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What do we mean by symmetry breaking?

* The symmetry of the wavefunction at a high-symmetry molecular structure is
broken

e Lowdin “Symmetry dilemma”
* If A is a normal constant of motion, i.e. HA = AH
then every eigenfunction to H is automatically also an eigenfunction of A:

In case of a symmetry operation, the exact eigenfunction ¥ is automatically
symmetry adapted: HY =EY¥Y, AY =AY

In case of an expectation value, the consequence of symmetry is not automatically
given

Lowdin, P. O. In Lykos, P.; Pratt, G. W. Discussion on The Hartree-Fock Approximation. Rev. Mod.
Phys. 1963, 35, 496-501



Two cases for:

(i) 5<D‘ H ‘ D> =0; and AD = AD is enforced

(ii) The symmetry constraint is dropped and only the variational calculation is
performed without further constraint: §<D| H | D= O>

D is e.g. a Hartree-Fock determinant.

This procedure was termed nonrestricted Hartree-Fock scheme. The solution D
corresponding to the absolute minimum can have lost its symmetry adaptation.
Such symmetry broken situations can already be observed for the dissociation
process of H,.

The main question in practice is: how can one find out whether an observed
symmetry breaking is “real” or induced by an artificial bias of the approximate
wavefunction toward symmetry breaking.



Symmetry Breaking in Polyatomic Molecules: Real and Artifactual

Ernest R. Davldson’ and Weston Thatcher Borden
J. Phys. Chem. 1983, 87, 4783-4790

Broken symmetry structures may appear as minima on

a calculated potential surface for several reasons. One of
the most common is that the calculation is "wrong". That
is, the form assumed for the wave function is oversimplified
and leads to artifactual structure on the potential surface.
It is easily demonstrated that any exact eigenfunction of

an electronic Hamiltonian in the Born-Oppenheimer
approximation

must belong to an irreducible representation

of the point group of the Hamiltonian. If an approximate
functional form (such as a single Slater determinant) is
assumed for the wave function, optimization of the average
energy of this function may lead to a function that does

not have pure symmetry (i.e., which does not transform
like any irreducible representation under the operations

of the group).

Spin symmetry (as in unrestricted Hartree-

Fock (UHF) calculations), time reversal symmetry
(leading to complex wave functions even when the
Hamiltonian

is real), as well as point group symmetry may all

be broken. Symmetry can always be imposed as a
boundary condition during the optimization of the wave
function. This is commonly done for spin and time reversal
symmetry. Imposition of spatial symmetry, however,
often leads to discontinuities on the potential surface
since only certain geometrical arrangements have any
symmetry . | n order to obtain a continuous potential
surface, the same prescription for obtaining the energy
must be used at every point.

Note: Correct treatment of symmetry breaking is crucial for correct treatment of Jahn-Teller

and pseudo Jahn-Teller systems



Allyl Radical

In our tutorial we are going to investigate the symmetry breaking for the allyl radical.
We follow the path indicated in the previous slide:

1. Calculation under C,, symmetry constraint (we use CASSCF(3,3) and restricted open
shell RO-SCF for comparison):

lbz laz 2b2

2. Calculation with C, symmetry (molecular plane, to distinguish easily c and =
symmetry), but without restriction of left-right symmetry. The results are:

Geometry optimization at CASSCF(3,3) level of the initially distorted structure (the two
CC bonds are not equivalent anymore) leads back to the original C,, symmetry. The
same calculation at RO-SCF level keeps the distorted structure, thus the symmetry is
broken. One can see this also from the symmetry broken orbitals obtained even at the
symmetric C,, structure.



The orbitals look as follows

lan 23” ‘%a”

If we increase the CAS(3,3) to CAS(3,4), the respective CASSCF result is also symmetry
broken! Thus, the symmetry breaking is not restricted to SCF alone. A CAS(3,5) recovers
the symmetry again. For more details see Ref. 1.

P. G. Szalay, A. G. Csdszar, G. Fogarasi, A. Karpfen, and H. Lischka, J. Chem. Phys. 93, 1246 (1990)
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FIG. 1. Resonance structures for He,".
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¥, =o0.0, symmetrybroken

¥, =0,0s symmetry broken

¥, =(ox +og )2 (o — Gg')l not symmetry broken
Orbital size effect: in ¥, 5, is like He atom (more
diffuse) than o’ (He*), vice versa in 'Y,

¥ represents a compromise

Resonance effect: included in ¥, not in ¥ or ¥,
One possible solution: W + ;, four orbitals, 2x2
nonorthogonal ClI

In orthogonal orbitals: 3 electrons in the four
orbitals obtained by orthogonalizing 5,, c,’, G4,
og = orbital doubling

McLean, Lengsfield I, Pacansky, Ellinger, J. Chem. Phys. 83, 3567 (1985)



Delocalized Solutions
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The Formyloxyl radical HCO,

Generalized potential energy surface:

Two types of coordinates

AR = (R¢o; — Regp) — @asymmetric stretch

AS is a symmetry breaking coordinate in the orbitals,
b, and a, & orbitals (C,, symmetry) in this case

The ridge 2’12 contains orbitals with AS=0

The valley 543 with positive AS, and an equivalent one
with negative AS behind (not shown)

The surface contains 4 minima: 2, 2" and 3 and 3’

At point 1 the structure and the wavefunction have C,,
symmetry; however, this point is instable both with

respect of breaking the nuclear symmetry as well as the symmetry of the wavefunction.
Point 2 is stable as minimum w.r.t. nuclear displacement, but the wavefunction is still
unstable. Point 4: wavefunction stable, but the nuclear frame not; point 3 is stable in both

aspects



Series of calculations to find out the real topography of the energy surface

T , T Wavefunction A: KKKs? s; CO;CO;CH*c’c"* 7z 7}
C H
QN QAL L
1@@ 2 ®@ . SN, ¢, Delocalized, no symmetry breaking
o” *%b | 04% "0 not calculated
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Valence bond structures

Requirement: starting point: SCF
(MCSCF) wavefunctions which do not
break symmetry, confirmation by MRCI
Wavefunctions | and Il not suitable
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AR = (Rgp, Rcoz)

Wavefunction D: KKKs s3 (€0,C0;)’ (C0,C0;)" (CHCH') (b, Py, Po, Py, ) (777)’

Wavefunction D’ (more economic, S stands for singlet coupling):

1

+(Po, P, ). (Po, P, )l](ﬂm)i



Wavefunction D’ does not break the symmetry; symmetric minimum confirmed by
large scale ClI
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AR = (RCO1 -RCOQ)



The X’} state of BNB

This system is a prototype for studying symmetry breaking

Questions: linear or not, symmetric or not

A long history of investigations, selected examples:

CASSCF(7,8) and CASSCF(11,12) by Martin et al. Phys. 85, 527 (1995): BNB
asymmetric

Almost all of the following investigations also find a linear, asymmetric structure,
e.g.

Gwaltney and Head-Gordon, Phys. Chem. Chem. Phys. 3, 4495, (2001) Coupled
cluster calculations

Li and J. Paldus, J. Chem. Phys. 126, 224304 (2007), reduced multireference (RMR)
CCSD(T)



Stanton, J. Chem. Phys. 133, 174309 (2010), EOMIP-CCSDT based on BNB, linear
vibronic coupling (LVC) model, second order Jahn-Teller (SOJT) analysis.

Statement: « That is, for this molecule, it is equally—and perhaps more—important to
treat the phenomena of nonadiabatic coupling than it is to do better and better
old-fashioned quantum chemistry. ...These calculations avoid the symmetry breaking
problem associated with orbital optimization (an arcane topic that is

entirely peripheral to the current discussion)...

Al-Saidi, Chem. Phys. Lett. 543, 41 (2012), Diffusion Monte Carlo (DMC), asymmetric
structure is lower than the symmetric one by 22 cm™2.

Experimental investigations:

Matrix isolation ESR (Knight, Jr., Hill, Kirk, and Arrington, J. Phys. Chem. 96, 555 (1992),
X %! ground state

Matrix infrared study (Andrews, Hassanzadeh, Burkholder, and Martin, J. Chem. Phys.
98, 922 (1993), identify a cyclic (C,,) and linear, symmetric BNB



Anion photoelectron spectroscopy (12K. R. Asmis, T. R. Taylor, and D. M. Neumark, J.
Chem. Phys. 111, 8838 (1999): various vibrational modes

Spectroscopic results also not conclusive since their interpretation relies in part on
theoretical calculations which are uncertain.

Kalemos, Dunning, and Mavridis, J. Chem. Phys. 120, 1813 (2004)
Kalemos, J. Chem. Phys. 138, 224302 (2013), state-averaged (SA) CASSCF/MRCI
calculations, BNB is linear and symmetric

Comment to Stanton
he mysteriously claimed the greatest importance of nonadiabatic effects in the BNB case

than “ .. to do better and better old-fashioned quantum chemistry”



The main argument in the work of Kalemos comes from the analysis of the different
states of BN with another B atom in the ground state 2P. There are several states to be
considered, but all show the same feature: the electronic configuration of B is *P,
derived from a Mulliken population analysis, and leading to the VB diagram below
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The incoming, reacting B atom is doublet (?P), so that there will be two types of B atoms

in BNB, 4P and 2P
CASSCEF in all valence orbitals



TABLE IV. Total energies E, (hartree). equilibrium bond lengths r, (A).
and dipole moments u, (D) of the ground X 33/ state of BNB at various

levels of theory.

Method E, re(BjN)  r, (NB,) Mo
CASSCF+PT2? —104.110 217 1.275 1.381 3.58 asymmetric
SACASSCF+PT2 —104.115 799 1.325 1325 0.0
MR-CISD CASSCF+1+2* —104.113 720 1.273 1.381 3.66 asymmetric
SACASSCF+1+2 —104.112 996 1.324 1324 0.0

C,. poimnt group symmetry.

Mulliken population for CASSCF

1.35. 1.09. L 3“ 1.32
N: 25" 2p,; " 2p," 2p, .
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By: 2p.; 2p, 2p,,

0.22

: 1779 ,,0.78+ 022+ 022
B,: 25 2p- 2p, 2p,

One B is in 2s1132p1>7 ~ 4p
The other 2s1772p1-22 ~ 2p

Mulliken population for SA-CASSCF
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State-averaging is important to
describe both states of B in
BNB equally



TABLE 1. Energy (E;) and internuclear distances rg, N, 7, N (A) of the
X 22;) BNB state at the (SA)CASSCE, (SA)CASSCF+1+ 2(= MRCI),
ACPF, and MRCI1+Q/cc-pVTZ levels of theory.

Method —-E BN g, N
9¢ /1lorb[ = (25 + 2p)B x 2 + (2p)N]

CASSCF 103.878 400 1.3854 1.2716
SACASSCF® 103.866 236 1.3296 1.3296
MRCI(9e )" 104.009 545 1.3227 l.3227} symmettric
MRCI(9e~ )+QF 104.018 967 1.3213 1.3213

lle”/120rb] = (25 + 2p)g x 2 + (25 + 2p)N]
CASSCF 103.904 481 1.4030 1.2744
MRCI(11e™) 104.089 343 1.3861 1.2787
MRCI(11e~)+Q 104.101 130 1.3845 1.2815
ACPF(11e™)¢ 104.099 702 1.3845 1.2814 . .
SACASSCF® 103.894 051 1.3739 1 3006 Unsymmetric! Correlation

of 2s is missing
1le=/130rb[ = (25 + 2p)g x 2 + (25 + 2p + s")N]

CASSCF 103.917 461 1.3976 1.2745
SACASSCF* 103.908 589 1.3606 1.3057
MRCI(11e™ ) 104.091 809 1.3558 1.3023
MRCI(11e) 104.073 225 1.3371 1.3371 Correlation of 2sy is

MRCI(11e ) 104.087 950 1.3310 13310 included




Generalized Valence Bond (GVB) Theory with
COLUMBUS

Example ethylene
R. Shepard, G. S. Kedzior, H. Lischka, I. Shavitt, Th. Miiller,
P. G. Szalay, M. Kallay, M. Seth, Chemical Physics 349 (2008) 37
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Structure of the GVB wavefunction

w

GVB wavefunction: direct product of electron-pair
wavefunctions CAS(2,2),xCAS(2,2),x...xCAS(2,2),
Including further occupation and spin restrictions
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Cumulative spin

Cumulative occupancy restrictions
restrictions Perfect Pairing GVB-RCI)
(PP)
Pair occmin occmax bmin bmax  bmin bmax
— — 12 12 0 0 0 0
CAS(2,2) 2”6 10 o 99 0 9
- — 10 10 0 o o 2 9
—+- — 8 10 0 0 0 3 8
. 4 — 8 8 0 0 0 4 o
—+H — 6 8 0 ©0 o 5 2
— — 6 6 =
3 0 O 0 6
—+H — 4 6 0 O 0 5 @
— —_ 4 4 S
2 0 O 0 4 8
—+H —_ 2 4 0 0 0 3 2
e —_— 2 2
CAS(2,2 1 0 0 )
( )1+1_ S 0 2 0 0 0 1
Each pair: ~ 3 + H additional inter pair
b, = 25, H correlation by means of

intra pair correlation high-spin intermediates



COLUMBUS input for MCSCF calculation:

mcdrtin.1:

1112 /doubly occupied orbitals
13114141131511216111171101819
/ active orbitals

022446688101012 /occmin
22446688101012 12 / occmax
000000000000 /bmin
000000000000 /bmax

mcscfin:

FCIORB= 1,3,0,1,4,0,1,5,0,1,6,0,1,7,0,1,8,0,1,9,0,1,10,0,1,11,0,1,12,0,
1,13,0,1,14,0



GVB-PP Orbitals:




