160, P111, P161
Ana Carla Moreira da Silva, P330
Ana Carolina Roma, P157
Ana Claudia Monteiro Carvalho, P292
Ana Elizabete de Araújo Machado, P087, P088
Ana Maria Ferreira de Oliveira-Campos, P214
Ana Maria Henrique Moniz, P309, P369
Ana Maria Rocco, P124, P125
Ana Paula Souza Santos, P158
Anderson Antonio Costa Pinheiro, P202
Anderson Coser Gaudio, P067
Anderson da Silva Moreira, P009

André Luiz da Fonseca P. Ramos, P209
André Mauricio Brinatti, P256
André Oliveira Menezes, P258
André Oliveira Silva, P141
André Severo Pereira Gomes, P133, P134
André Tsutomu Ota, P159
Andréia Nalu Soares Hisi
Ângelo Marconi Maniero, P033, P034, P240, P332
Anivaldo Xavier de Souza, P064
Anna Maria Canavarro Benite, P350
Annick Goursot, P001
Anselmo Elcana De Oliveira, P241
Antenor Jorge Parnaíba Da Silva, P074, P075
Antonio Brito
Antônio Caliri, P110
Antônio Canal Neto, P076, P105
Antonio Carlos Borin, P311, P334
Antonio Carlos Pavāo, P021, P044, P136, P233, P234
Antônio Carios Pedrosa, P196
Antonio Eduardo da Hora Machado, P213, P214, P285
Antônio Flávio de Carvalho Alcântara, P309, P369
Antonio Jorge Ribeiro da Silva, P330
António José do Nascimento Fernandez, P309, P369
Antônio José Roque da Silva, P048, P065, P066, P167
Antonio Luciano de Almeida Fonseca, P217, P218
Antônio Luiz Oliveira de Noronha, P315
Antônio Maia de Jesus Chaves Neto,
Antonio Moreira de Cerqueira Sobrinho, P286
Antonio Sérgio dos Santos, P156
Aparecido de Arruda Sobrinho, P032
Araken dos Santos Werneck Rodrigues, P069
Armando Beltran, P024, P204, P026
Arnaldo da Costa Faro Jr, P154
Arnaldo Dal Pino Júnior, P049, P050
Arnaldo Naves de Brito, P225
Ataualpa Albert Carmo Braga, P119
Augusto Agostinho Neto, P038, P328
Augusto Faria Oliveira, P316
Augusto Gouvêa Dourado, P011
Augusto Nazareno Soares Costa

## B

Beate S. Santos, P072
Beatriz Alves Ferreira, P077, P078, P164
Benedetta Mennucci, P193

Benedito J. Costa Cabral, PL2
Benicio de Barros Neto, P088
Berenice da Silva Junkes, P041, P042
Bernardo Laks, P117, P312, P319
Bianca da Cunha Machado, 350
Björn O. Roos, PL3
Branka M. Ladanyi, P242
Bruno Araújo Cautiero Horta, P165
Bruno Wernek, P050

## C

Carla Grazielle Durães, P078
Carlile Campos Lavor, P178
Carlos Alberto Brito da Silva Junio, P291
Carlos Alessandro Fuzo, P194, P195
Carlos Davidson Pinheiro, P024, P082
Carlos Eduardo Bielschowsky, P124, P125
Carlos Eduardo Fellows,
Carlos Eduardo Resende Prado, P055
Carlos L. Cesar, P072
Carlos Renato Carvalho, P155
Carlton A. Taft, P222, P223, P234
Carmen Lucia de Oliveira Mendes
Caroline Arantes da Silva, P230
Ceciliana da S. Braga de Oliveira, P068
Cesar Augusto Fernandes de Oliveira, P014, P015
Cezar Laurence Barros, P357
Charles Martins Aguilar, P365
Christian da Silva Rodrigues, P177
Cicero Wellington Brito Bezerra, P008
Cíntia Beatriz de Oliveira, P340
Ciro Simas Vivacqua, P231
Clarissa Oliveira da Silva, P097, P193, P228, P258
Claudia de Figueiredo Braga, P341
Claudio Alberto Téllez Soto, P323
Cláudio Nahum Alves, P027, P028, P202, P203, P284, P319, P320, P352, P353
Cleber Dias Moreira, P063, P360
Cleber Paulo Andrada Anconi, P349, P365
Clebio Soares Nascimento Junior, P078, P252, P365
Cristiana Gonçalves Gameiro, P073
Cristiano Ruch Werneck Guimarães, P014
Cristina Aparecida Setúbal, P295
Cristina Lima
Cristina Maria Pereira dos Santos, P188
Cristina Northfleet de Albuquerque, P362
Cristina Porto Gonçalves, P131, P132

Cristina S. Pereira, P237
Curt Max Panisset, P201

## D

D. V. Petrov, P116

Dalva Ester da Costa Ferreira, P249
Dan Jonsson, P002
Daniel Laria, P120
Daniel Lima Nascimento, P217, P218
Daniel Moura Silva, P324
Daniela Bertolini Depizzol, P067
Danilo Paiva de Almeida, P360
Davi Serradella Vieira, P191, P192
David C. Clary, P333
David Jordan Evans, P325, P326
David Lima Azevedo, P008
Demétrio Artur Werner Soares, P172
Diana Guenzburger, P036
Dino Zanette, P328
Diógenes Cortez, P265
Donato A. G. Aranda, P068
Douglas Soares Galvão, P009, P029, P030, P031, P045, P046

## E

Eberth de Almeida Corrêa, P355
Écio José França, P005, P171
Eder Severino Xavier, P317, P318, P349
Edgardo Garcia, P271
Edilson Clemente da Silva, P080, P187
Edison Zacarias da Silva, P048
Edmar Moraes do Nascimento, P101, P102
Ednalva D. R. da Silva Duarte, P344
Ednilsom Orestes, P282
Edson R. A. Oliveira, P015
Edson Roberto Leite, P025, P026, P081, P356
Eduardo Fischli Laschuk, P238, P239
Eduardo Lemos de Sa, P293, P294, P325, P326, P368
Eduardo Novais de Azevedo, P060, P063, P360
Eduardo Perini Muniz, P112, P276
Eduardo Veitenheimer Costa, P144, P145
Elaine Fontes Ferreira da Cunha, P086
Elaine Rose Maia, P012, P367
Eliane de Souza Ladislau, P062
Elisa Soares Leite, P226
Elsoi Drigo Filho, P038

Elson Longo, P024, P025, P026, P081, P082, P222, P223, P285, P356
Elton Anderson Santos de Castro, P020
Emerson Allevato Furtado, P080
Emmanuela Ferreira de Lima, P268
Emmanuelle Marie Anne Orhan, P024, P081, P082
Enio Dikran Vasconcelos Bruce, P056
Ercila Pinto Monteiro, P279
Erkki J. Brandas, PL4
Eudes Eterno Fileti, P335
Evandro Marco Sidel Ribeiro, P101
Eveline Braga Fraga, P173

## F

Fábio Alberto de Molfetta, P342
Fabio Barboza Passos, P068
Fabio da Silva Miranda,
Fabricio Ronil Sensato, P039
Fenelon Martinho Lima Pontes, P024, P082, P356
Fernanda Marur Mazzé, P189, P190, P195
Fernando Cesário Rangel, P012, P221, P367
Fernando Hallwass, P016
Fernando R. Ornellas, P071, P281, P301
Fernando Sato, P009, P030
Flávia de Souza Lins Borba, P057
Flávia Giovana Manarin, P300
Flávia Pirola Rosselli, P089, P362
Flávia Rolim de Almeida, P130, P131, P132
Flavio Bittencourt da Cruz, P193
Flávio Luis Benedito, P296, P368
Francicarlos Veras Cardoso, P008
Francisco Alexandre de Melo Castro, P275
Francisco Bolivar Correto Machado, P017, P018, P231, P232, P280, P321, P322, P366
Francisco Carlos Lavarda, P004, P091
Francisco das Chagas Alves Lima, P180
Francisco Elias Jorge, P076, P105, P112
Frank Wilson Fávero, P090
Freddy Fernandes Guimarães, P054, P153
Frederico Celestino Pontes, P079
Frederico D. de Menezes, P072
Frederico José de Santana Pontes, P227
Frederico Vasconcellos Prudente, P332, P338

## G

Gabriela Barreiro, P014

George Jeffery Leigh, P325, P326
Georgia Maria Amaral Junqueira, P249, P254
Geraldo José da Silva, P216
Geraldo Magela E Silva, P106, P107, P207, P208
Geraldo Roberto Friedermann, P296, P368
Gerardo Gerson Bezerra de Souza, P079
Gerd Bruno da Rocha, P059, P073, P084, P085
Germán Campoy Güereña, P251
Gilberto Carlos Sanzovo, P159
Gilberto Fernandes de Sá, P083, P085, P115
Gilson Rodrigues Ferreira, P255
Ginette Jalbert, P155
Giovana Gioppo Nunes, P325; P326
Gizelle Inácio Almerindo, P304
Glaucia Maria da Silva, P211, P212
Glauciete Sarmento Maciel, P343
Glauco Favila Bauerfeldt, P187
Gotthard Seifert, P003
Graciela Arbilla, P187
Graziela Pereira Casali, P025
Grazielle B. de Oliveira, P214
Guilherme Menegon Arantes
Guilherme Testa Silva
Gustavo de Medeiros Azevedo, P152
Gustavo Franklin Nóbrega, P204
Gustavo Henrique Barbosa de Araújo, P073, P138
Gustavo Henrique Brancaleoni, P139, P142, P143, P198
Gustavo Laureano Coelho De Moura, P
Gustavo Sebastian Faraudo, P079

## H

Harley Paiva Martins Filho, P183, P184
Hector Alexandre Chaves Gil, P171
Heitor Avelino de Abreu, P348, P349
Hélcio José Batista, PL6, P104
Helder Couto, P060, P062, P063, P360
Helen Silva, P060, P062, P063
Hélio Anderson Duarte, P277, P315, P316, P348, P349
Helio Ferreira dos Santos, P030, P070, P165, P219, P235, P249, P252, P253, P254, P255, P317, P365

Herbert de Castro George, P259
Hércules S. Miglio, P285
Herick Campos Ferreira, P078
Hernan Chaimovich, P328
Hildo Antonio dos Santos Silva, P008
Hiroshi Tanaka, P123

Hubert Karl Stassen, P035, P043, P103, P336, P337
Humberto Luz Oliveira, P144, P145
Humberto Rojas, P060
Humberto Siqueira Brandi, P155
Hyuck Cho, P123

I

Icaro Sampaio Paulino
Igor Polikarpov, P114, P121
Ilfran da Silva Nava Junior, P163, P215, P364
Iolanda Midea Cuccovia, P328
Israel Athayde do Amaral, P320
Itamar Borges Junior, P152
Ivan da Rocha Pitta, P137, P146
Ivana Zanella da Silva, P066
Ivanildo Rodrigues,

## J

Jacek Styszynski, P358
Jackson L.C. Resende, P214
Jair Vaz do Amaral, P117
Jaísa Fernandes Soares, P325, P326
Janaína A. Silva, P109
Jardel Pinto Barbosa, P163, P215, P364
Javier Rodriguez, P120
Jean Dexseur, P073
Jean Guillaume Eon, P154
Jerônimo Lameira Silva, P353
Joacy Batista de Lima, P008
Joacy Vicente Ferreira, P136
João Batista Lopes Martins, P020, P204, P220, P222, P223
João Bosco Paraiso da Silva, P074, P085, P127, P137, P146, P158
João Elias Vidueira Ferreira, P163, P215
João Manuel Marques Cordeiro, $P$
João Otávio Milam de A. Lins, P329
João Pedro Braga, P058
João Pedro Simon Farah, P011
Joaquim Delphino da Motta Neto, P295, P296
Joaquim José Soares Neto, P053, P159, P201
Jocley Queiroz Araújo, P109
Joel Estevao de Melo Diniz, P284, P319
Joelma de Oliveira Mello, P062
Johannes Frenzel, P003
John D. Baxter, P114
Joice Pereira Terra E Souza, P036

Jon Otto Fossum, P216
Jones de Andrade, P103
Jordan Del Nero, P117, P135, P265, P287, P291, P312
Jorge Alberto Manso Raimundo da Rocha, P044
Jorgeríson da Silva Cordeiro
José Alves Dias, P220
José Arana Varela, P025, P082
José Carlos B. de Lima, P209
José Carios de Freitas Paula, P233, P234
José Carrijo de Faria Júnior, P048
José Ciríaco Pinheiro, P052, P163, P215, P364
Jose David M. Vianna, P033, P034, P332
José Glauco Ribeiro Tostes, P290
José Guilherme da Silva Lopes,
José Luis Marín Flores, P251
José Mario Martínez, P113
José Rachid Mohallem, P129, P130, P131, P132
José Ribamar da Silva Santos, P021
José Roberto dos Santos Politi, P345
José Walkimar de Mesquita CarneirO, P047, P068, P108, P109, P230, P289, P290, P323
Josefredo Rodriguez Pliego Junior, P303, P304
Josiana Garcia de Araújo, P128
Juan Andrés, P024, P039
Juan Omar Machuca-Herrera, P175, P350
Juliana Angeiras Batista da Silva, P019
Juliana de Lima Paschoal, P345
Juliana Fedoce Lopes, P253
Juliana Ribeiro, P213
Júlio César Corrêia Guedes, P324
Julio Cesar Pereira dos Santos, P294
Julio Ricardo Sambrano, P204, P220
Jussane Rossato, P174

## K

Kaline Rabelo Coutinho, P246, P259
Karen Cacilda Weber, P244, P245, P262, P300
Karla Souza Troche, P031
Karynne C. Souza, P214
Káthia Maria Honório, P244, P245, P261, P262, P267
Katia Julia de Almeida, P160, P161
Kátia Regina de Souza, P154
Kelson Mota Teixeira de Oliveira, P278, P279
Klaus Ribeiro Cavalcante, P094
Klaus Werner Capelle, P282
Kleber Carlos Mundim, P092, P159, P168, P201, P275
Kleber de Arruda Almeida, P005, P171

## L

Larry C. Thompson, P083
Laurent Emmanuel Dardenne, P069
Lauro Camargo Dias Junior, P177
Leandro Martinez, P113, P114, P121
Lee Mu-Tao, P101, P102, P156, P162, P286
Léo Degrève, PL1, P095, P096, P110, P138, P139, P142, P143, P189, P190, P191, P192, P194, P195, P197, P198, P211, P212
Leonardo Baptista, P187
Leonardo Frasatto, P142, P143
Leonardo José Amaral de Siqueira, P331
Leonardo Tsuyoshi Ueno, P280, P281
Levi Gonçalves dos Santos, P071
Lilian Weitzel Paes, P175
Louraine Cláudia De Melo, P010
Lourivaldo da Silva Santos, P202
Lucas Resende Salviano, P053
Luciana Brandão Carreira Del Nero, P288
Luciana Guimarães, P316
Luciane de Lima Pelaquim, P299
Luciano Nassif Vidal, P181, P182
Luciano Pinho Gomes, P166
Luciano S. Virtuoso, P058
Luciano Tavares da Costa, P269
Lucicleide Ribeiro da Silva
Lucilaine de Assumpção, P299, P300
Lucimar Pinheiro, P265
Lucimara Ramos Martins, P122, P242, P243, P273
Luis Antonio da Silva Vasconcellos, P204
Luis Henrique Mendes da Silva, P058
Luis Marco Brescansin, P156
Luis Serrano-Andrés, P311
Luis Silva da Costa, P240, P332, P333
Luiz Antônio Sodré Costa, P165, P235
Luiz Augusto Carvalho Malbouisson, P092, P093, P338
Luiz Carlos da Silva Filho, P298
Luiz Carlos Gomide Freitas, P032, P055, P226, P237, P250, P268, P269, P270
Luiz Eugênio Machado, P033, P034, P101, P102, P156
Luiz Guilherme Machado de Macedo, P334, P358
Luiz Marco Brescansin, P102
Luiz Roberto Marim, P049, P050
Luz Guimarães Ferreira, P123
M. Barbatti, P359
M.L. Klein, P372

Maira de Almeida Carvalho, P085
Marçal de Oliveira Neto, P166, P205, P224, P229
Marcelo de Freitas Lima
Marcelo Lazzarotto, P041, P042
Marcelo Pêgo Gomes, P063, P360
Marcelo Trade Barreto, P105, P112
Marcelo Zaldini Hernandes, P085, P094, P137
Márcia Barsottelli Procópio, P111
Marcia Helena Moreira Paiva, P067
Márcia Miguel Castro Ferreira, P013, P148, P149, P150, P151, P260

Marciano Alves Carneiro, P256
Márcio Henrique Franco Bettega, P123
Márcio José Estillac de Mello Cardoso, P051
Márcio Soares Pereira, P140
Marco Antônio Chaer Nascimento, P186, P080, P098, P118, P140, P178, P185, P329, P370
Marco Aurélio Alves Barbosa, P176
Marco Aurélio P. Lima, P199, P123
Marcos Anicete dos Santos, P024, P082
Marcos Antônio de Oliveira, P070
Marcos H. Toyama, P245
Marcos Roberto Lourenzoni, P095, P096, P142, P197, P211, P212

Marcos Roberto Ribas, P293, P294
Marcos Serrou do Amaral, P354, P371
Marcus Vinícius Pereira dos Santos, P146, P147
Maria Cristina Andreolli Lopes, P060, P062, P063, P360
Maria Cristina dos Santos, P292, P309, P369
Maria Cristina Rodrigues da Silva, P173
Maria das Graças Reis Martins, P033, P034
Maria do Carmo Alves de Lima, P146, P137
Maria E. V. Suárez-Iha, P280
Maria Eliana de Sousa Bentes
Maria Fernanda do Carmo Gurgel, P024, P025, P026, P082
Maria Isabel Felisberti, P124
Maria Luiza Rocco, P079
Maria Oswald Machado de Matos, P064
Maria Suely Costa de Câmara, P026
Maria Suely Pedrosa Mundim, P225
Maria Tereza Correa Lima, P146
Mariana R. Carvalho, P048
Mariângela Dametto, P179

Marília Junqueira Caldas, P045
Marina Pelegrini, P231, P321, P322
Mario Lopes Macedo, P089
Mario Ramos da Silva Júnior, P127, P146
Marisa Grassi, $\mathrm{P} \neq 72$
Marta Aparecida Ferreira de Oiiveira Britto, P252
Martha Teixeira de Araújo, P108, P230
Marysilvia Ferreira, P079
Masashi Kitajima, P123
Mauricio Chagas da Silva, P283
Maurício D. Coutinho Neto, P297
Mauricio Gomes Constantino, P298
Maurício Ruv Lemes, P049, P050
Maurício Tavares de Macedo Cruz, 047
Mauro Barbosa de Amorim, P330
Mauro Carlos Costa Ribeiro, P272, P273, P331
Mauro dos Santos de Carvalho, P37
Mauro Lúcio Franco, P349
Melissa Fabiola Siqueira Pinto, P247, P248
Micael Dias de Andrade, P092
Michel Loos, P354, P371
Milan Trsic, P180, P247, P248, P276, P278, P340, P351
Milton Massumi Fujimoto, P162
Milton S. Rocha, P280
Milton Taidi Sonoda, P100, P114
Mírian da Silva Costa, P260
Mônica Alaídes Borchert
Monica Andrea Pickholz, P372
Mozart Neves Ramos, P127
Mozart Pimentel Montenegro de Barros, P006, P007
Munir Salomao Skaf, P090, P100, P114, P120, P121, P122, P242, P243, P263, P264, P273
Myriam Malvina Segre de Giambiagi, P205

## N

Nei Marçal, P312, P313
Nelson Henrique Morgon, P119, P209, P210, P283
Nestor Correia, P225
Ney Henrique Moreira, P061
Nilo Makiuchi, P225
Noemia K. Ishikawa, P294

## 0

Octávio C. V. Antunes, P068
Olavo Leopoldino da Silva Filho, P196
Orlando Roberto Neto, P231, P232, P321, P322, P366

Oscar Manoel Loureiro Malta, P023, P083, P059, P115
Osmair Vital de Oliveira, P250
Osmar De Souza E Silva Júnior, P141
Oswaldo Esteves Barcia, P051
Oswaldo Treu Filho, P052, P215, P364

## P

Pablo Zimmermann Coura, P009
Paolo Roberto Livotto
Patricia Granzotto Antunes, P036
Patrícia M. A. de Farias, P072
Patricia Pereira de Lima, P059
Patricia Regina Pereira Barreto, P168, P169, P274, P306, P355
Paul Webb, P114
Paula Homem de Mello, P262
Paulo Corrêa de Mello, P289
Paulo Fernando Bruno Gonçalves, P336, P337
Paulo Henrique Alves Guimarāes, P106, P107
Paulo Henrique Oliveira de Souza, P172
Paulo Hora Acioli; P206
Paulo Monteiro Vieira Braga Barone, P010, P236
Paulo Pitanga, Aurino Ribeiro Filho, P275
Paulo Rogério N. Souza, P068
Paulo Sérgio Pizani, P024, P025, P081, P082, P356
Pedro Alves da Silva Autreto, P091
Pedro Antonio Muniz Vazquez, P182, P181
Pedro Henrique Curi de Camargo, P325
Pedro Henrique Ferri, P012, P367
Perycles Tupy Vieira Junior, P205, P224
Peter Brian Hitchcock, P325, P326
Peter Rudolf Seidl, P290, P324
Philippe H. Hunenberger, P237

R

Ranylson Marcello Leal Savedra, P247
Raphael da Costa Cruz, P051
Raquel da Silva Leviski, P043
Raquel Ferreira dos Santos, P012, P221, P367
Raúl Riera Aroche, P251
Regina M. Q. de Mello, P293
Reinaldo Centoducatte, P076, P112
Renata Cristina Lima, P356
Renato Borges Pontes, P065
Renato Carlos Tonin Ghiotto, P004
Renato Luis Tâme Parreira, P128

Renato Rosseto, P265
Ricardo Aroca, P180, P276
Ricardo Bicca De Alencastro, PL5, P014, P015, P086
Ricardo De Carvalho Ferreira, P227
Ricardo F. Aroca, P340
Ricardo Ferreira, P072
Ricardo Gargano, P159, P168, P169, P176, P201, P207, P274, P305, P306, P355
Ricardo Luiz Longo, PL6, P019, P057, P072, P104, P126, P157, P226, P227, P339, P341
Ricardo Machado Kuster, P330
Ricardo Mercadante, P299, P300
Ricardo Oliveira Freire, P022, P085
Richard John Ward, P095, P096
Roberta Pereira Dias, P077, P164, P365
Roberto D. Lins, P237
Roberto de Barros Faria, P175, P188
Roberto Gomes de Souza Berlinck, P089
Roberto Luiz Andrade Haiduke, P183, P241, P346, P347
Roberto Pellacani Guedes Monteiro, P058
Roberto Rivelino de Melo Moreno, P327
Roberto Rosas Pinho, P079
Robson Pacheco Pereira, P124, P125
Rodrigo Alves Dias
Rodrigo Barbosa Capaz, P154
Rodrigo de Paula, P213
Rodrigo Morais Canavieira, P265
Rodrigo O. Ribeiro, P280
Rodrigo Queiroz de Albuquerque, P022, P023
Rogério Custodio, P039, P133, P134, P177, P344, P345
Rogério José Baierle, P174
Rogério Toshiaki Kondo, P052, P215, P364
Ronaldo Giro, P029, P045, P046
Ronaldo Mota, P174
Roosevelt Alves da Silva, P110
Rosana Janot Martins, P051
Rosendo Augusto Yunes, P041, P042
Rosivaldo Dos Santos Borges, P027, P028, P202, P284, P319, P320
Roy Edward Bruns, P183, P241, P346, P347
Rúbia Camila Ronqui Bottini, P325
Rudolf Kiralj, P148, P149, P150, P151

S

Sailaja Krishnamurty, P001
Satoshi Tahara, P294
Saulo Luis da Silva, P244, P245

Scheila Furtado Braga Llanes, P010, P030, P031
Sebastiāo Claudino da Silva, P017, P018
Selma Cristina Teixeira Pantoja
Serge I. Gorelski, P326
Sergio Benites Legoas, P029
Sérgio de Paula Machado, P175, P188, P350
Sergio Duarte Pinheiro Junior
Sérgio Eduardo Michelin, P162
Sérgio Emanuel Galembeck, P128, P179, P298, P363
Sérgio Marangoni, P245
Sérgio Minoru Urahata, P331
Sergio Modesto Vechi, P263, P264
Sérgio Ricardo de Lazaro, P026
Sergio Roberto Romeiro de Aguiar, P027
Severino Alves Jủnior, P083, P059
Severino Alves, P073
Sheila Cristina dos Santos Costa, P135
Shirley Nakagaki, P296, P368
Sibylle Gemming, P003
Sidney Ramos de Santana, P126
Sidney Ramos Santana, P147
Silvana Guilard, P214, P285
Silvana Mattedi E Silva, P268, P269
Silvânia Maria de Oliveira, P137, P146
Silvia Cláudia Loureiro Dias, P220
Silvia Dani, P035
Sirlaine Diniz Ferreira, P315
Slawomir Berski, Vicent Sixte Safont, P039
Sócrates de Oliveira Dantas, PL7, P009
Solange Vandresen, P302
Stella Maris Resende, P301, P302
Suely Aparecida Faria Mazzini, P236
Suely Lins Galdino, P137, P146
Sylvio Roberto Accioly Canuto, P246, P308, P310, P311, P327

## T

Takahiro Tanaka, P123
Tarcísio Marciano da Rocha Filho, P069
Tathiana Moreira Diniz Ribeiro, P130
Tatiane Faustino de Moraes, P246
Tatiani Marcasso, P282
Teodorico de Castro Ramalho, P086
Tereza Pereira de Souza, P328
Thaciana Valentina Malaspina Fileti, P308
Thiago Messias Cardozo, P118
Thiago Oliveira dos Santos, P067

Thomas Heine, P001
Tiago Andre da Silveira Fialho, P220
Tomé M. Schmidt, P285

## ن

Uwe Manthe, P297

## v

Valdeílson S. Braga, P220
Valdemar Lacerda Júnior, P298
Valdemir Eneias Ludwig, P310, P311
Valéria Cristina Fregati Rustici, P363
Vanessa L. R. Furtado, P015
Vanessa Maria Carpentieri, P011
Victor Dmitriev, P291
Vilma Edite Fonseca Heinzen, P041, P042
Vitor Barbanti Pereira Leite, P013
Vitor Rafael Coluci, P031
Vivian Dayse Ribeiro de Freitas, P326
Viviane Costa Felicíssimo, P153
Viviane Cristina Albarici, P081
Vivianni Marques Leite dos Santos, P339

W

Wagner Batista de Almeida, P077, P164, P165, P170,
P188, P219, P235, P249, P254, P309, P317, P318, P348, P349, P365, P369
Wagner de Mendonça Faustino, P083, P115, P116
Wagner Fernando Delfino Angelotti, P351
Wanderlä Luis Scopel, P167
Washington Barbosa Silva, P206
William A. Lester, Jr., PL8
Willian Ricardo Rocha, P016, P056, P075, P165, P235, P249, P253, P254, P317, P318, P365

Y

Yoshiyuki Hase, P040, P346
Yuji Takahata, P314
Yvonne Primerano Mascarenhas, P256


[^0]:    ${ }^{1}$ A. Schnepf, H. Schnöckel, Angew. Chem. Int. Ed., 40/4, 2001, 711; ${ }^{2}$ O. N. Bakharev, N. Selders, H. B. Brom, A. Schnepf, H. Schnöckel, L. J. de Jong; Eur. Phys J.; to be published; ${ }^{3}$ J. Hegel, M. T. Kelemen, G. Fischer, B. Pilawa, J. Wosnitza, E. Dormann, H. von Löhneysen, A. Schnepf, H. Schnöckel, U. Neisel , J. Beck; Low. Temp. Phys. 2002.

[^1]:    ${ }^{1}$ Joseph Zyss et al, J. Am. Chem. Soc. 122, 11956-11962 (2000);
    ${ }^{2}$ Glenn P. Bartholomew et al, J. Am. Chem. Soc. 124, 13480-13485 (2002).

[^2]:    ${ }^{1}$ R. G. Harvey and N. E. Geacintov, Acc. Chem. Res. 21, 66 (1988).

[^3]:    1) Yunes, R. A.; Heinzen, V. E. F.; Cechinel Filho, V.; Lazzarotto, M. Drug Res. 2002, 52, 125.
    2) Lazzarotto, M.; Junkes, B. S.; Yunes, R. A.; Heinzen, V. E. F. Livro de Resumos da $26^{\text {a Reunião Anual da SBQ - }}$ Sessão de Química Medicinal - Poços de Caldas (MG), maio de 2003
    3) Khanna, I. K.; Weier, R. M.; Yu, Y.; Xu, X. D.; Koszyk, F. J.; Collins, P. W.; Koboldt, C. M.; Veenhuizen, A. W.; Perkins, W. E.; Casler, J. J.; Masferrer, J. L. Zhang, Y. Y. J. Méd. Chem. 1997, 40, 1634.
[^4]:    ${ }^{1}$ Junkes, B.S., Amboni, R. D. M. C., Yunes, R. A., Heinzen, V.E.F. Internet Electron. J. Molec. Des., v.2, p. 33-49, 2003. Disponivel em < http://www.biochempress.com >.
    ${ }^{2}$ Junkes, B.S., Amboni, R. D. M. C., Yunes, R. A., Heinzen, V.E.F. Anal. Chim. Acta, v. 477, p. 29-39, 2003.
    ${ }^{3}$ Ren, B., J. Chem. Inf. Comput. Sci., v. 42,p. 858-868, 2002.

[^5]:    1. K. Kimura, S. Katsumata Y. Achiba, T. Yamazaki and S. Iwata, in Handbook of Hel Photolectron Spectra of Fundamental Organic Molecules, Tokyo: Japan Scentific Societies Press (1981)
    2. D.M. Holland, M.A.MacDonald, M.A. Hayest, P. Baltzer, J. Phys. B:At. Mol. Opt. Phys. 29 (1996)

    3091
    3. P.J. Basset, D.R. Lloyd, J. Chem. Soc. A (1971)641

[^6]:    ${ }_{2}^{1}$ Mohamadi, K.; et al. J. Comp. Chem., 1993, 11, 440.
    ${ }_{3}^{2}$ Jorgensen, W.L.; Tirado-Rives, J. J. Am. Chem. Soc., 1990, 110, 1657.
    ${ }^{3}$ Stewart, J.J. MOPAC93.00 Manual, Fujitsu Limited, Tokyo, Japan, 1993.

[^7]:    *desvio padrāo $\approx 5 \% ;$ ** $E C=E(T C X \ldots \beta-C D)-[E(T C X)+E(\beta-C D)]$
    ${ }^{1}$ Stewart, J.J. MOPAC93.00 Manual, Fujitsu Limited, Tokyo, Japan, 1993.
    ${ }^{2}$ Mohamadi, K.; et al. J. Comp. Chem., 1993, 11, 440.
    ${ }^{3}$ Jorgensen, W.L.; Tirado-Rives, J. J. Am. Chem. Soc., 1990, 110, 1657.

[^8]:    [1] J. Horácek and T. Sasakawa; Phys. Rev. A, 28, 2151 (1983). [2] M.-T.
    Lee, I. Iga, M.M. Fujimoto and O. Lara; J. Phys. B: At. Mol. Opt. Phys. 28, L299 (1995). [3] E.M.S. Ribeiro, L.E. Machado, M.-T. Lee and L.M. Brescansin; Comput. Phys. Commun. 136, 117 (2001). [4] A.E. Orel and T.N. Rescigno; Chem. Phys. Lett. 269, 222 (1997). [5] C.E. Brion, A. Hammet, G.R. Wight and M.J. van der Wiel; J. Electron Spectr. 12, 323 (1997). [6] M. S. Banna, H. Kossmann and V. Schmidt; J. Chem. Phys. 63, 323 (1997).

[^9]:    [1] R.R. Lucchese, G. Raseev and V. McKoy, Phys. Rev. A 252572 (1982)
    [2] N.T. Padial and D.W. Norcross, Phys. Rev. A 29 (4) 1742-1748 (1984)
    [3] G. Padeletti, M. Rosi, A. Sgamellotti, F. Tarantelli, M.M. Gofman, V.A. Andreev, and V.I. Nefedov, J. Struct. Chem+ 30 (1) 66-71 (1989)

[^10]:    ${ }^{1}$ - W. P. Su, J.R. Schrieffer e A. J. Heeger, Phys. Rev. B 22, 2099 (1980); 28, 1138(E)(1983).
    ${ }^{2}$ - G. M. e Silva e A. Terai, Phys. Rev. B 68, 47 (1993).

[^11]:    ［1］P．Webb et al．，＂Design of Thyroid Hormone Receptor Antagonists from First Principles．＂J．Steroid Biochem． Mol．Biol．83：59（2003）．
    ［2］R．L．Wagner et al．，＂Hormone Selectivity in Thyroid Hormone Receptors．＂Molec．End．15：398（2001）．
    ［3］A．Blondel et al．，＂Retinoic Acid Receptor：a Simulation Analysis of Retinoic Acid Binding and the Resulting Conformational Changes．＂J．Mol．Biol．291：101（1999）．
    ［4］L．Martínez，M．T．Sonoda，P．Webb，J．D．Baxter，M．S．Skaf，I．Polikarpov，＂Molecular Dynamics Suggest Likely Pathways for T3 Dissociation from Thyroid Hormone Receptors．＂Submetido para publicação．

[^12]:    ${ }^{1}$ Harbone, J. B.; Grayer, R. J. In The Flavonoids: Advances in Research since 1980; Harbone, J. B., Ed.; Chapman and Hall: London, 1988.
    ${ }^{2}$ Murray, R. D. H.; Méndez, J.; Brown, S. A. The Natural Coumarins - Occurence, Chemistry and Biochemistry, John Wiley \& Sons Ltd, New York, 1982.

[^13]:    
    
    $3_{\text {Khtaikewskl. M. Chem. Fhys tett. 214(2). } 166.1993}$

[^14]:    ${ }^{1}$ Mohamadi, K.; et al. J. Comp. Chem., 1993, 11, 440.
    ${ }^{2}$ Jorgensen, W.L.; Tirado-Rives, J. J. Am. Chem. Soc., 1990, 110, 1657.
    ${ }^{3}$ Stewart, J.J. MOPAC93.00 Manual, Fujitsu Limited, Tokyo, Japan, 1993.

[^15]:    1-Dickerson \&Drew, 1981; 2-Beveridge \& Ravishanker, 1994; 3-Chen \& Prohohofsky, 1993,1994; 4Balasubramanian et al., 1993; 5-MacKerell, 1997.

[^16]:    [1] A. S. Foster, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, Phys. Rev. B 65, 174117 (2002).
    [2] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
    [3] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993); G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
    [4] J. P. Perdew et al.Phys. Rev. B 41, 6671 (1992).

[^17]:    1- Averill, B. A., Davis, J. C., Burman, S., Zirino, T., Sanders-Loehr, J., Loehr, T.M., Sage, T., Debrunner, P.G. J. Am. Chem. Soc., 109, 3760, 1987.
    2- Dronskowski, R. J. Am. Chem. Soc., 114, 7230, 1992.
    3- Paes, L.W.C. Tese de doutorado, Universidade Federal do Rio de Janeiro, 2003.
    4- Lanznaster, M., Neves, A., Bortoluzzi, A. J., Szpoganicz, B., Schwingel, E. Inor. Chem., 41, 5641, 2002.
    5- Horn, Jr. A., Tese de Doutorado, Universidade Federal de Santa Catarina, 2000.

[^18]:    ${ }^{1}$ V.P. BALEMA, K.W. DENIS,V.K. PECHARSKS, J. Alloys Comp. 2000, v. 313, p. 69-74.

[^19]:    ${ }^{1}$ N. C. Craig, K. L. Petersen and D. C. McKean, J. Phys. Chem. A 2002, 106, 6358
    ${ }^{2}$ R. O. Kagel, D. L. Powell, J. Overend, M. N. Ramos, A. B. M. S. Bassi and R. E. Bruns, J. Chem.

[^20]:    ${ }^{1}$ B. Ma, H. F. Schaefer, N. Allinger, J. Am. Chem. Soc. 120, 3411 (1998) e J. Comp. Chem. 20, 1593 (1999).
    ${ }^{2}$ C. Cramer, et alli J. Comp. Chem.19, 1111 (1998).
    ${ }^{3}$ Mennucci, B.; Tomasi, J.; Cammi, R.; Cheeseman, J. R.; Frisch, M. J.;Devlin, F. J.; Gabriel, S.; Stephens, P. J. J. Phys. Chem. A. 36, 6102 (2002).

[^21]:    1. Chilin, C. Marzano, A. Guiotto, P. Manzini, F. Baccichetti, F. Carlassare, F. Bordin, J. Med. Chem. 1999, 42 (15), 2936; 2 . O. Gia, S. Mobilio, M. Palumbo, M. A. Pathak, Photochem. Photobiol. 1993, 57, 497; 3. a) F. Bordin, Int. J. Photoenergy 1999, 1, 1; b) F. Dall'Acqua, D. Vedaldi, S. Caffieri, in "The Fundamental Bases of Phototherapy", H. Hönigsmann, G. Jori, A. R. Young (Eds.), OEMF, Milano, 1996, pp. 1-16; 4. A.E.H. Machado, J. A. Miranda, A. M. F. Oliveira-Campos, D. Severino, D. E. Nicodem, J. Photochem. Photobiol. A: Chemistry 2001, 146, 75; 5. De Paula, R., Dissertação de Mestrado, Instituto de Química, Universidade Federal de Uberlândia, 2003.
[^22]:    ${ }^{a}$ A base para O é 5 s3p3d, incluindo duas funções difusas s e p para a espécie iônica.
    $\Delta_{1}, \Delta_{2}$ e e $\Delta_{3}$ foram obtidos através da diferença entre em valores teóricos e experimentais.
    (CAPES/CNPq/CENAPAD/LQTC-UFPA)

[^23]:    1. H. F. Dos Santos, W. B. De Almeida e M. C. Werner, J. Pharm. Sci, 87 (1998) 190. 2. H. F.. Dos Santos, C. S. Nascimento, Jr., P. Belletato, W. B. De Almeida, Theochem, 626 (2003) 305. 3. W. B. De Almeida, H. F. Dos Santos, W. R. Rocha, M. C. Zerner, J. Chem. Soc., Dalton Trans., 15 (1998) 2531. 4. W. B. De Almeida, H. F. Dos Santos, M. C. Lerner, J. Pharm. Sci., 87 (1998) 1101. 5. W. B. De Almeida, H. F. Dos Santos, L. R. A. Costa, M. C. Zerner, J. Chem. Soc., Perkins Trans. 2, (1997) 1335. 6. H. F. Dos Santos, M. C. Zerner, W. B. De Almeida, J. Chem. Soc., Perkins Trans. 2, (1998) 2519. 7. H. F. Dos Santos, E. S. Xavier, M. C. Zerner, W. B. De Almeida, J. Mol. Struct., 527 (2000) 193. 8. C. S. Nascimento, Jr., M. Britto, B. Alves, W. B. De Almeida, H. F. Dos Santos, em preparaçäo. 9. J.M. Wessel, W.E. Ford, W. Szymczak, S. Schneider, J. Phys. Chem. B 102 (1998) 9323 . 10. A.A.M. Aly, A. Strasser, A. Vogler, Inorg. Chem. Commun. $\underline{5}$ (2002) 411.
[^24]:    ${ }^{1}$ Krakowiak, K. E.; Zhang, X. X.; Bradshaw, J. S.; Zhu, C. Y. \& Izatt, R. M., "New 2-methilenepropylene-bridged cryptands with high sodium ion selectivity: A thermodynamic study of complexation". J. Inclusion Phenom. 23(3): 223, 1995.
    ${ }^{2}$ Zhang, X. X.; Izatt, R. M.; Bradshaw; J. S. \& Krakowiak; K. E. "Approaches to improvement of metal ion selectivity by cryptands". Coord. Chem. Rev. 174: 179, 1998.

[^25]:    ${ }^{1}$ Tvaroška, 1.; Bleha, T. Adv. Carbohyd. Chem. Biochem., 1989, 47, 15-123.
    ${ }^{2}$ Imberty, A.; Hardman, K. D.; Carver, J. P.; Pérez, S.; Gly cobiology, 1991, 1, 631642
    ${ }^{3}$ Pérez, S.; Imberty, A., Elgensen, S. B.; Gruza, J.; Mazeau, K., Jimenez-Barbero, J.; Poveda, A;
    Espinosa, J-F.; van Eyck, B. P.; Johnson, G.; French, A. D.; Kouwijzer, M. L. C. E.; Grootenius, P. D. J.; Bernardi, A.; Raimondi, L.; Senderowitz, H.; Durier, V.; Vergoten, G.; Rasmussen, K. Carbohyd. Res., 1998, 314, 141-155.

[^26]:    ${ }^{a}$ Este trabalho
    ${ }^{\text {b }}$ Anderson, J. B., J. Chem. Phys. 115, 4546 (2001)
    ${ }^{\text {c }}$ Cybulski, S. M. e Toczylowski, R. R., J. Chem. Phys. 111, 10520 (1999)
    ${ }^{\text {d }}$ Janzen, A. R. e Aziz, R. A., J. Chem. Phys. 107, 914 (1997)
    ${ }^{e}$ Keil, M., Danielson, L. J. e Dunlop, P. J., J. Chem. Phys. 94, 296 (1991)

[^27]:    ${ }^{1}$ Nelson, D. L.; Cox, M. M. Lehninger Principles Of Biochemistry, 3.Ed., Worth Publishers, New York, 2000.
    ${ }^{2}$ Wald, G. Science. 1968, V.162, P.230-239.
    ${ }^{3}$ Wald, G.; Brown, P. K. Science 1958, V.127, P.127, 222-226
    ${ }^{4}$ Karnaukhova, E.; Hu, S.; Boonyasai, R.; Tan, Q.; Nakanishi, K.; Bioorg. Chem. 1999, V.27, P. 372.

[^28]:    ${ }^{1}$ WALD, G. Science. 1968, v.162, p.230-239.
    ${ }^{2}$ YOSHIZAWA, T.; KUWATA, O. In: Organic Photochemistry and Photobiology, CRC Press: New York, 1995, p.1493-1499.
    ${ }^{3}$ TRSIC, M. An. Real Soc. Esp. Fís. Quím. 1969, v.65, p.833-836.
    ${ }^{4}$ MERGULHÃO, S.; FARIA, R. M.; FERREIRA, G. F. L.; SWORAKOWSKI, J. Chem. Phys. Lett. 1997, v.269, p. 489-493.

[^29]:    ${ }^{1}$ R. West, H. Y. Niu, D. L. Powell and M. V. Evans, J. Am. Chem. Soc., 1960, 82, 6204. ${ }^{2}$ G. Seitz and P. Imming, Chem. Rev., 1992, 92, 1227. ${ }^{3}$ A. Cornia, A. C. Fabretti and A. Giusti, Inorg. Chim. Acta, 1993, 212, 87.

[^30]:    ${ }^{1}$ R. West, H. Y. Niu, D. L. Powell and M. V. Evans, J. Am. Chem. Soc., 1960, 82, 6204. ${ }^{2}$ M. Takahashi, K. Kaya and M. Ito. Chem. Phys. 1978, 35, $293 .{ }^{3}$ G. M. A. Junqueira, W. R. Rocha, W. B. De Almeida and H. F. Dos Santos, submitted to Phys. Chem. Phys. Chem., ${ }^{\text {'P. v. Schleyer, K. Najafian, B. Kiran and H. Jiao, J. Org. Chem., 2000, 65, 426. }{ }^{5} \text { G. M. A. Junqueira, W. R. Rocha, W. B }}$ De Almeida and H. F. Dos Santos, Phys. Chem. Phys. Chem. 2001, 3, 3499; 2002, 4, 2517; 2003, 5, 437. ${ }^{6}$ K. Coutinho and S. Canuto, Adv. Quantum. Chem. 1997, 28, 89.

[^31]:    ${ }^{1}$ Carles Curutchet, Modesto Orozco, F. Javier Luque. J. Comp. Chem. 2001. 11,1180-1193
    ${ }^{2}$ Barone, V. ;Cossi, M. :Tomasi, J. ,J.Chem Phys., 1997, 197,3210.

[^32]:    Dobashi, A. site: http:// www.ps.toyaku.ac.jp/dobashi consultado em: 15 de março de 2003
    Zhu,H. e Grant, D.J.W. International Journal of Pharmaceutics, 139 (1996) 33-43.

[^33]:    ${ }^{a}$ Converged to mm site. ${ }^{\text {b }}$ Converged to bb site. ${ }^{\text {c }}$ All other models lie at least $45 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ higher in energy.

[^34]:    ${ }^{\text {a }}$ Energias de HOMO e LUMO, valores de $\mu$ e $\eta$ estão em au; valores $\omega$ estão em eV.
    ${ }^{1}$ Dias, L. C. J. Braz. Chem. Soc. 1997, 8, 289.
    ${ }^{2}$ Constantino, M.G.; Lacerda Jr., V.; da Silva, G. V. J. Molecules 2002, 7, 456-465.
    ${ }^{3}$ Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. J. Org. Chem. 2003, 68, 3884-3890.

[^35]:    ${ }^{1}$ Ortega, A.; Blount, J. F.; Manchand, P. S. Journal of the Chemical Society. 1982, 2505-2508.
    ${ }^{2}$ Valdés, L. J.; Hatfield, G. M.; Koreeda, M.; Paul, A. G. Economic Botany, 1987, 41(2), 283-291.

[^36]:    [1] J. M. L. Martin, P. R. Taylor, Chem. Phys. Lett., 248 (1996) 336.
    [2] K. Takagi, T. Kojima, J. Phys. Soc. Japan 30 (1971) 1145.

[^37]:    [1] Nunes, G. G., Reis, D. M., A. S., Evans, D. J., Hitchcock,

    Amorim, P. T., Sá, E. L., Mangrich, P. B., Leigh, G. J., Nunes, F. S., Soares, J. F. New J. Chem., 26, 2002, 519. [2] Ridley, J. E., Zerner,

[^38]:    [1] Nunes, G. G., Reis,
    D. M., Amorim, P. T., Sá, S., Evans, D. J.,
    E. L., Mangrich, A.

    Hitchcock, P. B., Leigh, G. J., Nunes, F. S., Soares, J. F. New J. Chem., 26,2002, 519. [2]
    Ridley, J. E., Zerner, M. C., Theoret.Chim.Acta, 32, 1973, 111.
    [3] http://www.msg.ameslab.gov/gamess/gamess.html

[^39]:    1. H. Ushida, Y. Iwadate, K. Fukushima, M. Misawa, T. Fukunaga, T. Nakazawa, A. Iwamoto, J. Mol.Liq. 100/3, 183 (2002).
    2. S. W. Rick, S. J. Stuart, B. J. Berne, J. Chem. Phys. 101, 6141 (1994).
[^40]:    'Rodrigues, C.R. Modelagem molecular de derivados heterociclicos nitrogenados como inibidores potenciais de 5 -lipoxigenase.RJ.UFRJ,1994, 115 p(Dissertaçāo de Mestrado).
    ${ }^{2}$ Shenker, M.; Ghirlando, R.; Oliver, I.; Helmann,M.; Hadar, Y. e Chen, Y.Soil Sci. Soc. Am. J.1995,59, 837.
    ${ }^{3}$ Drechsel, H.; Gunter, J. E Gunter, W. BioMetals 1992, 5, 141.
    ${ }^{4}$ Carrano, C.J.; Drechsel, h.; Kaiser, D.; Jung, G.; Matzanke, B.; Wilkelmann, G.; Rochet, N. e Albbrecht-Gary, A.M. Inorg. Chem. 1996, 35, 6429.

[^41]:    ${ }^{1}$ Chattopadhyay, P., Dreizler, R.M., Trsic, M., Fink, M.: Z. Phys. A 285, 7 (1978).

[^42]:    ${ }^{1}$ I. Scmidt-Mink, W. Meyer, B. Krüger, F. Engelke, Chem. Phys. Lett., 143, 353 (1988): . Scmidt-Mink, W. Meyer, Chem. Phys. Lett., 121, 49 (1985); D. L. Cooper, J. M. Hutson, T. Uzer, Chem. ys. Lett., 86, 472 (1982).

[^43]:    Resultado obtido por Dos Santos e col., Chem. Phys. Lett. 319 (2000) 569, utilizando o programa MOPAC-93.

[^44]:    L. R. Milgrom, The Colours Of Life, Oxford University Press, New York, 191-243 (1997).
    ${ }^{2}$ Stewart, J.J.P., J. Comp. Chem, 1989,221.
    ${ }^{3}$ Deitel, J. P.; Mcphie, D. C.; Deitel, H. M., Pe
    ${ }^{4}$ Ridley, J. E., Zerner, M. C., Theoret.Chim.Acta, 32, Programar, Bookmann, Rio De Janeiro, Brasil (2002).

