9/11/2019

November 07-09, 2019

,\(sg&gyws

QUANTUM MECHANICS OF MANY-
ELECTRON SYSTEMS

Marco Antonio Chaer Nascimento
Instituto de Quimica | da UFRJ
chaer01@gmail.com
chaer@iq.ufrj.br




9/11/2019

1) OBJECTIVE

Obtain solutions of the time-independente Schrodinger
equation for polyelectronic systems: atoms containing N
electrons,

HY¥ (1,2,...N;) = E¥ (1,2,...N)
and molecules containing N electrons and M nuclei :

H¥ (1,2,...N; A,B,C,...M) = E¥ (1,2,...N; A,B,C,...M)

Problem: Analytical solutions are only possible for one-
electron atoms and for the H,* molecule within the Born-
Oppenheimer approximation.
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IS THERE AN ALTERNATIVE TO SOLVING S. E. ?

Yes! Use the variational principle for the S.E.

To find |¥> such that the functional

E=<¥Y|H|¥Y>

is stationary, is absolutely equivalent to solving Schrodinger’s
equation,
HY>=E|¥>

Obs: Stationary meaning that for any infinitesimal variation on
the wavefunction, Sl‘P >, one has 6E =0
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How to make good use of this variational
principle?

Guess an approximate form to the exact |¥> and use it to
calculate the energy, according to the variational principle:

Eap =< ¥,, | H |‘I’alo >

How do we know if [¥,, > is a good approximation?

The variational method tells us that for any well behaved
function, the computed energy E,, will be greater or equal
to the exact energy for the ground-state, E_, of the system:

E.o 2 E,
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This method is extremely useful but one must not forget
that it derives from a variational principle. Therefore, no
matter how approximate |¥,,> is, it must satisfy the same
conditions imposed to the acceptable solutions of the
Schrodinger equation!

What conditions?

a) [¥,, > must be well behaved

b) what else ?
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2) THE MANY-ELECTRON HAMILTONIAN AND
ITS SYMMETRIES

A) Point-group symmetry:

For certain molecules, it is possible to define an operation
O which exchanges the position of some of the nuclei
leaving the hamiltionan unchanged, thus

[H,O0 1=0.

The energy of the system is then invariant to this operation
and as a consequence, |¥>, solutionof H|¥>=E |¥ >,

or |[¥,,> determined through the variational principle,
must reflect this symmetry:

E.,p=<¥, |H[¥,> = <O¥,, |H|OY,>

HO|¥> = E O|¥>
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If |¥> , and consequently [¥,,> , represents a non-degenerate
state of the system, thus one necessarily has:

6|‘P> = +|¥>
and i
O|¥,,> =% |¥,,>
Ex: H,O )
/C)\ E, Cz 3 GV , GV'
H H

Because [H,C,] =[H,5,] =[H, 6,] =0, the exact wavefunction
or any approximation to the exact wavefunction representing
anyof the electronic states of H,O, MUST transform like one
of the irreducible representations (A,, A,, B,, B,) of the C,,

nnint arnilin
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Point-group symmetry can be very useful, however, only a
very small number of molecules (< 10% of the presently
known molecules) exhibit this kind of symmetry.

Is there another type of symmetry ?

YES! There is another type of symmetry which is present in
any hamiltonian of a many-electron system, ATOM or
MOLECULE!

B) Permutation symmetry

Define P; as the operator which exchanges electrons iand j
in the hamiltonian of a many-electron system (atom or
molecule).
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Since electrons are indistinguishable, the permutation
leaves the hamiltonian invariant :

H,P]=0 for Vv ij

As in the case of the point-group symmetry, the
permutation symmetry must also impose some conditions
on the wavefunctions describing the many-electron system.

WHICH CONDITIONS ?

The energy must be invariant and therefore :
< P']\P |H| Pij\P> = E

implying that P ¥> =% [¥>
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For a n-fold degenerate state, there will be n linearly
independent wave functions, ¥, (r), of the SE with the same
eigenvalue as well as a linear combination of such wave
functions. Therefore, the action of any such operator ﬁ; can
be written as:

—

i) = Xjoy TPy ) i) = @ (1)

P;

The permutation operators P}; together with the identity
operator, £ , form the symmetric or permutation group. As
the invariance of the Hamiltonian requires its eigenvalue
equation to be preserved, ® () must be symmetric or anti-
symmetric.

10
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Remember that if we are using the variational principle, which
is absolutely equivalent to solving the S.E., regardless of
how approximate the solutionto the exact wavefunction is,
it MUST satisfy the same conditions of the exact wavefunction

P?j IlPap » =+ ITap >
IMPORTANT CONCLUSION:

For a quantum system of identical particles, the only
acceptable wave functions are those which are
symmetric or anti-symmetric under the permutation of any
two identical particles of the system.

Heisenberg (1926) and Wigner (1926)

1
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IF THE HAMILTONIAN EXHIBITS
A) Point-group symmetry

|

The wave functions MUST transform like one of the IR of the
point-group, or, to be a basis for one of the IR of the group.

B) Permutation symmetry (always present for a
many-electron system)

|

The wave functions MUST transform like the totally
symmetric or the totally anti-symmetric IR of the
symmetric group, or, form a basis for these IRs.

12
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BUT ATTENTION!!!

The results obtained so far, derived from
the symmetry properties of a hamiltonian
which does not contain spin, apply only
to the SPATIAL PART of any wave function
representing a many-electron system.

But, what about the spin ?

13
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3) Introducing the electron spin in a non-
relativistic formulation of quantum mechanics

Experimental facts:

- Electrons have a spin angular momentum
- They all have the same value of spin: */_%h

- Only two values are allowed for its projection along any
direction in space: + (%) h (mg=x2)

- There is no classical counterpart to this property of the
electron.

Theoretical fact: If the electron spin is not included in the
non-relativistic formulation of QM, nothing works.

14
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- Spinis some kind of angular momentum.
- Invent a spin angular momentum operator, §, with
componentes §, , §, and §, , such that:

~

[5,,8,1=178, [$,,8,]1=ih8, [§,,8 1 = ins,

- Introduce two spin-eigenfunctions, a and 3, such that:

S,a=m,ha = (1/2) h o
S,B=-maB=-(1/2) B
- For any angular momentum operator:

-sS m,< s = s =1 (spinquantum number)

§2a =s(s+1)#?a and 8§23 =s(s+1) #2 B
§2 o =(3/4) i? a. and §23=(3/4) n2 B

15
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HOW TO PROCEED FOR N-ELECTRONS SYSTEMS ?

In an analogous way:

Invent an operador S, for the total spin of the system, with
components S,, S, and S,, satisfying the commutation rules:

~ ~

15,,8,1=in8, [5,,5,1=inS, 1[8,,8] = in§,

VERY IMPORTANT:

The non-relativistic many-electrons Hamiltonian does not
contain spin coordinates. Therefore:

[H,82] = [H,5,1=[H,S;]1=[H,S,]1=0

16
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IMPORTANT CONSEQUENCE OF THE LAST RESULT:

The total spin as well as its projection in any direction of
space are “constants of the motion”, i.e., they have very well
defined values for any many-electrons-system.

WHAT ABOUT THE SPIN-EIGENFUNCTION FOR A
MANY-ELECTRONS SYSTEM?

- Must be a function of the spin of all the electrons:
X (S15 S2 -- SN)>

such that the result of 52 operating on |y > gives the total
spin value, S, of the many-electrons system:

§2y =S (S+1) n2y

17
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WHAT ELSE ?

- Electrons are indistinguishable and they all have the same
spin

- The total spin, S, cannot change its value if one exchanges
the spin of any two electrons of the system. Therefore:

[$2, P;1=0
P;; 8% x =82 (P;jx) =S (S+1) 12 Py( %)
-The many-electron spin functions MUST also be invariant to
the permutation of the spin of any two electrons. The many-

electrons spin functions MUST also transform like totally
symmetric or anti-symmetric representations of S

Pij|x (S Sz -- SN)> =L % (Sy, Sp .- Sp)>

18
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4) Incorporating the spin wave function in the
description of a many-electron system (atom or molecule)

H does not contain spin variables. Thus, the solution of the
many-electron problem, either through Schrodinger equation

H¥Y>=E|¥>
or its equivalent, the variational principle;
E =<¥|H¥Y> ,

will furnish wave functions which depend only on the spatial
coordinates of the electrons and the nuclei:

w(r, ryr;... ry; £) , where £ stands for the set

of the nuclear coordinates (in the B.O. approximation).

19
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However, once this solution is known, it can be multiplied
by another function, of other variables, not present in H,
spin for example, and the product function will satisfy
Schrodinger equation, although not being a solution to S.E.

of the spinless hamiltonian.

20
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\P(r” I‘2r3.. I‘N, S1 82.. SN,'g) = V/(r” I‘2I'3.. I‘N,'f),’{’(s1 SZ" SN)

total wave function spatial part spin part

THIS IS NOT AN APPROXIMATION!

THIS IS THE EXACT ANALYTICAL FORM OF THE TOTAL
WAVE FUNCTION FOR ANY NON-RELATIVISTIC MANY-
ELECTRON SYSTEM, ATOM OR MOLECULE!

21
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5) THE ANTISYMMETRY PRINCIPLE

The antisymmetry principle requires the total wave function
(including spin) to be antisymmetric with respect to the
interchange of any pair of electrons.

But now we know that the only acceptable way of including
the spinin a non-relativistic formulation is to multiply the
spatial part of the wave function by a spin function
corresponding to a given value of S, the total spin of the

system.

Two ways of generating total wave functions satisfying the
antisymmetry principle :
\P(r” I‘2 I'3 n I‘N, S1 82 - SN ;5) = V/(r” I‘2 I'3 . I‘N,' 5),’{’(31 SZ "'SN)

S x .\
A x S

22
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Once the spin state is defined, the symmetry of the
spin function is automatically defined and, because
of the antisymmetry principle, the spatial part of the
wave function will have its symmetry perfectly
determined.

Thus, in the non-relativistic formulation the spin is

just an indicator of the symmetry that the spatial

wave function MUST have so that the total wave
function obeys the antisymmetry principle.

In non-relativistic quantum mechanics, the electronic spin is
only an “indicator”
Van Vleck and Sherman (1935)

23
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CONCLUSIONS:

- the indistinguishability of the electrons;

- the antisymmetry principle;

- the fact that for a non-relativistic system, the spatial and
spin coordinates are independent of each other.

OBLIGES:

a) the exact function to be a product of a spatial and of a spin
function.

b) both the spatial and spin parts of the wave function to be
symmetric or antisymmetric under the exchange of either
the spatial or the spin coordinates of any two electrons of
the system;

c) the total wave function to be antisymmetric

24
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6) INDEPENDENT PARTICLE MODELS

25
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BASIC IDEA:

REPLACE THE PROBLEM OF FINDING THE WAVE FUNCTION
WHICH DESCRIBES THE COLLECTIVE MOTION OF THE N
ELECTRONS OF AN ATOM OR MOLECULE BY THE ONE OF
FINDING N OCCUPIED ORBITAIS WHICH DESCRIBE THE
INDIVIDUAL MOTION OF EACH ELECTRON OF THE SYSTEM,
ATOM OR MOLECULE:

P, (i,j,k;...N) ¥, (i,jk,...N; A,B...M)

{®i }iz1, N atomic orbitals {0; }iz1, N molecular orbitals

26
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ONCE THE N ORBITALS ARE DETERMINED,

{¢; }i.1,n atomic orbitals  or {&; }i=1, » Molecular orbitals

ONE MUST CONSTRUCT THE TOTAL WAVE FUNCTION,

¥, (i,j,k;...N) or ¥, (i,j,k,...N; E),

ITIS FROM TOTAL WF THAT THE PROPERTIES OF THE
SYSTEM ARE DETERMINED.

ATTENTION! ¥, HAS TO BE:

WELL BEHAVED

ANTISYMMETRIC

27
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CONSTRUCTING ANTISYMMETRIC WAVE FUNCTIONS
FROM A SET OF ORBITALS {0; } .1

A) Heisenberg (1926) and Wigner (1926)

Y= Al9:1(1)92(2)@3(3) ... on(N) x (1,2...N)]

A= (1/N!) Z; 6, P is the antisymmetrizer operator

v (1,2...N) eigenfunction of s2and §,

S2y=S(+1Dyx  S;x= Mgy

Example: He

Wer = [94(1) 92(2) + 0, (1)04(2)] [o(1)B(2) - B(1)0u(2)]
Vi = [04(1) 92(2) - 9> (1) 04(2)] [a(1)o(2)]

Wiy = [01(1)92(2) - 92 (1)94(2)] [a(1)B(2) + B(1)(2)]
Vi = [91(1) 92(2) - 9, (1) 94(2)] [B(1)B(2)]

- = a O

28
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B) SLATER (1927) Spin-orbital : & (r,0)
¥(1,2)= D, (1) ®,(2) neither symmetric nor antisymmetric, BUT
¥s(1,2) = @, (1) @, (2) - @4 (2) D, (1)

P12 ¥s(1,2)=- ¥5(1,2)  Conclusion: ¥4(1,2) is antisymmetric

Notice that W4(1,2) can be written as a 2 x 2 determinant:

o.(1) D(2)
¥s(1,2)= ®,(1) ,(2)

VERY PRACTICAL, BUT WHAT IS A SPIN-ORBITAL?
HOW DOES IT LOOK LIKE?

29
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A) Slater wave function for 2-e systems with S=0
up=¢:0 and U, = ¢,

o1 (Ma(1) 6,(2)e(2) . ~
e eop@ | Pz ¥si= -¥s  OKI

1
‘Ps1=\£

S, P, =0 ¥, BUT S2 W, = (const)¥s,

Y5, DOES NOT REPRESENT A STATE WITH DEFINED SPIN !!!

o1 (1) 6,(1)B(1)
02 (2)a(2) 92(2)B (2)

1
Py = \E
3'-; \IISZ = 0 \1,32 and S:i \I’SZ - 0 \IISZ

NOT ANTISYMMETRIC !!!

30
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THIRD ATTEMPT:

Take the same spatial part for both spin-orbitals

uy=¢a and u, = ¢Pp BUT WHY ?

_ Jg o(No(1) 9(1)B(1)
3% 21 0(2(2) §(2)B (2)

5, ¥s3=0Ws; and S$?Ws; =0¥s; AND Py, Wsy =-¥s; OK!
IT WORKS !!!

GREAT, BUT THE DOUBLE OCCUPANCY IS A RESTRICTION!
THERE IS NO PHYSICAL REASON FOR ATTRIBUTING THE SAME
SPATIAL PART FOR THE TWO SPINORBITALS.

AFTER ALL, WE WANT TO DEVELOP A GENERAL METHOD TO
CONSTRUCT INDEPENDENT PARTICLES WAVE FUNCTIONS!

31
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7) COMBINIG THE IDEA OF INDEPENDENT
PARTICLES WITH THE VARIATIONAL PRINCIPLE

32
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INDEPENDENT PARTICLES MODELS
HARTREE-FOCK:

- Atomic orbitals must retain the form of the hydrogenoid (s, p, d, f etc.)
orbitals and, therefore, must be orthogonal;

- Use orbital double occupation, i. e. , two electrons in the same orbital
(atomic or molecular) with different spins;

- Use Slater-type wave functions to obtain the best orbitals (atomic or
molecular) through the variational principle.

GVB (Generalized Valence Bond)

- No restrictions imposed to the form of atomic orbitals;
- Singly-occupied atomic orbitals not necessarily orthogonal;

- Use Heisenberg-type wave functions to obtain the best atomic orbitals
through the variational principle.

33
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The GVB (Generalized Valence-Bond) Model

The GVB wave function, in its most general form, can be

written as :

Yeve = A[010:0; ... oy X (1,2..N)],
where 4 = (1/N!) £, 6 P is the antisymmetrizer. The orbitals

{o;} are atomic-like, singly occupied and not necessarily
orthogonal.

The orbitals {¢;} and the spin function y are simultaneously
optimized by requiring the functional Eg\g= <¥gye|H|¥gyve>
to be stationary. No restrictions are imposed to the spin
function other than requiring  to be an eigenfunction of S2
and S,:

S2x=S(S+1)x  S,x=Msx

34
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Ex: 4 electrons Singlet

There are two possible spin functions :

Y1 = (af—Pa) (af—Pa)  “perfect-pairing coupling”
X2 = 200BP + 2PpPoar — (aff+af) (aB+Por)

Thus : X=C1 %4 + CoYXo

Yave =C1 A [010,0304 X1 (1,2,3,4)] + C5 A [@,0,050, X2 (1,2,3,4)]

In general, if a spin function of the type y, is allowed, its
coefficient is much larger than the others, and the GVB

function can be rewritten as :
Yave = A [019,0:04 (aff-Bo) (af-Bor)]

35
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Experience with this type of wave function also shows that
all orbitals, other than the two within a given singlet pair, are
orthogonal or nearly orthogonal.

Imposing the “strong orthogonality constraint” plus the
perfect-pairing coupling scheme, gives rise to the GVB/PP

wave function.
EX: 4e singlet

Woverr = A[019:0;04 (ap-Ba) (af-for)]

with < ¢,0,> and <@;0,> # 0
but < @93>=<@0;>= < Q03> =< P9,>=0

36
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ADVANTAGES:

—¥,yg is antisymmetric and a basis for S,,. It has all
the properties required from a many-electron wave
function.

Consequences:

a) ideal reference IPM to compute real
correlations effects.

Ecor = Eexact - EIPM ( “’igner)

Ecor = Erci — Enr ( Lowdin)

PPOPOSGd : Ecor = Eexact — Echemical sfructure

37
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b) when wused as IPM, much less
computational effort is needed to recover
the real correlations effects.

— Wsyg » furnishes one-electron states univocally determined
within a given basis set

Consequences:

a) one-electron states (orbitals) involved in chemical bonding
can be univocally identified;

b) Connectivity among atoms can be precisely identified and,
therefore, one can define chemical structures for molecules;

39
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DISADVANTAGES:

— ygyg defined in terms of non-orthogonal orbitals;
—VYevgpp MuUch simpler but the orbitals within a
singlet-coupled pair are still non-orthogonal.

Consequence:

-Calculation of the one and two-electron integrals requires
more computer time.

CAN ONE SIMPLIFY EVEN FURTHER?

He : 1s?  wyye = A[1s154 af] Both have the wrong

] form !
Li: 1s22s yye = A[1S4:1S02S, 0]

40
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But:

, have the right form
Vgve (He) = 2 [1s,1s . (aff — Bor)] but orbitals are non
Wevg (Li) = 4[1s, 18, 2s,; (o —Bar) o] orthogonal

How different, for example, the 1s, and 1s,g orbitals of the
He atom are?

QUITE
DIFFERENT !

41
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WHAT HAPPENS WHEN THE NUCLEAR
CHARGE INCREASES ?

— GVB

T T T
| He | B Nﬁl”’ — HF

1 1 1 & L i L I l 1 L L L 1 I 1

T T T T T T T T T T T T

| L S t

1 1 L | 1 1 1 [l 1 1 I I 1 } 1

N

T 1 1 T T T
| Bc+3. N+S N c+S
K i 1 i 1 L L I L 1 2 I L 1 L 1

0 0.8 L6 24 0 0.8 1.6 24 0 0.8 1.6 2.4

Overlap Integral Between the GVB Orbitals.

H- He Li+ Be2+ B3+ C4+ N5+ 06+ F7+ NeS+

0.615] 0.879] 0.935] 0.949| 0.960| 0.967] 0.972 | 0.976 | 0.979] 0.981
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Proposition:

Keep the core electrons in doubly occupied orbitals and the
valence ones in singly occupied non-orthogonal orbitals.
The wave function will not exhibit permutation symmetry
anymore but will be much easier to calculate. However, no
artifacts will be produced as long as the core electros are
not involved in the process one wants to describe.

Question: Should we keep these doubly occupied orbitals
non-orthogonal to the singly occupied ones?

Answer:  No! One can take any doubly occupied orbital
orthogonal to any singly occupied orbital. THIS
IS NOT A RESTRICTION!

43
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SIMPLIFIED FORM OF A GVB/PP WAVE FUNCTION

Wiverpe = A[ {core} {valence} {open shell}],

where:

{core} : doubly-occupied core orbitals, orthogonal to
all the others.

{valence} : GVB orbitals, singly-occupied and non-
orthogonal to the open shell orbitals and
to the GVB orbital in the same pair.

{open shell} : singly-occupied valence orbitals not
involved in chemical bonds.
Attention: The open shell orbitals can be taken orthogonal to
the others if ALL the electrons in these orbitals have the
SAME SPIN (high spin case). If not, this IS A RESTRICTION !!!

44
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Rewritting the GVB/PP wave function in terms of natural
(orthogonal) GVB orbitals.

Suppose:
W = cp A [wawa o] + cg A [ypyp 0fi]
and Wevere = A (0205 (af - Par)]

with <Yplvg>=0 and <@,lez># 0

If va.vs ¢, and @g are expanded in the same basis set,
it is not difficult to show that:

Qp= (a2 + b?)12 (a y, + b yg)
¢g = (a2 + b212 (a y, - b yg)

with <@, |pg> = {a? - b2}/ {a? + b?}

45
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Thus, in terms of the orthogonal orbitals y, and g the
GVB/PP wave function can be written as:

Wevepp = (a2 + b2172 { a2 4 [yawa af] — b? 4 [yeys of] }

vy, and vy; : doubly-occupied and orthogonal
(GVB natural orbitals)
¢, and ¢g :singly-occupied and non-orthogonal
(GVB orbitals)

VERY IMPORTANT: For each pair of GVB orbitals in the PP
wave function there is one unique pair of GVB natural
orbitals, and vice-versa:

GVB/PP with n ¢, ¢; pairs <_' GVB/PP with 2" terms y,yg

46
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Strategy for Constructing GVB/PP Wave Functions
for Molecules

a) Draw the proposed chemical structure of the molecule:

®c1:Pu1 H, Hy,  ©c2) Ono
AN

C
Pes > Prs G;>'|3/ \ﬁ‘l Pca s PHa

b) Assign to each line connecting two atoms a pair of GVB
orbitals, one orbital for each one of the atoms involved in the
bond;

c) Keep the core electrons in doubly-occupied orbitals

d) Write the GVB/PP wave function taking into account that

47
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each pair of singlet-paired electrons contributes a term of
the form (¢; ¢; + 9; ¢;) (o - Pa) to the wave function:

Wovere (CHy) = A[ 1sc1Sc (9ciPui+ PuiPct) (PcoPrat PraPco)
(Pc3Pra+ Pr3Pcs) (PcaPrat PraPca) OB (af-Poar) (af-Por) (aB-Por)
(cB-Boy)]

e) Transform each pair of GVB singly-occupied non-orthogo-
nal orbitals into the corresponding pair of doubly-occupied
orthogonal GVB natural orbitals.

f) Determine the BEST GVB natural orbitals by requiring the
functional Egy\gpp = <Wsverp H ¥Yevepp> 10 be an extremum.

48
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g) Transform each pair of GVB natural orbitals back to the
corresponding GVB atomic-like, singly-occupied, non-
orthogonal orbitals.

What, if more than one equivalent chemical structure can be
drawn?

Use the Generalized Multi-Structural (GMS) wave function:
(Hollauer and Nascimento, 1993)

Yoms = i GV

where y; and c; are, respectively, the wave function for the
it chemical structure and c; its weight in Wgy5

Two possibilities : y; fixed and c; variationally determined or
both y; and c; variationally determined

49
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GENERAL ENERGY EXPRESSION OF
A GVB WAVE FUNCTION

Wove = A[019:95 --. oy X (1,2...N)],

E =) Dih;+ ) Dy <ikljl>
I,]

i,j.k,l
with: hij =< ¢l | /1 | ¢j >

<ikl jl>=< (), 1175, 16, (D(2) >

D' and DIZ density matrix elements

50
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For GVB/PP wave functions, the general energy expression
turns out to be much simpler if the atomic orbitals are
expressed in an orthonormal basis:

<Qilo> = 8ij

In such a basis, the density matrices D' and D,Z are diagonal

J
and the only remaining terms different from zero, are:

i i— g = i _p =
D, =2f, D;=a;=a,; D =b,=b,

the coefficients f,-i,a,-,- and bl.j being independent of {¢;}

51



9/11/2019

The energy expression of the GVB/PP function becomes:

E= 22 Jihy + Z(aij‘,ij + biniJ') (1)
i=1

i,j=1
J,; and K, being the Coulomb and exchange integrals.

EXAMPLE:

Energy expression of a GVB wave function for 2 electrons,

singlet state:

— hll + h22 + 2Slzhlz +J12 + K12 (2)
(1+S))

E
It does not have the form of (eq. 1) !

NOTE: For 2 electrons singlet state the GVB WF is PP

52
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However, one can express the two GVB non-orthogonal
orbitals, ¢, and ¢, as a linear combination of two other
orthogonal orbitals, vy, and v, , the natural GVB orbitals:

01 = (/o1 W1+ 40z v, ) [ (01+ a3)1/?
P2 = (oI V1= Oz Y2 )l (01 a2)'/?

61>0 5 0,50 ; <yyly>=0

The GVB wave function expressed in the natural GVB orbitals
basis, has the form:

VYevg =01 Ay 0Bl =02 Aly,y, 0B ]

53
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whose energy expression is:

VA
E= 15 (Zhyy + J11) + 27102

2 Z
0'1+ gy

2
120% (Zhyy + J22) — 12

This energy expression has the form of eq. (1), with one
difference: the coefficients { f, a, b }are not fixed anymore,

but depend on the coefficients ¢, and o..

IMPORTANT CONCLUSION:

THE ENERGY OF ANY GVB/PP WAVE FUNCTION CAN BE
PUT IN THE FORM OF EQUATION (1)
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THE f COEFFICIENTS:

fi=1 ify isa core orbital
fi= of ify isan orbital of a GVB pair

fi=1/2 ify; isa singly occupied orbital
THE a;; and b,-,- COEFFICIENTS:

a;=2fif; bij = —fi f;
Exceptions:
bij =—1/2 if y; and y; are singly occupied orbitals
a;=f; ; b;; =0 ify; is an orbital of a GVB pair

a; =0 and by =-g 0 Ify andy;are orbitals of the same
GVB pair
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SOME CONSEQUENCES OF NEGLECTING
PERMUTATION SYMMETRY IN THE DESCRIPTION
OF MANY-ELECTRON SYSTEMS
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INDEPENDENT PARTICLES MODELS

HARTREE-FOCK: (atomic and SCF-MO)

- Use Slater-type wave functions to obtain the best orbitals (atomic or
molecular) through the variational principle.

ST wave functions are not basis for the symmetric group,
i.e., do not take into account the permutation symmetry of
the many-electron hamiltonian.

GVB (Generalized Valence Bond)

- Use Heisenberg-type wave functions to obtain the best atomic orbitals
through the variational principle.

GVB wave functions are basis for the symmetric group
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A) ORBITAL DOUBLE-OCCUPANCY

WITH ST WFs ONE MUST FORCE DOUBLE OCCUPATION TO
GENERATE A WF WITH WELL DEFINED SPIN.

u=¢a and u, = 0P

_ 1 JeMa(1) o(1)B(1)
Tss = ﬂ 0(2)(2) #(2)B (2)

§‘Z.TS3= 0 TS3 al"ld ._S"E qjsa: 0 TSS AND P12 IPS3 =" ‘PSS OK!

GREAT, BUT THE DOUBLE OCCUPANCY IS A RESTRICTION! THERE IS
NO PHYSICAL REASON FOR ATTRIBUTING THE SAME SPATIAL PART
FOR THE TWO SPINORBITALS.
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TO AVOID THIS (ARTIFICIAL) PROBLEM ALL WE NEED IS TO CONSTRUCT
A WAVE FUNCTION WHICH IS A BASIS FOR THE PERMUTATION GROUP,
S,:

Pu= {0:(1) 02(2) +¢,(2) 0o(1) } [e(1) B (2) - (2) B (1)]
S¥.,=0¥, and SZY,.=0 ¥, P, ¥y = - ¥y

B) THE EXCHANGE INTEGRAL (K;)
Energy of a Slater-type function for any “closed shell” system with 2n electrons :

E= anzhii + Z":(zji]. ~K,)
i=1

i,j=1
WHAT IS THE ORIGIN OF K ?
ACCORDING TO 99.9% OF THE BOOKS (QUANTUM MECHANICS OR

QUANTUM CHEMISTRY) K;; HAS NO CLASSICAL ANALOG. IT ARISES
SOLELY AS A CONSEQUENCE OF THE ANTISYMMETRY PRINCIPLE.

59



9/11/2019

REALLY?

Example: He ('S 1s?)

BUT, WAIT! K; EXISTS ONLY FOR ELECTRONS WITH THE SAME SPIN.
RIGHT OR WRONG ?
E[Wes (1,2)] = hyy + hyy + Jip =2 hyy + Jpp + K 4, <0B>
BUT, according to Slater:
Since H is independent of the spi:_l coor_di_nate M,

THE ENERGY SHOULD NOT DEPEND DIRECTLY ON THE SPIN
COORDINATES !!!
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POSTULATES OF QUANTUM MECHANICS

-THE POSSIBLE RESULTS OF A MEASUREMENT OF ANY DYNAMIC VARIABLE
FOR A QUANTUM SYSTEM ARE THE EIGENVALUES OF THE CORRESPONDING

OPERATOR.

Example: Energy — He,=E,p, {E,} eigenvalues

H=—M ! Vi—I—ZN:Vf—ZM:ZN:ZA+ZN:1—+ZM:ZAZB
A= A=1 F; Fij R,

1 2M A 2 i=1 i=1 iA i<j A<B

BUT, WHAT IN THE HAMILTONIAN - THE OPERATOR THAT
REPRESENTS THE TOTAL ENERGY OF THE SYSTEM - CAN
TELL ELECTRONS WITH SPIN UP FROM THE ONES WITH
SPIN DOWN? ABSOLUTELY NOTHING!!!
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ENERGY OF THE HEISENBERG WF CONSIDERING ONLY ITS
SPATIAL PART:

lI"Heisenberg = ¢1 (1) ¢2(2) + ¢1 (2) ¢2(1)

THIS IS A SYMMETRIC WF !!!

_hygt B+ Siohyp+ Jio+ Kqp
EHeisenberg - 1+ Sz
12

ENERGY OF THE FULL HEISENBERG WAVE FUNCTION:
Pu= {0:(1) 022) +:(2) (1) } [o(1) B (2) - (2) B (1)]

THIS IS AN ANTISYMMETRIC WF

_hy+ hoy+ Siphpp+ Jio+ Koo
EHeisenberg - 1+ 52
12
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CONCLUSION

K; HAS NOTHING TO DO WITH THE ANTISYMMETRY
PRINCIPLE BUT WITH THE PERMUTATION SYMMETRY OF
THE HAMILTONIAN AND ITS REFLEXES ON THE WAVE
FUNCTIONS.

THERE IS A KINTEGRAL FOR EACH PAIR OF ELECTRONS
REGARDLESS OF THEIR SPINS.
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C) ELECTRONIC CORRELATION ENERGY
Ecor = Ecxact — Empi Wigner (1934)
Eeor = Eruici— Enp Lowdin (1959)
Using Lowdin’s definition:

[13 b2
Eexacl = EfuII-CI = EHF + Ecor

ACCORDING TO THIS LAST EXPRESSION CORRELATION ENERGY IS
WHAT IS MISSING IN THE HARTREE-FOCK MODEL TO OBTAIN THE
“EXACT” ENERGY OF THE SYSTEM (ATOM OR MOLECULE).
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TWO SIMPLE SYSTEMS

{ Ve = [184.(1)18,4.(2)] (0B~ o)
.

Wove = [184.(1)18°4.(2) + 15°,.(1)15,,.(2)] (0~ Bor)

{ Y = [1Spe(1)151e(2)] (f- Bor)
He

Wove = [1She(1)18°1e(2) + 18°1e(1)15(2)] (af- Bor)

NOTE: A GVB atomic wave function is a Heisenberg-type wave function
for which the orbitals are optimized self-consistently. Thus, it has
the form of an acceptable WF.
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Amplitude

T
— GVB -
— HF

=

Energy (h) (10s) Huzinaga’s Basis Set

uonnquisiq [epey

Hartree-Fock GVB
H -0,4877120 -0,5120223
He -2,8616692 -2,8779850
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. EH
l Ebasis F
Enr
num
Ecorr ?
EfuII-CI

Energy (h). (10s) Huzinaga’s basis set

Hartree-Fock Full-CI Ecor
H -0,4877120 -0,5126604 0,0249484
He -2,8616692 -2,8790090 0,0173398

THESE RESULTS DO NOT MAKE ANY SENSE !
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Ecor = EfuII-CI_ EGVB

EGVB
Ebasis l
EGVB num
Ecorr
EfuII-CI
Eur) Eve) E (puiic) E.o(HF) Eon(GVB) AE grcve)
H--0.4877120 -0,5120223 | -0,5126604 | 0,0249484 0,0006381 0,0243104

H¢-2,8616692

-2,8779850 | -2,8790090

0,0173398 | 0,0010240 0,0163158

MOST OF THE HF CORRELATION ENERGY IS, IN REALITY, AN ERROR OF FORM !
THE HF WF DOES NOT TAKE INTO ACCOUNT THE PERMUTATION SYMMETRY !!!

1 1
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WHAT HAPPENS WHEN THE NUCLEAR CHARGE INCREASES ?

T T T T T T T T T T T
i _ — GVB
He . BT o — HF
0 @%v : : : : :
L | c '
1 | L 1 1 1 ]
1 I I T T 1 1 T ] 1
Be™ N Ne™*
”NJ 1 1 L 1 1 1 1 1 1 1
1] 0.8 1.6 24 (1] 0.8 1.6 2.4 0 0.8 1.6 2.4

Overlap Integral Between the GVB Orbitals.

He

Li*

B62+ B3+

C4+

N5+

06+ F7+

N68+

Siz

0.879

0.935

0.949] 0.960

0.967

0.972

0.976 | 0.979

0.981
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Energy in hartrees. (10s) Huzinaga’s Basis Set

Species Eyr Egys Erunci E,..(HF) E,..(GVB)) AEyr gvs
H- -0.4877120 -0.5120223 -0.5126604 0.0249484 0.0006381 0.0243104
He -2.8616692 -2.8779850 -2.8790090 0.0173398 0.0010240 0.0163158
Li+ -7.1300822 -7.1427386 -7.1438228 0.0137406 0.0010843 0.0126564
Be+? -13.6109302 -13.6253929 -13.6264590 0.0155289 0.0010661 0.0144627
B+3 -21.9856890 -21.9998624 -22.0009373 0.015248 0.0010749 0.0141734
C+4 -32.3604316 -32.3744235 -32.3755032 0.0150716 0.0010797 0.0139919
N+5 -44.7351638 -44.7490312 -44.7501150 0.0149512 0.0010838 0.0138674
O+ -59.1098403 -59.1236169 -59.1247031 0.0148628 0.0010862 0.0137766
F+7 -75.4844914 -75.4981990 -75.4992878 0.0147964 0.0010888 0.0137076
Ne+8 -93.8590943 -93.8727474 -93.8738376 0.0147433 0.0010902 0.0136531
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CONCLUSIONS OF PART C

I EHF
l Ebase
EHF num
Eeorr? | NOOOOOO!
EfuII-CI

(a) (Ecorrur = Error of form [ AEyr gyg ] + Ecor (GVB)

(b) As the nuclear charge increases, double-occupancy for the inner
shells seems to be a reasonable approximation, but never for the
outer shells.
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D) NON-DYNAMIC CORRELATION ENERGY (??7?)

THE H, MOLECULE (%)

| We > =104 (1) 164 (2) [a(1)B(2) - B(1)a(2)]

| Wave > = [ 9a(1) 95(2) + 95(1) 9,(2)] [a(1)B(2) - B(1)(2)]
Og * molecular orbitals

0., ¢, : atomic orbitals

lyue> = [0.(1) 8,(2) + ¢,(1) 9.(2)] [eB - Ba] +

' 0, , 0, : atomic orbitals

basis for S,

+[9.(1) 6.(2) + 9,(1) ¢,(2)] [8 - 8]

not a basis for S,
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Energy (a.u.)

NO! THIS IS NON-DYNAMIC CORRELATION

S LEEY HE
‘ correlation energy ???
il i
| ENERGY !
ID*,-J .I
} ke 2 E,(H)
A lg.j
:Izu :'-I:- 1Ia 'rl:s :ic- :'1- Jlt‘ 0738
Internuclear distance (&)
0.749
0.74
0.7414

4.06

4.478

4.478
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BACK TO THE POSTULATES OF QUANTUM MECHANICS

- THE POSSIBLE RESULTS OF A MEASUREMENT OF ANY DYNAMIC VARIABLE FOR A
QUANTUM SYSTEM ARE THE EIGENVALUES OF THE CORRESPONDING OPERATOR.

Example: Energy — H@,=E,p, {E,} eigenvalues

u 1 1 & N &E Z S| X 7,7
H = - Vi-—> V?>- Ap ) —4 Yy —AZE
a1 2M , i 2;1 l ZZ Z Tij ;B R,

A=1 i=1 Tis i<j Vi

BUT, COULD YOU PLEASE TELL ME WHICH TERM OF THE HAMILTONIAN — THE OPERATOR
THAT REPRESENTS THE TOTAL ENERGY OF THE SYSTEM — IS RESPONSIBLE FOR THIS PART
-NON DYNAMIC CORRELATION ENERGY - OF THE TOTAL ELECTRONIC ENERGY OF THE

SYSTEM???

NONE!!! THERE IS NOTHING IN THE HAMILTONIAN THAT COULD ACCOUNT FOR THIS
PART OF THE ENERGY OF THE SYSTEM.
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Energia (u.a.)

Correlation Energy via MP2

085+ HF
-
P
-
0.90 4 ”
+" HF-MP2
' ,
095 4 i 4
t ]
s
1,004 1 ’
b ’ ,
] L
1,05 % e,
a / '.'
Py
+1.10 4 “4 s K
o,
b
1,15 -
: - . : : ,
0.0 05 1.0 15 20 25 30
RH-H (A)

WHY MP2 DOES NOT WORK?

Energia (u.a.)

-0,86 - -
«HF
-0,90 4 .
HE-MP2
0,95 p - -
1 ST ey
100 P i
/o T MCSCF(2,2)
A '/"
1,05 4 _ f;:"”p
-1,10 4
1,15
T T T T T T T T T 1
0,0 05 1.0 15 20 25 30

Correlation Energy via Cl and
MCSCF

R,,,, (angstrons)

WHY MCSCF WORKS BETTER THAN CI ?
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VERY SIMPLE ANSWER: MP2 DOES NOT CHANGE THE FORM OF THE HF WF
WHILE BOTH MCSCF AND CI DO CHANGE THE FORM OF THE HF WF.

SO WHAT? IN WHAT WAY IS THE HF FORM CHANGED?

Wyesce = €1 (16g)*+ ¢, (16,)* ¢4, ¢,, 164 and 1o, variationally
determined

Yo =c¢;3(16)2+ ¢, (16,)? only c; and c, variationally determined
As R, 4 increases: C;=-Cy € C3=-C,

Wucscr= Yo = [18,(1)18(2)+15,(2)1s,(1)][0f - Bo] 1!

BUT THIS IS THE GVB FUNCTION WHICH HAS THE
CORRECT FORM!!!
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Energia (u.a.)

CORRELATION ENERGY FOR THE GVB WAVE FUNCTION
035 o HE-
.50 ’
. HF-HI'IEI'I_EE

w] ST e

} e T GVB-MP2
18 a ’ 4 . s a

?’ g
-1.10 4 P

L
4,15 1;:"';.;_.;-5'f
02 III:E 1‘ﬂ- 1:E E:EI .2.'5 Blﬂ
RH.H (angstrons)
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SUMMARY OF THE CONSEQUENCES OF NEGLECTING
PERMUTATION SYMMETRY

1- DOUBLE OCCUPANCY OF THE ORBITALS (ATOMIC OR MOLECULAR)
INTRODUCED WITHOUT ANY JUSTIFICATION IN ORDER TO GENERATE
WF WITH A DEFINED SPIN.

2- WRONG APPROACH TO THE ANTISYMMETRY PRINCIPLE USING THE
PROBABILISTIC INTERPRETATION.

i i . 2 i i . 2
THUS ¥ (1,2,3 ...0i, j, ....N; 1) |2 = | ¥ (1,2,3,..], i...N; 1) |

¥(1,2,3, ..i, j, ..N; ) = + ¥ (1,2,3,..j, i...N; 1)

3- MISINTERPRETATION OF THE EXCHANGE INTEGRAL.

4- ENERGY OF WFs DEPEND DIRECTLY ON THE SPIN COORDINATES DESPITE
THE FACT THAT THE OPERATOR WHICH DEFINES THE ENERGY OF THE SYSTEM

DOES NOT DEPEND ON SPIN COORDINATES. THIS RESULT VIOLATES TWO
QUANTUM MECHANICAL POSTULATES.
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4- OVERESTIMATION OF THE TRUE ELECTRONIC CORRELATION ENERGY

5- INTRODUCTION OF THE TOTALLY UNPHYSICAL EFFECT CALLED “NON-
DYNAMIC CORRELATION ENERGY”

THERE IS NO TERM IN THE HAMILTONIAN WHICH ACCOUNTS FOR SUCH AN
“ENERGY”(2??)

6- INTRODUCTION OF A TOTALLY ARTIFICIAL “CORRELATION” BETWEEN
ELECTRONS WITH THE SAME SPIN.

THERE IS NOTHING IN THE HAMILTONIAN THAT DISTINGUISHES ELECTRONS
WITH SPIN UP FROM SPIN DOWN FOR THE SIMPLE REASON THAT THE
HAMILTONIAN DOES NOT CONTAIN SPIN COORDINATES.
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SOME ADVANTAGES OF USING WAVE FUNCTIONS THAT ACCOUNT
FOR THE PERMUTATION SYMMETRY OF THE MANY-ELECTRONS
HAMILTONIAN

CAS-GVB : Much easier interpretation of the results and better convergence

- S. Clifford, M. J. Bearpark, M. A. Rob, Chem. Phys. Lett 1996, 255, 320.
- L. Blancafort, P. Celani, M. J. Bearpark, M. A. Rob, Theor. Chem. Acc. 2003, 110,
92

GVB-CI : Computational cheaper and generally as accurate as the post-HF methods

- J. Cullen, J. Comput. Chem 1999, 20, 999.

GVB-inspired CC theories: Single-bond and multiple bond dissociation energies
for closed and open-shell systems.

- T. van Voorhis, M. Head-Gordon, J. Chem. Phys 2002, 117, 9190.

- D.W. Small, K. V. Lawler, M. Head-Gordon, J. Chem. Theor. Comput 2014, 10,
2027.

- D. W. Small, M. Head-Gordon, J. Chem. Phys 2017, 147, 024107.
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TD-GVB: Accuracy of the excitation energies superior to those obtained with the
TD-HF

K. Chatterjee, K. Pernal, Theor. Chem. Acc. 2015, 134, 118.

ERPA-GVB: Energy barriers of excellent accuracy and comparable to the ones
obtained at the CCSD(T) level, which requires a much higher
computational effort.

K. Chatterjee, E. Pastorczak, K. Jawulski, K. Pernal, J. Chem. Phys 2016, 144,
244111

INTERFERENCE ENERGY ANALYSIS: Based on GPF built from GVB-WF, provides
a unique way of analysing chemical bonds in different types of molecules exhibitin
distinct bonding patterns.

- D. W. O. de Sousa, M. A. C. Nascimento, Acc. Chem. Res. 2017, 50, 2264
- F. Fantuzzi, B. Rudek, W. Wolff, M.A.C. Nascimento, JACS 2018, 140, 4288
and references therein.
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Abstract

The consequences of neglecting the permutation symmetry of the Hamiltonian of many-elec-
trons system are examined. From the comparison of wave functions based on methods, which
take (generalized valence bond [GVB]) and do not take (Hartree-Fock) the permutation symme-
try into account, it is shown that neglecting the permutation symmetry leads to false concepts,
misinterpretations, and unjustifiable approximations when dealing with many-electrons systems,
atoms, and molecules. In particular, it is shown that how the double occupancy of atomic and
molecular orbitals, the exchange integral, the correlation energy, and the so-called “nondynamic”
correlation energy are related to neglecting the permutation symmetry.
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lo =0.120 D C-O*

THE CO MOLECULE

The (CO) molecule

1

Relative Energy | kcal mol

——E[tot] ——E[ref+x]

Heo (GVB)= 0.112 D C-O*

leo (HF )= 0.265 D C*O-

E[I+11]

I

CO (X 'Y

GVB-PPICC-pVTZ

C

_mi )(/

O

03 10 1.

GVB - JCTC (2014) 10, 2322

5 20 25 30 35 40 45 &0
Internuclear Distance | A

HF,.n» Comp. Phys. Reports (1986) 4, 313
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HEXATRIENE - RYDBERG STATES

For GVB Calculations, see:
Chem. Phys. (1980) 53, 265

84



9/11/2019

THE GENERALIZED MULTISTRUCTURAL (GMS)
WAVE FUNCTION AND APPLICATIONS TO
SYMMETRY-BREAKING PROBLEMS.

Basic reference:

A Generalized Multistructural (GMS) Wavefunction.
E. Hollauer, M.A. Chaer Nascimento, J. Chem.Phys. (1993),
99, 1207
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DEFINITION: N

Yems = z C; Vi

i

y; represents “structurei” at:

HF
VB
1 MCSCF

Cl

ANY PLAUSIBLE COMBINATION

= LEVEL
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- EACH y; IS INDEPENDENTLY OPTIMIZED OR
SIMULTANEOUSLY WITH ALL THE OTHERS;

- {c;} ARE VARIATIONALLY DETERMINED.

EQUIVALENCE TO OTHER WAVE FUNCTIONS:
a)lf y; =yyp for Vi = YWeys =VYyp
b) f N=2 , v = YevB/pp

and y; =Ry, = Weus = VYr_gvp or = Y¢e_pyp

87



9/11/2019

WHEN IS A GMS WAVE FUNCTION NEEDED?

a) MOLECULES WHICH CANNOT BE REPRESENTED BY A
SINGLE CHEMICAL STRUCTURE.

/
)

b) MOLECULES PRESENTING COUPLED LOCALIZED
EXCITATIONS.

n—o>mn

-+

O O *
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c) CORE IONIZED OR EXCITED STATES OF MOLECULES
Ex: O,

1/2 1/2

ionize 1o, —— @ @ MO description D_,

@ @ broken symmetry C_,

Yems= (&) (o + (9 () correct symmetry D_,

d) NEAR DEGENERATED ATOMIC CONFIGURATIONS

Ni s2d® - s'd® ~0.03eV
V s2d® - sld* ~0.10eV
Fe s2d® - s'd” ~0.85eV
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From which configuration should one start a calculation?
HF —

MCSCF —» VH and NiH  4s23d" and 4s'3d"!
STRONGLY MIXED

{ 6A 602 701 94! s}rz_yz 83,3n%3n] dominant
FeH

4A strong mixture of the quartet coupling of the
above configuration and

602 90° 612_),2 6%y 3my 3wy (4s'3d7)

W, =c, y[Fe (4s'3d7)—H]+c, y[Fe (4s23d%) —H |
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e) ELECTRONIC EXCITED STATES OF MIXED CHARACTER

1B, in linear polyenes

IPc;Ms=(:\,(.-‘:.‘"-*""r“"“».:"-7“".;") + CR(N)*

f) TO TAKE INTO ACCOUNT ELECTRONIC CORRELATION
EFFECTS

91



9/11/2019

ADVANTAGES OF THE GMS WAVE FUCNTION

- COMPACT

- EASY TO INTERPRET (IF POSSIBLE RETAINING THE SINGLE
PARTICLE PICTURE) IN TERMS OF CHEMICAL STRUCTURES

AND BONDS

- INCLUDES MOST OF THE IMPORTANT CORRELATION
EFFECTS WITH LESS COMPUTATIONAL EFFORT.
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SOME EXAMPLES
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A generalized multi-structural wavefunction.
The He; molecule as an example
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Table 3
Results of CI calculations

Calculation Energy D, K.
{hartree ) (V) {bohr)
GMS-CI —4.98377 2340 20998
CASSCF/C1 -4.91834 234 2.358
PNO/C1®? —4.98415 2.24 2.0626
VB/CI® —4.98594 230 2.06
ful-C1 ¢ 4,99389 2.469 2.044
experimental 234 20424 ¢
2551

" Ref, (29].  Ref [28]. © Ref. [15]. ¢ Ref. {17,
© Ref, (26]. © Ref. [27]. * Ref [30].

470 :
— _“OI —
=
N
5 I ||
AV
Y gagl \/// i

500 L L )

0 an 70 o 130

R lau)

Fig. 4. Potential energy curves obiained with different wavefune-
iions, at the CI level: {a) VB; (b) orthogonal CI (see text): (c)
GMS (CI) wavefunction; (O) ref. [17]: (@} ref. [28].
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1) MOLECULES PRESENTING COUPLED
LOCALIZED EXCITATIONS

(n— *)1:3

P — F OOk

Table 4

Transition energies (eV) for the (n — 7*)' excited states of the pyrazine molecule
State HF CI-SD GMS Exp.
"By 4.52 3.51 3.27 3.33 [56,57]
'Bi. 5.27 4.20 3.89 3.85[56,58]
*Bag 6.23 5.21 4.77 4.59 [56]

A.G.H. Barbosa, M.A. Chaer Nascimento, Theo. Comp. Chem. 10, 117 (2002)
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2) IONIC STATES OF TRANS-GLYOXAL MOLECULE

O_/=O & 027_0 7! states

+
—O0 —0
o:/_ * O:/_ n -1 states

ground state: GVB(4/PP) 2wt bonds + 2 O lone pairs

ion states: GVB(3/PP)
2 © bonds + O lone pair n -1 states

1nbond + 2O lonepairs = states

97



9/11/2019

Table IV. lonization potentials (eV) for the rrans-glyoxal molecule compared to

experiments.
State  Calculations Experiment®
HF(Ch,) HF(C,) GMS(HF) CI(SD) GMS(CI)

‘4, 11.38 10.38 9.90 10.79 1025 10.6
(3)° (2529)  (398)

B, 13.40 (10.38)  11.12 1206 1240 12.19
(3) (2529)  (38)

’B, 13.50 13.02 12.44 13.51 1334 14.0
(3) (2491)  (34)

A, 1574 (13.02)  14.58 1517  15.33 15.4
(3) (2491) (34

*Ref. [70].

®Number of configurations in the GMS or CI wavefunction.

E. Hollauer, M.A. Chaer Nascimento, Chem. Phys. (1993) 174,79
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3) CORE IONIZED AND CORE EXCITED STATES OF
MOLECULES

Yoms = c1p (N—"—N) +c2{¢ (N—N°) £ (N°—N) }
1 I III

| : delocalized hole state
Il and Il : localized hole state

Coefficient c, can be used to define degree of localization

Same type of GMS wavefunction was used to study core
excited states of C,H, and CO, and core ionized states of O,

molecules.

M.P. Miranda, C.E. Bielschosky, M.A. Chaer Nascimento, J. Phys. B28, L15 (1995)
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Table V. Transition energies (AFE), optical oscillator strengths (fon) and degrees of
localization (d; and T /1) for N2, C;H,, CO; and O, molecules.

AFE (BV) fon

Transition Theory  Experiment Theory  Experiment di Th/Th
N2(12s7pld)/[9s, 5p, 1d]
log = 1wy 402.62 0.78

401.1* 0.75°
loy = 1mg  402.55 0.200 0.200,° 0.18¢  0.78
C2H;(12s7pld; 5s2p)/[10s5pld; 3s1p)
log = 1mg 287.49 0.67

285.81° 0.60°
loy = 1wy 287.47 0.175 0.67
CO;(12s6pld)/[10s, 4p, 1d]
log = 2my 535.99 0.093 0.12-0.13" 0.86

534.4,f 535.3¢
loy — 2wy 535.99 0.86
02(12s7p1d)/[9s, 5p, 1d]
log — *S,; 54407 5442 0.82
log — S, 54331 543.1 0.82

*Ref. [76]; "Ref. [75]; °Ref. [77]; ‘Ref. [78]; °Ref. [79]; "Ref. [80]; Ref. [81]; "Ref. [82];

Ref. [83].
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4) ELECTRONIC EXCITED STATES OF MIXED CHARACTER

.1 3 tpns Botadiens

N - e

H
" c-H
- c
/7 *H = /_.//
-« -C
KT
Guodoi: X Ay :

fi,s" 'Moulc- Atlowad ¢ : B“ {?C::;t:\;: enugy ¢
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Yemus (ABy) = (cy Wy + Cr YR)

RESULTS:

AE (1B, —X14,) =6.14 eV Exp. 5.95 eV

‘PGMS (1Bu) = 0.85 VR +0.49 Wy

W. B. Floriano (M.Sc. Thesis, Instituto de Quimica da UFRJ, 199 ).
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5) ELECTRONIC CORRELATION ENERGY

0 0
H/ \H H H
{1v) (v)

0 0o
H/ H* *H \H
{vi) (vi)

Tams(' A1) = crory + oy + e3(ovr + ovi).

W.B. Floriano, S.R. Blaskowsky, M.A. Chaer Nascimento, J.Mol.Struc. 335, 51, 1995
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Table 11I. Total energies for the H,O molecule.

Calculation Number of configurations  Energy (Hartree)
GMS?
GVB(2PP) 8 —76.136 741
GVB-RC(CI 18 —76.164 835
GVB-CI 36 —76.226 770
GVB-POL-CI 350 —76.251 586
MO-CI
Full-CI Dz° 256473 —76.157 861
DZP® 6740280 —76.256 624
MR(CI)
DZP* 31096 —76.254 108
YB
DZP 49¢ —76.020 2

*Only structures (IV) and (V) are being considered.
PRef. [62].

‘Ref. [66]. The oxygen s electrons were not correlated.
4Number of structures in the VB expansion. Ref. [63].
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6) RELATIVE ACIDITY OF ALCOHOLS AND CARBOXYLIC
ACIDS

DEFINITION:

R-H - R + H* AG°; measures acidity

Usually AH°;, because entropic fator (mainly H*) cancels
out in a comparison of the relative acidities.

CALCULATE:

0 - ZPE o I o
AEeq = (RH)jpin — Rpin T AEy — AH :AH’I‘
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WHY ARE CARBOXYLIC ACIDS ARE MORE ACIDIC THAN
ALCOHOLS ?

Generally accepted explanation:

0 ,0
R-CG & R-C _ Resonance stabilization
of the carboxylate.

(A) (B)

Siggel and Thomas: Indutive effects (acid) are responible for
differences in acidity.

JACS 108, 4360 (1986)
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QUESTIONS:

a) By how much is the carboxylate stabilized by resonance?
b) How to quantify it?

THE GMS APPROCH:

a) Solve for the localized structure at the GVB level:

0
pevB — r -
o
b) Construct:
GVB © + #°
— R-C R-C
kIJ.‘fr‘M’S °y ‘o

c) Take AE=E[¥&5]1-E[¥erp] as the resonance
contribution.
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Table VI. Gas-phase acidities at the GVB + CI and GMS + ClI levels of calculation.

CH3;0H HCOOH C;HsOH CH;COOH
AESq, 0.6206 0.5922 0.6149 0.6005
Corrections (eV) :
AEYL 0.038 0.038 0.038 0.038
AET 0.0 0.0 0.0 0.0
AE7} 0.0 0.0 0.0 0.0
A(PV) 0.025 0.025 0.025 0.025
A(ZPE) —0.423 —0.381 —-0.419 —0.374
Resonance: 0.0 -0.779 0.0 —0.753
AHY; (This work)
(kcal/mol) 381.11 346.26 377.62 352.13
(eV) 16.52 15.02 16.37 15.27
(Hartree) 0.6073 0.5520 0.6018 0.5612
Ref. [88]
(kcal/mol) 383.26 343.14 380.03 343.60
(eV) 16.62 14.88 16.48 14.90
(Hartree) 0.6108 0.5468 0.6056 0.5476
Experiment [94] (kcal/mol)  379.14 345.19 376.13 348.46
(eV) 16.44 14.97 16.30 15.11
(Hartree) 0.6042 0.5501 0.5994 0.5553
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CONCLUSION:

- Resonance is the effect responsible for the larger acidity
of carboxylic acids

- In the absence of resonance, methanol and ethanol would
be more acidic than formic and acetic acid, respectively.

J.D. Motta Neto, M.A. Chaer Nascimento, J.Phys.Chem. 100, 15105 (1996)
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7) ELECTRON IMPACT INNER-SHELLS EXCITATION
N, 16, > 11, and 16, — 1n, transition

Yoms = c1p (N——N) +er{p (N-N°) t¢p (N°—N) }
I i ITT

gth

0.20 4 - s

C.E. Bielschoswky, E. Hollauer
M.A. Chaer Nascimento
Phys. Rev A, 45, 7942 (1992)

Generalized Oscillator Stren

0.00 :x R R e ) e e ) AR
0.01 0.1 2 1
k™ (a.u.)

Figure 1. Total generalized oscillator strength for the preionization peak compared to experi-
ments and other theoretical results: GMS(CI);——— (HFFC); - - - - Rescigno and Orel
[85]; @ exp. of Camilloni et al. [77]; * exp. of Barbieti and Bonham [78].
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THE GVB SELF-CONSISTENT PROCEDURE
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Exemplo: atomo de He.

a) Hartree-Fock:

1s(1) ou(1) 1s(1) B(1)
He (HF) =

1s(2) a(2) 1s(2) B(2)

= 11s(1) 1s(2) [a(1) B(2) - B(D) au(2)] |

= [1s1s | (forma diagonal)

b) GVB ou SCVB:

He (GVB) =1 @, @y | - | @, @ |
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Pergunta: Como obter os orbitais @, e ¢y, ?

Resposta: Os orbitais @, e @, “6timos” sao aqueles
que minimizam o funcional:

Ecve = <WYevsl H| Weve> / <ygvsl Yeve>
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Equacoes GVB

YovB = Q. Qp + O, ¢, = ab + ba

Ecve = <Yevsl H | Yeve>/ <Yevsl Yeve> =N/D (1),
onde ,

N= [<alhla> + <blhlb> + J,;] + [2 <alhla> Sy, + K] (2)

D=1+S8%, e S, =<ab>.
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Expandindo @, e ¢, na base {),}, obtemos:
Pa =2y Cua X ¢ G =2y Cy X (3)-

Aplicando as condicoes variacionais:

oE _0 e oE

acm acﬂb

obtemos, para @, :
<yu! (H' =g, 1 @a> =0 (5),

onde:
e, =E -<blhlb >
€ Ha=(h+Jb+Kb)+th+th—EPb (6)
P;, = Ib> <bl
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Introduzindo (3) em (5), obtemos a equacao para @, :

T <yl (H =g, 1%y > Cya = 0 7

ou H'C, = ¢, SC, ).

O elemento tipico H";,, é dado por:

Hy= <y H' 1% > = <xulh+J, +Ky) 6>+
+ <qulb><blhlyx> + < lhlb><bly> -
- E <qulb><bly> 9).

Para fins de comparacao:

H™,, = <yl (h+Jy) 6> (10).
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Para o orbital @, , obteriamos uma equacao similar:

H’C, = & SC, (11).

CONCLUSAO:

Cada orbital GVB é obtido a partir da resolucao de
uma equacao propria. Por isso eles sao univocamente
determinados.

118



9/11/2019

HOW TO CONSTRUCT WAVE FUCNTIONS WHICH
RESPECT PERMUTATION SYMMETRY
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9) HOW TO CONSTRUCT WF WHICH
SATISFY PAULI PRINCIPLE AND
PRESENT THE CORRECT
PERMUTATIONAL SYMMETRY ?

The symmetric Sy group : a very brief
review:
a) Given N identical “objects” , the

symmetric group Sy is the group
formed by all possible permutations
among them.

b) The number of irreducible
representations of Sy is equal to the
number of partitions of N :

7\:]+7\:2+}\«3+ +}\«t=N ,With

AM2Ar2 Az 2

[Ar A2, A3, ... A] partition
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Examples :
S, n=2  [2],[1,1]=[17] 2 IR
S; n=3  [3],[2,1],[1,1,1] =[17] 3 IR

S4 n=4 [4] ’ [351] ’ [252] ’ [25151] ’ [1515151] 5 IR
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C) Each partition is represented by a
diagram, the Young diagram, formed
by disposing identical ‘“cells”’, one after
the other, in rows, the number of cells
in each row given by the value of A.

3] A, =1
[2’1] }“'1 = 2
7\42 - 1

[13] Ay =1
7\42 - 1

7\43 - 1
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Notice that, independent of the value of N, any
symmetric group, S, , will have the partitions [N]
and [1N]

d) The dimension of a given IR is equal to
the number of Young tableaux which
can be constructed by filling the Young
diagrams in such a way that the
numbers increase from left to right,
along the rows, and from top to bottom
along the columns. (Ex. S3)

The tableaux constructed according to this rule are called
the Standard Youngq tableaux.
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[3]

[2,1]

[1°]

Diagram

Tableaux

1

2

1D

2D

1D
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Notice that for any group S, there is only one
partition of the type [N] and one of the type

[1N], and that they give rise to the only two

possible uni-dimensional IR of the group.

Once established the irreducible representations
of the S, and their respective dimensions, how
to construct wave functions, which transform like

the IRs of the group?
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The Young Operator

Relative to a given standard Young tableau, let us define the

operators :

P : exchanges two humbers in a row of the tableau.
(horizontal permutation)

Q : exchanges two numbers in a column of the tableau.
(vertical permutation)

With these two operators one can define :

S =X, P The symmetrizer operator relative the the rows of
the Young tableau (summation over all horizontal
permutations)

A =X, (-1)9Q The anti-symmetrizer operator relative to the
columns of the Young tableau (summation over

all vertical permutations), where q is the parity
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The product Y = A.S defines the Young operator for a given
tableau. In principle, in order to generate a basis for an IR
associated to a given partition, one has to construct the
Young operators for each one of the tableaux associated to

that partition.

Once the Young operators, for each IR of S,, have been built,
spatial and spin wave functions transforming like a particular
IR can be generated simply by applying the corresponding
Young operators to functions of the spatial and spin variables
respectively. Ex: Y211 T(rqsrp-..ry)

Y211 9 (S1,S2;---Sn)
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We have already seen that, for any group S, , there is one,
and ONLY ONE, partition of the type [N] and [1N], and that
both these partitions give rise to UNI-dimensional IRs. How
does the Young operator look like for these two IRs ?

Y[N] ES and Y[1,1_"] = A

(rqysFps.--Fy) totally symmetric spatial
Yini or
g (81,Sy---Sn) spin wave functions

f(rq,ry,...1y) totally anti-symmetric spatial
Y011, or
d (S1,S5;---Sp) spin wave functions
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8) INDEPENDENT-PARTICLE
MODELS

- Extremely useful for interpreting and
rationalizing the results of quantum
chemical calculations.

- Most of our understanding about the
structure and properties of atoms and
molecules derives from calculations based
on IPM models.

Mandatory Features :

-  The state of each individual particle of
the system (one-electron states) must be
uniquely defined. This feature allows:
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a) to associate important properties, such
as ionization potentials, electron
affinities etc., to specific 1-e states of
the many-electron system;

b) to interpret electronic spectra as
resulting from changes in individual
particle states;

¢) to interpret the formation of chemical
bonds in terms of individual 1-e states
from the isolated atoms.

- The model should provide approximate
solutions which retain all the symmetries
of the exact solution of the system.
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Which symmetries ?
- Permutation symmetry of the spatial and spin parts of the
total wave function (always present)

- Point group symmetry (if exhibited by the hamiltonian of
the system)

- Pauli symmetry : total wave function MUST be antisymmetric

¥(rs; &) =Xk Ci Vi (155) 2k (S)
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10) IPM WAVE FUNCTIONS WITH THE CORRECT
SYMMETRIES

According to the antisymmetry principle, the total wave
function for a many-electron system MUST be totally
antisymmetric with respect to the permutation of any two
electrons. Within the IP approximation, functions
f(ry,ro,...ry) and g(s4,S,..-Sy) are products of spatial {¢Q,¢,0;
Q4 ---¢y } and spin {afopaf..} parts.

Two possibilities:

¥(rs; &) =Y {f(rra-rn)} X Y4 {9(S45S5---Sn)}
or
¥(rs; &) = Y1 {f(rpros- .t} X Yy {9(S4,8;--8y)}
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In terms of the diagrams :

o
B
H(rs;ic)= 101|023 | 00| x [g
OR
Q4 B
)

wlrsic)= |03l x [o [ Ja [...[B

Pn
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Beautiful, isn’ it? YES, but we have a serious problem.

Because only two spin states are allowed for ANY electron
in earth, itis IMPOSSIBLE to construct one spin function,
totally anti-symmetric, for more than TWO electrons!! This
is exactly equivalent to say that diagrams with more than
2 rows are not allowed for generating spin wave functions.

o
B =0,forN>2.

It is very easy to show that Y[ 1N
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In fact we have another serious problem regarding the spin
wave function. Again, because only two spin states are
allowed, one can only construct totally symmetric spin
functions for a system where ALL the electrons are in the
SAME SPIN STATE. That is, only for the highest spin state

of the system.

That is, the only two possibilities for generating totally

symmetric spin functions would be :

Y[N] oo |...0

Yo (BB (B ]...|P
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IN SUMMARY: starting from the totally symmetric and the
totally antisymmetric representations of S,, there are only
two possibilities for constructing total wave functions

satisfying the Pauli principle:

B
For any vale of N :
P4
(%8 Highest
. Y/ X oo |... O
W(r,s; &) [ Yin Spin state
On
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Therefore, except for these two cases, total wave functions
satisfying Pauli principle must be constructed as linear
combination of products, of spatial and spin parts, which

transform like some other IR of the S, group :

¥ =X Cik Vi(l)xk(d)

yi(n) : spatial part transforms like the p IR of S,
Xx(0) : spin part transforms like the 6 IR of S,

How can we be sure that such a combination will be
totally antisymmetric with respect to the permutation
of any two electrons of the system ?
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Wigner : the representations (i) and (o)
must be dual, i.e., of the same dimension,
and they must be the transpose of each
other.

¥ = Z; wi(w) xiw)
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General Procedure:

a) Given the multiplicity of the system (2S+1, where S is the
total spin), construct all the tableaux corresponding to the

given spin value, and obtain their “dual representations”,
the transposed tableaux corresponding to the spatial part.
b) Construct the Young operators, Y = A.S, corresponding
to all the tableaux, and operate with them on the products of
spatial {90,905 9, ...¢y } and spin {aPapaf..} parts, in order to
dgenerate spatial and spin wave functions, y; and ; , which
transform like the "u" repreentation of S,

c) Set up the total wave function as :

¥ =X wi(w) xim)
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Ex: 2-e Singlet

Spin part :

1

2

Y = A (af) = a(D)P(2) - a(2)B(1)

Spatial part :

1

2

Y =S (¢ 92) = 04(1) 92(2) + ¢4(2) px(1)

¥ ={01(DP22) + ¢1(2)92(D)} {a(DB(2) - 2)B(D) }

A

S A
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Ex: 3-e Doublet

1 2 113
SPIN: Y11 Yo

3 2

X + X

1 3 Y 2
SPATIAL: Yoo T

2 3

Yr+=[E-(13)I[E+(12)] = E+(12)-(13)—(13) (12)

Yo=[E-(12)][E+ (13)] = E-(12) + (13)-(12) (13)
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Apart from a normalization factor, the total wave function

is :

¥(r,8; &) = { [010203 + P20193 = O30:01 - P30,9,] [ ofa- Baox ] +
+[Q10203 - Q201 Q3+ P3P,P4 = P2p3¢04] [ Pora - cvof ] }

where: ¢;0,0,=9;(1) ¢;(2) 9,(3)

ATTENTION! This is not the expansion of a 3x3 determinant

Ex: 3-e Quartet

D4

P

05

142



9/11/2019

W(r,S; &) = [019:03+ Q30102 + Q20301 = O30201 = O19302~ P0193] X [00a]

This is the expansion of a 3x 3 determinant !

As the dimension of the representation “n” increases, this
procedure is not practical. However, the appropriate linear
combination of products of the type (1) x;(1t) is not hard to
find. Since for any Sy there is ONE and only one totally anti-
symmetric function, we can start with any function in the
space y;(1) x;(), and apply to it the projector operator of the
totally anti-symmetric representation of S, :

8(1N) - (1/N!) Zp SP P
to obtain: W= (1/N!) , §p P [ y® (r,rp...ry) %™ (S1,S5...Sy) ]

where P operates on both the spatial and spin states.
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