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What do we mean by symmetry breaking?

• The symmetry of the wavefunction at a high‐symmetry molecular structure is 
broken

• Löwdin “Symmetry dilemma” 
• If  is a normal constant of motion, i.e.
then every eigenfunction to H  is automatically also an eigenfunction    of :
In case of a symmetry operation, the exact eigenfunction  is automatically 
symmetry adapted:
In case of an expectation value, the consequence of symmetry is not automatically 
given
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Löwdin, P. O. In Lykos, P.; Pratt, G. W. Discussion on The Hartree‐Fock Approximation. Rev. Mod. 
Phys. 1963, 35, 496−501
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Two cases for:
(i)
(ii) The symmetry constraint is dropped and only the variational calculation is 
performed  without further constraint:
D is e.g. a Hartree‐Fock determinant.
This procedure was termed nonrestricted Hartree‐Fock scheme. The solution D 
corresponding to the absolute minimum can have lost its symmetry adaptation.
Such symmetry broken situations can already be observed for the dissociation 
process of H2. 

The main question in practice is: how can one find out whether an observed 
symmetry breaking is “real” or induced by an artificial bias of the approximate 
wavefunction toward symmetry breaking.
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Symmetry Breaking in Polyatomic Molecules: Real and Artifactual
Ernest R. Davldson‘ and Weston Thatcher Borden
J. Phys. Chem. 1903, 87, 4783‐4790

Broken symmetry structures may appear as minima on
a calculated potential surface for several reasons. One of
the most common is that the calculation is "wrong". That
is, the form assumed for the wave function is oversimplified
and leads to artifactual structure on the potential surface.
It is easily demonstrated that any exact eigenfunction of
an electronic Hamiltonian in the Born‐Oppenheimer 
approximation
must belong to an irreducible representation
of the point group of the Hamiltonian. If an approximate
functional form (such as a single Slater determinant) is
assumed for the wave function, optimization of the average
energy of this function may lead to a function that does
not have pure symmetry (i.e., which does not transform
like any irreducible representation under the operations
of the group). 

Spin symmetry (as in unrestricted Hartree‐
Fock (UHF) calculations), time reversal symmetry
(leading to complex wave functions even when the 
Hamiltonian
is real), as well as point group symmetry may all
be broken. Symmetry can always be imposed as a
boundary condition during the optimization of the wave
function. This is commonly done for spin and time reversal
symmetry. Imposition of spatial symmetry, however,
often leads to discontinuities on the potential surface
since only certain geometrical arrangements have any
symmetry . I n order to obtain a continuous potential
surface, the same prescription for obtaining the energy
must be used at every point.

Note: Correct treatment of symmetry breaking is crucial for correct treatment of Jahn‐Teller 
and pseudo Jahn‐Teller systems



In our tutorial we are going to investigate the symmetry breaking for the allyl radical. 
We follow the path indicated in the previous slide:
1. Calculation under C2v symmetry constraint (we use CASSCF(3,3) and restricted open 
shell RO‐SCF for comparison):

2. Calculation with Cs symmetry (molecular plane, to distinguish easily  and  
symmetry), but without restriction of left‐right symmetry. The results are:
Geometry optimization at CASSCF(3,3)  level of the initially distorted structure (the two 
CC bonds are not equivalent anymore) leads back to the original C2v symmetry. The 
same calculation at RO‐SCF level keeps the distorted structure, thus the symmetry is 
broken. One can see this also from the symmetry broken orbitals obtained even at the 
symmetric C2v structure.

Allyl Radical



The orbitals look as follows

If we increase the CAS(3,3) to CAS(3,4), the respective CASSCF result is also symmetry 
broken! Thus, the symmetry breaking is not restricted to SCF alone. A CAS(3,5) recovers 
the symmetry again. For more details see Ref. 1. 

P. G. Szalay, A. G. Császár, G. Fogarasi, A. Karpfen, and H. Lischka, J. Chem. Phys. 93, 1246 (1990)
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Orbital size effect: in L A is like He atom (more 
diffuse) than B’ (He+), vice versa in L
S represents a compromise
Resonance effect: included in S, not in L or R
One possible solution: L + R, four orbitals, 2x2 
nonorthogonal CI
In orthogonal orbitals: 3 electrons in the four 
orbitals obtained by orthogonalizing A, A’, B, 
B’  orbital doubling



The Formyloxyl radical HCO2
Generalized potential energy surface:
Two types of coordinates
R = (RCO1 – RCO2) – asymmetric stretch
S is a symmetry breaking coordinate in the orbitals, 
b1 and a2  orbitals (C2v symmetry) in this case 

The ridge 2’12 contains orbitals with S = 0
The valley 543 with positive S, and an equivalent one 
with negative S behind (not shown)
The surface contains 4 minima: 2, 2’ and 3 and 3’
At point 1 the structure and the wavefunction have C2v
symmetry; however, this point is instable both with

respect of breaking the nuclear symmetry as well as the symmetry of the wavefunction.
Point 2 is stable is a minimum w.r.t. nuclear displacement, but the wavefunction is still 
unstable. Point 4: wavefunction stable, but the nuclear frame not; point 3 is table in both 
aspects



Series of calculations to find out the real topography of the energy surface

Valence bond structures 

Wavefunction A: 
1 2

2 2 2 2 2 2 2 2 2
O O 1 2 1 2CO CO CHKKKs s    

Delocalized, no symmetry breaking
not calculated

VB a VB b

Requirement: starting point: SCF 
(MCSCF) wavefunctions which do not 
break symmetry, confirmation by MRCI 
Wavefunctions I and II not suitable

Wavefunction D:

Wavefunction D’ (more economic, S stands for singlet coupling): 
         

1 2 1 1 2 2

32 2 2 42 2 * * * * *
O O 1 1 2 2 O O O OCO CO CO CO CHCHKKKs s p p p p 

              
1 2 1 1 2 2 2 2 1 1

2 1 2 12 22 42 2 * * * * * * *
O O 1 1 2 2 O O O O O O O OCO CO CO CO CHCH

SS SS S S
KKKs s p p p p p p p p    



Wavefunction D’ does not break the symmetry; symmetric minimum confirmed by 
large scale CI



The           state of BNB 2
uX 

This system is a prototype for studying symmetry breaking
Questions: linear or not, symmetric or not
A long history of investigations, selected examples:
CASSCF(7,8) and CASSCF(11,12) by Martin et al. Phys. 85, 527 (1995): BNB 
asymmetric
Almost all of the following investigations also find a linear, asymmetric  structure, 
e.g.
Gwaltney and Head‐Gordon, Phys. Chem. Chem. Phys. 3, 4495, (2001) Coupled 
cluster calculations
Li and J. Paldus, J. Chem. Phys. 126, 224304 (2007), reduced multireference (RMR) 
CCSD(T)



Stanton, J. Chem. Phys. 133, 174309 (2010), EOMIP‐CCSDT based on BNB‐, linear
vibronic coupling (LVC) model, second order Jahn‐Teller (SOJT) analysis.
Statement:  « That is, for this molecule, it is equally—and perhaps more—important to 
treat the phenomena of nonadiabatic coupling than it is to do better and better
old‐fashioned quantum chemistry. …These calculations avoid the symmetry breaking 
problem associated with orbital optimization (an arcane topic that is
entirely peripheral to the current discussion)…
Al‐Saidi, Chem. Phys. Lett. 543, 41 (2012), Diffusion Monte Carlo (DMC), asymmetric
structure is lower than the symmetric one by 22 cm‐1.

Experimental investigations:
Matrix isolation ESR (Knight, Jr., Hill, Kirk, and Arrington, J. Phys. Chem. 96, 555 (1992),

ground state
Matrix infrared study (Andrews, Hassanzadeh, Burkholder, and Martin, J. Chem. Phys. 
98, 922 (1993), identify a cyclic (C2v) and linear, symmetric BNB

2
uX 



Anion photoelectron spectroscopy (12K. R. Asmis, T. R. Taylor, and D. M. Neumark, J. 
Chem. Phys. 111, 8838 (1999): various vibrational modes

Spectroscopic results also not conclusive since their interpretation relies in part on 
theoretical calculations which are uncertain.

Kalemos, Dunning, and Mavridis, J. Chem. Phys. 120, 1813 (2004)
Kalemos, J. Chem. Phys. 138, 224302 (2013), state‐averaged (SA) CASSCF/MRCI 
calculations, BNB is linear and symmetric
Comment to Stanton
he mysteriously claimed the greatest importance of nonadiabatic effects in the BNB case 
than “. . . to do better and better old‐fashioned quantum chemistry”



The main argument in the work of Kalemos comes from the analysis of the different 
states of BN with another B atom in the ground state 2P. There are several states to be 
considered, but all show the same feature: the electronic configuration of B is 4P, 
derived from a Mulliken population analysis, and leading to the VB diagram below

The incoming, reacting B atom is doublet (2P), so that there will be two types of B atoms 
in BNB, 4P and 2P 
CASSCF in all valence orbitals



asymmetric

asymmetric

Mulliken population for CASSCF

One B is in 2s1.132p1.57 ~ 4P
The other 2s1.772p1.22 ~ 2P

Mulliken population for SA‐CASSCF

B: 2s1.492p1.36 ~ average between 2P and 4P

State‐averaging is important to 
describe both states of B in 
BNB  equally



Unsymmetric! Correlation 
of 2sN is missing

Correlation of 2sN is 
included

symmetric


