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1) OBJECTIVE

Obtain solutions of the time-independente Schrödinger
equation for polyelectronic systems: atoms containing N
electrons,

HΨΨΨΨ (1,2,…N;) = EΨΨΨΨ (1,2,…N)

and molecules containing N electrons and M nuclei :

HΨΨΨΨ (1,2,…N; A,B,C,…M) = EΨΨΨΨ (1,2,…N; A,B,C,…M)

Problem: Analytical  solutions  are only  possible for  one-
electron  atoms  and   for  the  H2

+ molecule within  the Born-
Oppenheimer approximation.
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IS THERE AN ALTERNATIVE TO SOLVING S. E. ?

Yes! Use the variational principle for the S.E.

To find |ΨΨΨΨ> such that the functional

E = < ΨΨΨΨ | H |ΨΨΨΨ >

is stationary, is absolutely equivalent to solving Schrödinger’s 
equation,

H |ΨΨΨΨ > = E |ΨΨΨΨ >

Obs: Stationary meaning that for any infinitesimal variation on 

the wavefunction, δδδδ|ΨΨΨΨ >, one has  δδδδE = 0
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How to make good use of  this variational 
principle?

Guess  an  approximate form to the exact |ΨΨΨΨ> and use  it  to  
calculate  the  energy, according  to the variational principle:

Eap = < ΨΨΨΨap | H |ΨΨΨΨap > 

How do we know if |ΨΨΨΨap > is a good approximation?

The  variational method tells  us  that  for  any well behaved 
function, the  computed energy  Eap will  be  greater or equal 
to the  exact energy for the ground-state, Eo, of the system:

Eap ≥ Eo
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This  method  is extremely useful but one must not forget

that  it derives  from a variational  principle. Therefore, no

matter how approximate |ΨΨΨΨap> is, it must satisfy the same 

conditions imposed  to  the  acceptable  solutions  of the

Schrödinger equation!

What conditions?

a) |ΨΨΨΨap > must be well behaved

b) what else ?
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2) THE MANY-ELECTRON HAMILTONIAN AND 
ITS SYMMETRIES

A) Point-group symmetry:

For certain molecules, it  is possible to define an operation
Ô which exchanges the position of some   of the nuclei
leaving the hamiltionan unchanged , thus

[H, Ô  ] = 0. 

The energy of the system is then invariant to this operation
and as  a   consequence,  |ΨΨΨΨ> , solution of   H |ΨΨΨΨ > = E |ΨΨΨΨ >,
or  |ΨΨΨΨap > determined  through  the  variational   principle,
must reflect  this  symmetry:

Eap = <ΨΨΨΨap | H |ΨΨΨΨap>  =  < ÔΨΨΨΨap | H | Ô ΨΨΨΨap> 

H Ô|ΨΨΨΨ> = E Ô|ΨΨΨΨ>
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If |ΨΨΨΨ> , and consequently |ΨΨΨΨap> , represents a non-degenerate
state of the system, thus one necessarily has:

Ô|ΨΨΨΨ>  =  ±±±± |ΨΨΨΨ>
and

Ô|ΨΨΨΨap>  = ±±±± |ΨΨΨΨap>

Ex:  H2O
O

H              H

Because  [H,C2] = [H,σσσσv] = [H, σσσσv
'] = 0,  the  exact  wavefunction, 

or any approximation to the  exact wavefunction representing 

anyof the electronic states  of H2O, MUST transform  like   one  

of   the  irreducible  representations  (A1, A2, B1, B2) of  the  C2v

point group.

�

E, C2 , σσσσv , σσσσv
'
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Point-group symmetry  can  be  very useful, however, only a
very   small  number  of  molecules (< 10%  of  the  presently 
known molecules) exhibit this kind of symmetry.

Is there another type of symmetry ?

YES! There is another  type of  symmetry  which is present in
any hamiltonian of  a many-electron system, ATOM or
MOLECULE!

B) Permutation symmetry

Define Pij as the  operator which exchanges electrons i and j
in  the  hamiltonian  of  a  many-electron  system  (atom  or 
molecule).
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Since  electrons  are indistinguishable, the  permutation 

leaves the hamiltonian invariant :

[H, Pij] = 0    for  ∀∀∀∀ i, j

As in the case of the point-group symmetry, the

permutation symmetry must also impose some conditions

on the wavefunctions describing the many-electron system.

WHICH CONDITIONS ?

The energy must be invariant and therefore :

< Pij ΨΨΨΨ |H| Pij ΨΨΨΨ> = E

implying that Pij |ΨΨΨΨ>  = ±±±± |ΨΨΨΨ>
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IMPORTANT CONCLUSION:

For a quantum system of identical  particles, the only  
acceptable wave  functions  are   those which   are

symmetric or anti-symmetric under the permutation of any

two identical particles of the system.

Heisenberg (1926)   and  Wigner (1926)
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A) Point-group symmetry

The wave functions MUST transform like one of the IR of the 
point-group, or, to be a basis for one of the IR of the group.

IF THE HAMILTONIAN EXHIBITS

B) Permutation symmetry (always present for a
many-electron system)

The wave functions MUST transform like the totally
symmetric or the totally anti-symmetric IR of the
symmetric group, or, form a basis for these IRs.
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The results obtained so far, derived from
the symmetry properties of a hamiltonian
which does not contain spin, apply only
to the SPATIAL PART of any wave function
representing a many-electron system.

But, what about the spin ?

BUT ATTENTION!!!
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3) Introducing the electron spin in a non-
relativistic formulation of quantum mechanics

Experimental facts:

- Electrons have a spin angular momentum

- They all have the same value of spin: 

- Only two values are allowed for its projection along any
direction in space:                   (ms = ±±±± ½ )

- There is no classical counterpart to this property of the 
electron.

Theoretical fact:  If the electron spin is not included in the 
non-relativistic formulation of QM, nothing works.

h
2

3

( )
2

1± h
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- Spin is some kind of angular momentum.
- Invent a spin angular momentum operator, ŝ, with

componentes ŝx , ŝy and ŝz , such that:

[ŝx , ŝy ] = ihhhh ŝz [ ŝy , ŝz ]  = i hhhh ŝx [ ŝz , ŝx ]   =   i hhhh ŝy

- Introduce two spin-eigenfunctions, αααα and ββββ, such that: 

ŝz αααα = ms hhhh αααα = (1/2) hhhh αααα
ŝz ββββ = - mshhhh ββββ = - (1/2) hhhh ββββ

- For any angular momentum operator:   

-s ≤  ms ≤  s  ⇒⇒⇒⇒ s = 1 (spin quantum number) 

ŝ2 αααα = s(s+1) hhhh2 αααα and ŝ2 ββββ = s(s+1) hhhh2 ββββ

ŝ2 αααα = (3/4) hhhh2 αααα and ŝ2 ββββ = (3/4) hhhh2 ββββ
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HOW TO PROCEED FOR N-ELECTRONS SYSTEMS ?

In an analogous way:

Invent  an  operador Ŝ, for the total spin of the system, with 

components Ŝx, Ŝy and Ŝz, satisfying the commutation rules:

[Ŝx , Ŝy] = ihhhh Ŝz [Ŝy , Ŝz ]  = ihhhh Ŝx [Ŝz, Ŝx]  =  ihhhh Ŝy

VERY IMPORTANT:

The non-relativistic many-electrons Hamiltonian does not

contain spin coordinates. Therefore:

[ H, Ŝ2 ] = [ H, Ŝx ] = [ H, Ŝy ] = [ H, Ŝz ] = 0
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IMPORTANT CONSEQUENCE OF THE LAST RESULT:

The total spin as well as its projection in any direction of

space are “constants of the motion”, i.e., they have very well

defined values for any many-electrons-system.

WHAT ABOUT THE SPIN-EIGENFUNCTION FOR A 
MANY-ELECTRONS SYSTEM?

- Must be a function of the spin of all the electrons:

|χχχχ (s1, s2, .. sN)>

such that the result of Ŝ2 operating on |χχχχ > gives the total

spin value, S, of the many-electrons system:

Ŝ2 χχχχ = S (S+1) hhhh2 χχχχ
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WHAT ELSE ?

- Electrons are indistinguishable and they all have the same 
spin

-The many-electron spin functions MUST also be invariant to
the permutation of the spin of any two electrons. The many-
electrons  spin functions MUST also  transform  like totally 
symmetric or anti-symmetric representations of SN:
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4) Incorporating  the spin wave  function  in the 
description of  a many-electron system (atom or molecule)

H does not contain spin variables. Thus, the  solution of  the 
many-electron problem, either through Schrödinger equation

H |ΨΨΨΨ > = E |ΨΨΨΨ > 

or its equivalent, the variational principle; 

E = <ΨΨΨΨ|H|ΨΨΨΨ>    , 

will furnish wave functions which  depend only on the spatial 
coordinates of the electrons and the nuclei: 

ψψψψ (r1, r2 r3 ... rN; ξξξξ ) , where ξξξξ stands for the set

of the nuclear coordinates (in the B.O. approximation).
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However, once this solution is known, it can be multiplied 

by  another function, of other  variables, not present  in H,

spin for  example, and  the  product  function  will  satisfy

Schrödinger equation, although not being a solution to S.E. 

of the spinless hamiltonian.
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ΨΨΨΨ(r1, r2 r3 .. rN , s1 s2 .. sN ;ξξξξ ) =  ψψψψ (r1, r2 r3 .. rN; ξξξξ ) χχχχ (s1 s2 .. sN)

total wave function                                     spatial part                  spin part

THIS IS NOT AN APPROXIMATION!

THIS  IS  THE  EXACT ANALYTICAL  FORM  OF  THE  TOTAL 

WAVE  FUNCTION   FOR   ANY   NON-RELATIVISTIC   MANY-

ELECTRON  SYSTEM, ATOM  OR  MOLECULE!
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5) THE ANTISYMMETRY PRINCIPLE

The antisymmetry principle requires the total  wave function

(including spin)  to  be   antisymmetric   with  respect  to  the 

interchange of any pair of electrons.

But now we know that  the only acceptable way of including 
the  spin in  a non-relativistic  formulation is  to multiply the 
spatial  part  of  the  wave  function  by  a  spin  function  
corresponding to a given value of S, the total spin of  the  
system.

Two ways of generating total wave functions satisfying the 
antisymmetry principle :

ΨΨΨΨ(r1, r2 r3 .. rN , s1 s2 .. sN ;ξξξξ ) =  ψψψψ (r1, r2 r3 .. rN; ξξξξ ) χχχχ (s1 s2 ...sN)

S             x A
A             x S
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Once the spin state  is  defined, the symmetry of the 
spin function is automatically  defined  and, because  
of the antisymmetry principle, the  spatial part of the 
wave function will have its symmetry perfectly 
determined. 

Thus, in the non-relativistic formulation the spin is 
just  an indicator  of the symmetry that  the spatial 
wave function MUST have so that   the   total   wave   
function  obeys   the   antisymmetry principle. 

In non-relativistic quantum mechanics, the electronic spin is  

only an  “indicator”

Van Vleck and Sherman (1935)
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CONCLUSIONS:

- the indistinguishability of the electrons;
- the antisymmetry principle;
- the fact that for a non-relativistic system, the spatial and
spin coordinates are independent of each other.

OBLIGES:

a) the exact function to be a product of a spatial and of a spin
function.

b) both the spatial and spin parts of the wave function to be
symmetric or antisymmetric under the exchange of either
the spatial or the spin coordinates of any two electrons of
the system;

c) the total wave function to be antisymmetric
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6) INDEPENDENT PARTICLE MODELS
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BASIC IDEA:

REPLACE THE PROBLEM OF FINDING THE WAVE FUNCTION 

WHICH  DESCRIBES  THE  COLLECTIVE  MOTION  OF THE  N

ELECTRONS OF  AN  ATOM  OR MOLECULE BY THE ONE OF 

FINDING   N OCCUPIED  ORBITAIS  WHICH  DESCRIBE  THE  

INDIVIDUAL MOTION OF EACH ELECTRON OF THE SYSTEM, 

ATOM OR MOLECULE: 

ΨΨΨΨel (i,j,k,...N)                           ΨΨΨΨel (i,j,k,...N; A,B...M) 

{ϕϕϕϕi } i=1, N  atomic orbitals {φφφφi } i=1, N  molecular orbitals
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ONCE THE N ORBITALS ARE DETERMINED, 

ONE MUST CONSTRUCT THE TOTAL WAVE FUNCTION, 

ΨΨΨΨel (i,j,k,...N)

IT IS  FROM  TOTAL WF THAT THE  PROPERTIES OF  THE
SYSTEM ARE DETERMINED.

ATTENTION!

WELL BEHAVED

ANTISYMMETRIC

ΨΨΨΨel HAS TO BE:

{ϕϕϕϕi } i=1, N  atomic orbitals {φφφφi } i=1, N  molecular orbitalsor

ΨΨΨΨel (i,j,k,...N; ξξξξ),or
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CONSTRUCTING ANTISYMMETRIC WAVE FUNCTIONS 
FROM A SET OF ORBITALS  {ϕϕϕϕi } i=1, N     

A) Heisenberg (1926) and Wigner (1926)

ΨΨΨΨΗΗΗΗ =  A A A A [ϕϕϕϕ1(1)ϕϕϕϕ2(2)ϕϕϕϕ3(3) ... ϕϕϕϕN(N) χχχχ (1,2...N)] ,

Example:  He 

ψψψψΗΗΗΗ1111 = [ϕϕϕϕ1(1) ϕϕϕϕ2(2) + ϕϕϕϕ2 (1)ϕϕϕϕ1(2)] [α(α(α(α(1111)β()β()β()β(2222)))) - ββββ(1)αααα(2)] 0 0

S         M S

ψψψψΗΗΗΗ3333 = [ϕϕϕϕ1(1)ϕϕϕϕ2(2) - ϕϕϕϕ2 (1)ϕϕϕϕ1(2)] [α(α(α(α(1111)β()β()β()β(2222)))) ++++ ββββ(1)αααα(2)] 1 0

ψψψψΗΗΗΗ2222 = [ϕϕϕϕ1(1) ϕϕϕϕ2(2) - ϕϕϕϕ2 (1) ϕϕϕϕ1(2)] [α(α(α(α(1111))))αααα(2)] 1 1

ψψψψΗΗΗΗ4444 = [ϕϕϕϕ1(1) ϕϕϕϕ2(2) - ϕϕϕϕ2 (1) ϕϕϕϕ1(2)] [ββββ((((1111))))ββββ(2)] 1 -1

is the antisymmetrizer operator 

eigenfunction of   and 



9/11/2019

29

B) SLATER (1927) Spin-orbital :    ΦΦΦΦ (r,σσσσ)  

Notice that ΨΨΨΨS(1,2) can be written as a 2 x 2 determinant: 

ΦΦΦΦ1(1)     ΦΦΦΦ1(2)
ΦΦΦΦ2 (1)    ΦΦΦΦ2(2)ΨΨΨΨS(1,2) =  

neither symmetric nor antisymmetric, BUT

Conclusion: is antisymmetric

VERY PRACTICAL, BUT WHAT IS A SPIN-ORBITAL?

HOW DOES IT LOOK LIKE?
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A)  Slater wave function for 2-e systems with S=0

u1 = φφφφ1αααα and      u2 =  φφφφ2ββββ

φφφφ1 (1)αααα(1)   φφφφ1(2)αααα(2)
φφφφ2 (1)ββββ(1)   φφφφ2(2)ββββ (2)

ΨΨΨΨS1  DOES NOT REPRESENT A STATE WITH DEFINED SPIN !!! 

φφφφ1 (1)αααα(1)   φφφφ1(1)ββββ(1)
φφφφ2 (2)αααα(2)   φφφφ2(2)ββββ (2)

BUT

NOT ANTISYMMETRIC !!!

--------------------------------------------------------------------------------
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THIRD ATTEMPT:

u1 = φφφφ αααα and      u2 =  φφφφ ββββ BUT WHY ?

φφφφ (1)αααα(1)   φφφφ(1)ββββ(1)
φφφφ (2)αααα(2)   φφφφ(2)ββββ (2)

AND

Take the same spatial part for both spin-orbitals

IT WORKS !!!

GREAT,  BUT  THE  DOUBLE   OCCUPANCY  IS  A  RESTRICTION!
THERE IS NO PHYSICAL REASON FOR ATTRIBUTING THE SAME 
SPATIAL PART FOR THE TWO SPINORBITALS. 
AFTER ALL, WE  WANT  TO  DEVELOP A  GENERAL METHOD TO 
CONSTRUCT INDEPENDENT PARTICLES WAVE FUNCTIONS!
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7) COMBINIG THE IDEA OF INDEPENDENT 
PARTICLES WITH THE VARIATIONAL PRINCIPLE
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INDEPENDENT PARTICLES MODELS
HARTREE-FOCK:

- Atomic orbitals must retain the form of the hydrogenoid (s, p, d, f etc.) 
orbitals and, therefore, must be orthogonal;

- Use orbital double occupation, i. e. , two electrons in the same orbital
(atomic or molecular) with different spins;

- Use Slater-type wave functions to obtain the best orbitals (atomic or
molecular) through the variational principle. 

GVB (Generalized  Valence Bond)

- No restrictions imposed to the form of atomic orbitals;

- Singly-occupied atomic orbitals not necessarily orthogonal;

- Use Heisenberg-type wave functions to obtain the best atomic orbitals
through the variational principle. 
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The GVB (Generalized Valence-Bond) Model

The GVB  wave  function, in  its  most  general  form, can be 

written as :

ΨΨΨΨGVB =  A A A A [ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3 ... ϕϕϕϕN χχχχ (1,2...N)],

where A =  A =  A =  A =  (1/N!) ΣΣΣΣP δδδδP P   is the antisymmetrizer. The orbitals  

{ϕϕϕϕi} are  atomic-like,   singly  occupied  and   not necessarily 

orthogonal. 

The orbitals {ϕϕϕϕi} and  the spin function χχχχ are simultaneously 

optimized by  requiring  the functional EGVB= <Ψ<Ψ<Ψ<ΨGVB|H|ΨΨΨΨGVB> 

to  be  stationary. No  restrictions  are  imposed  to  the spin

function other than requiring χχχχ to be  an  eigenfunction of Ŝ2

and Ŝz:
Ŝ2 χ χ χ χ = S(S+1) χ         χ         χ         χ         Ŝz χ χ χ χ = MS χ χ χ χ 
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Ex:  4 electrons Singlet

There are two possible spin functions :

χχχχ1 = (αβαβαβαβ−−−−βαβαβαβα) () () () (αβαβαβαβ−−−−βαβαβαβα)     )     )     )     

χχχχ2   = 2ααββααββααββααββ + 2+ 2+ 2+ 2ββααββααββααββαα −−−− ((((αβαβαβαβ++++αβαβαβαβ) () () () (αβαβαβαβ++++βαβαβαβα))))

Thus :                 χ χ χ χ = c1 χχχχ1 +  c2 χχχχ2

ΨΨΨΨGVB = = = = c1 AAAA [[[[ϕϕϕϕ1ϕϕϕϕ2222ϕϕϕϕ3333ϕϕϕϕ4 χχχχ1 (1,2,3,4)] + (1,2,3,4)] + (1,2,3,4)] + (1,2,3,4)] + c2 AAAA [[[[ϕϕϕϕ1111ϕϕϕϕ2222ϕϕϕϕ3333ϕϕϕϕ4444 χχχχ2 (1,2,3,4)](1,2,3,4)](1,2,3,4)](1,2,3,4)]

“perfect-pairing coupling”

In general, if a spin function of the type χχχχ1 is allowed, its 

coefficient is much larger than the others, and the GVB

function can be rewritten as :  

ΨΨΨΨGVB ≅≅≅≅ AAAA [ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3ϕϕϕϕ4 (αβαβαβαβ-βαβαβαβα) (αβαβαβαβ-βαβαβαβα)]
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Experience  with this type  of wave function also shows that

all orbitals, other than the two within a given singlet pair, are

orthogonal or nearly orthogonal.

Imposing   the  “strong orthogonality constraint”   plus   the

perfect-pairing  coupling  scheme, gives  rise to the GVB/PP

wave function.

Ex: 4e singlet

ΨΨΨΨGVB/PP = AAAA [ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3ϕϕϕϕ4 (αβαβαβαβ-βαβαβαβα) (αβαβαβαβ-βαβαβαβα)]

with < ϕϕϕϕ1ϕϕϕϕ2 >   and    < ϕϕϕϕ3ϕϕϕϕ4>   ≠≠≠≠ 0

but < ϕϕϕϕ1ϕϕϕϕ3> = < ϕϕϕϕ1ϕϕϕϕ4> =  < ϕϕϕϕ2ϕϕϕϕ3>  = < ϕϕϕϕ2ϕϕϕϕ4> = 0
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ADVANTAGES:

−ΨΨΨΨGVB is antisymmetric and a basis for SN . It has all

the properties required from a many-electron wave

function.

Consequences:
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Ecor
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b) when used as IPM, much less 
computational effort is needed to recover 
the real correlations effects. 

− ΨΨΨΨGVB , furnishes one-electron states univocally determined 

within a given basis set

Consequences:

a) one-electron states (orbitals) involved in chemical bonding
can be univocally identified;

b) Connectivity among atoms can be precisely identified and,
therefore, one can define chemical structures for molecules;
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DISADVANTAGES:

− ψψψψGVB defined in terms of non-orthogonal orbitals;

−−−− ψψψψGVB/PP much  simpler  but   the  orbitals within a

singlet-coupled pair are still non-orthogonal.

Consequence:

-Calculation of the one and two-electron integrals requires
more computer time.

CAN ONE SIMPLIFY EVEN FURTHER?

He : 1s2 ψψψψHF = AAAA [1sHF1sHF αβαβαβαβ]

Li: 1s2 2s  ψψψψHF =  AAAA [1sHF1sHF2sHF αβααβααβααβα]  

Both have the wrong
form !
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But:

ψψψψGVB (He) = AAAA [1sHe1s’
He (αβ αβ αβ αβ −−−− βαβαβαβα)]

ψψψψGVB (Li)  = A A A A [1sLi1s’
Li 2sLi (αβ αβ αβ αβ −−−−βαβαβαβα) αααα] 

have the right form
but orbitals are non
orthogonal

How different, for example, the 1sHF and 1sGVB orbitals of the

He atom are?

QUITE 
DIFFERENT !
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WHAT HAPPENS WHEN THE NUCLEAR 
CHARGE INCREASES ?

 

     H
- 

  He   Li
+
  Be

2+ 
  B

3+ 
  C

4+ 
  N

5+ 
   O

6+ 
  F

7+ 
 Ne

8+ 

S12 0.615 0.879 0.935 0.949 0.960 0.967 0.972  0.976 0.979 0.981 

Overlap Integral Between the GVB Orbitals.
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Proposition:

Keep the core electrons in doubly occupied orbitals and the

valence  ones in  singly  occupied non-orthogonal orbitals.

The  wave  function  will  not  exhibit permutation symmetry

anymore  but  will be much easier to calculate. However, no

artifacts  will  be  produced  as long as the core electros are

not involved in the process one wants to describe.  

Question:  Should we keep these doubly occupied orbitals

non-orthogonal to the singly occupied ones?

Answer: No! One can  take  any doubly occupied orbital

orthogonal to any singly occupied orbital. THIS

IS NOT A RESTRICTION!
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SIMPLIFIED FORM OF A GVB/PP  WAVE FUNCTION

ΨΨΨΨGVB/PP = AAAA [ {core} {valence} {open shell}], 

 
where: 
 
{core} : doubly-occupied core orbitals, orthogonal to 
              all the others.  
 
{valence} : GVB orbitals, singly-occupied and non- 
                   orthogonal to the open shell orbitals and 
                   to the GVB orbital in the same pair. 
 
{open shell} : singly-occupied valence orbitals not    
                        involved in chemical bonds.       
 

Attention: The open shell orbitals can be taken orthogonal to

the  others  if ALL the  electrons  in  these  orbitals  have the

SAME SPIN (high spin case). If not, this IS A RESTRICTION !!!
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Rewritting the GVB/PP wave function in terms of natural
(orthogonal) GVB orbitals.

Suppose:

ΨΨΨΨ = cA AAAA [ψψψψAψψψψA αβαβαβαβ] + cB AAAA [ψψψψΒΒΒΒψψψψΒΒΒΒ αβαβαβαβ]

and ΨΨΨΨGVB/PP = AAAA [ϕ[ϕ[ϕ[ϕΑΑΑΑϕϕϕϕΒΒΒΒ (αβ (αβ (αβ (αβ - βα)]βα)]βα)]βα)]

with <ψψψψA|ψψψψB> = 0    and    <ϕϕϕϕΑΑΑΑ|ϕ|ϕ|ϕ|ϕΒΒΒΒ> ≠≠≠≠ 0

If ψψψψA ,ψ,ψ,ψ,ψB , ϕϕϕϕA  and ϕϕϕϕB are expanded in the same basis set,
it is not difficult to show that:

ϕϕϕϕA = (a2 + b2)-1/2 (a ψψψψA + b ψψψψB)
ϕϕϕϕB = (a2 + b2)-1/2 (a ψψψψA - b ψψψψB)

with <ϕϕϕϕA |ϕϕϕϕB> = {a2 - b2}/ {a2 + b2}
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Thus, in terms of the orthogonal orbitals ψψψψA and ψψψψB, the 

GVB/PP wave function can be written as:

ΨΨΨΨGVB/PP = (a2 + b2)-1/2 { a2 AAAA [ψψψψAψψψψA αβαβαβαβ] – b2 AAAA [ψψψψBψψψψB αβαβαβαβ] }

ψψψψA  and ψψψψΒ   Β   Β   Β   : doubly-occupied and orthogonal
(GVB natural orbitals)

ϕϕϕϕA    and ϕϕϕϕB    : singly-occupied and non-orthogonal

(GVB orbitals)

VERY IMPORTANT: For each pair of GVB orbitals in the PP
wave   function  there  is  one  unique  pair of  GVB  natural 
orbitals, and vice-versa:

GVB/PP with n ϕϕϕϕi ϕϕϕϕj pairs              GVB/PP with 2n terms ψψψψAψψψψB
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Strategy for Constructing GVB/PP Wave Functions 
for Molecules

a) Draw the proposed chemical structure of the molecule:

C

H1 H2

H3 H4

b) Assign  to  each  line connecting  two atoms a pair of GVB
orbitals, one orbital for each one of the atoms involved in the
bond; 

ϕϕϕϕC1 , ϕϕϕϕH1 ϕϕϕϕC2 , ϕϕϕϕH2

ϕϕϕϕC4 , ϕϕϕϕH4
ϕϕϕϕC3 , ϕϕϕϕH3

c) Keep   the  core  electrons  in  doubly-occupied orbitals

d) Write the GVB/PP wave function taking into account that
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each pair of singlet-paired electrons contributes a term of

the form (ϕϕϕϕi ϕϕϕϕj + ϕϕϕϕj ϕϕϕϕi) (αβ (αβ (αβ (αβ - βα)βα)βα)βα) to the wave function:

ΨΨΨΨGVB/PP (CH4) = A A A A [ 1sC1sC (ϕ(ϕ(ϕ(ϕC1ϕϕϕϕH1+ ϕϕϕϕH1ϕϕϕϕC1) (ϕϕϕϕC2ϕϕϕϕH2+ ϕϕϕϕH2ϕϕϕϕC2)

(ϕϕϕϕC3ϕϕϕϕH3+ ϕϕϕϕH3ϕϕϕϕC3) (ϕϕϕϕC4ϕϕϕϕH4+ ϕϕϕϕH4ϕϕϕϕC4) αβ αβ αβ αβ (αβαβαβαβ-βαβαβαβα) (αβαβαβαβ-βαβαβαβα) (αβαβαβαβ-βα)βα)βα)βα)

(αβαβαβαβ-βαβαβαβα)]

e) Transform each pair of GVB singly-occupied non-orthogo-
nal orbitals into the corresponding pair of doubly-occupied
orthogonal GVB natural orbitals.

f) Determine the BEST GVB natural orbitals by requiring the
functional EGVB/PP = <ΨΨΨΨGVB/PP H H H H ΨΨΨΨGVB/PP> to be an extremum.
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g) Transform each pair of GVB natural orbitals back to the

corresponding GVB atomic-like, singly-occupied, non-

orthogonal orbitals.

What, if more than one equivalent chemical structure can be
drawn?

Use the Generalized Multi-Structural (GMS) wave function:
(Hollauer and Nascimento, 1993)

ΨΨΨΨGMS =  ΣΣΣΣi ci ψψψψi

where ψψψψi and ci are, respectively, the wave function for the

ith chemical structure and ci its weight in ΨΨΨΨGMS

Two possibilities :  ψψψψi fixed and ci variationally determined            or

both ψψψψi and ci variationally determined
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GENERAL ENERGY EXPRESSION OF 
A GVB WAVE FUNCTION

∑ ∑ ><+=
n

ji

n

lkji

ij

klij

i

j jlikDhDE
, ,,,

|

>=< jiij hh φφ ||

>>=<< )2()1(|/1|)2()1(| 12 lkji rjlik φφφφ

with:

andi

jD ij

klD density matrix elements

ΨΨΨΨGVB =  A A A A [ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3 ... ϕϕϕϕN χχχχ (1,2...N)],
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For GVB/PP wave functions, the general energy expression

turns out  to  be  much  simpler  if   the  atomic  orbitals are  

expressed in an orthonormal basis:

<ϕϕϕϕi|ϕϕϕϕj> = δδδδij

In such a basis, the density matrices      and        are diagonal

and the only remaining terms different from zero, are: 

ii

i

i fD 2=
jiij

ij

ji bbD ==jiij

ij

ij aaD ==

the coefficients  iif
ija

ijb, being independent of {ϕϕϕϕi}

i

jD
ij

klD

and
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The energy expression of the GVB/PP function becomes:  

∑ ∑
= =

++=
n

i

n

ji

ijijijijiiii KbJahfE
1 1,

)(2 (1)

ijJ
ijKand        being the Coulomb and exchange integrals.

EXAMPLE:  

Energy expression of a GVB wave function for 2 electrons,
singlet state:

)1(

2
2

12

121212122211

S

KJhShh
E

+

++++
= (2)

It does not  have the form of (eq. 1) !

NOTE: For 2 electrons singlet state the GVB WF is PP
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However, one can express the two GVB non-orthogonal 
orbitals, ϕϕϕϕ1 and ϕϕϕϕ2 as  a linear combination of  two other 
orthogonal orbitals, ψψψψ1 and ψψψψ2 , the natural GVB orbitals:

The GVB wave function expressed in the natural GVB orbitals
basis, has the form:
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whose energy expression is:

This  energy expression  has the  form of eq. (1), with one
difference: the coefficients { f, a, b }are not fixed anymore,
but depend on the coefficients σσσσ1 and σσσσ2.

IMPORTANT CONCLUSION:

THE ENERGY OF ANY GVB/PP WAVE FUNCTION CAN BE
PUT IN THE FORM OF EQUATION (1)
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THE f COEFFICIENTS:

if ψψψψi is a core orbital

if ψψψψi is an orbital of a GVB pair

if ψψψψi is a  singly occupied orbital

THE aij and bij COEFFICIENTS:

Exceptions:

if ψψψψi and ψψψψj are singly occupied orbitals

if ψψψψi is an orbital of a GVB pair

and if ψψψψi and ψψψψj are orbitals of the same
GVB pair 
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SOME CONSEQUENCES OF NEGLECTING 
PERMUTATION  SYMMETRY IN THE DESCRIPTION

OF MANY-ELECTRON SYSTEMS 
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INDEPENDENT PARTICLES MODELS

HARTREE-FOCK: (atomic and SCF-MO)

- Use Slater-type wave functions to obtain the best orbitals (atomic or
molecular) through the variational principle. 

GVB (Generalized  Valence Bond)

- Use Heisenberg-type wave functions to obtain the best atomic orbitals
through the variational principle. 

ST wave  functions are not basis for the symmetric group,
i.e., do not take into account the permutation symmetry of
the many-electron hamiltonian.

GVB wave  functions are basis for the symmetric group



9/11/2019

58

u1 = φφφφ αααα and      u2 =  φφφφ ββββ

φφφφ (1)αααα(1)   φφφφ(1)ββββ(1)
φφφφ (2)αααα(2)   φφφφ(2)ββββ (2)

P12 ΨΨΨΨS3 = - ΨΨΨΨS3 OK!AND

GREAT, BUT THE DOUBLE OCCUPANCY IS  A  RESTRICTION! THERE  IS

NO  PHYSICAL  REASON  FOR  ATTRIBUTING  THE SAME SPATIAL PART 

FOR THE TWO SPINORBITALS.

A) ORBITAL DOUBLE-OCCUPANCY

WITH  ST  WFs  ONE  MUST  FORCE  DOUBLE  OCCUPATION  TO
GENERATE A WF WITH WELL DEFINED SPIN. 
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TO AVOID THIS (ARTIFICIAL) PROBLEM ALL WE NEED IS TO CONSTRUCT
A WAVE FUNCTION WHICH  IS  A BASIS FOR THE PERMUTATION GROUP, 
S2 :

ΨΨΨΨH =    { φφφφ1 (1) φφφφ2(2)  + φφφφ1 (2) φφφφ2(1) }   [αααα(1) ββββ (2) - αααα(2) ββββ (1)] 

B) THE EXCHANGE INTEGRAL  (Kij)

P12 ΨΨΨΨH =  - ΨΨΨΨH

∑ ∑
= =

−+=
n

i

n

ji

ijijii KJhE
1 1,

)2(2

Energy of a Slater-type function for any “closed shell” system with 2n electrons :

WHAT IS THE ORIGIN OF Kij ?

ACCORDING TO 99.9%  OF  THE  BOOKS  (QUANTUM  MECHANICS OR
QUANTUM CHEMISTRY) Kij HAS  NO  CLASSICAL  ANALOG. IT ARISES 
SOLELY AS A CONSEQUENCE OF THE ANTISYMMETRY PRINCIPLE.
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REALLY?

Example:   He ( 1S   1s2)

E [ΨΨΨΨS3 (1,2)] = h11 + h22 + J12 = 2 h11 + J12 WHERE IS K12 ?

BUT, WAIT!  Kij EXISTS ONLY FOR ELECTRONS WITH THE SAME SPIN.

RIGHT  OR WRONG ?

E [ΨΨΨΨS3 (1,2)] = h11 + h22 + J12 = 2 h11 + J12 + K 12 <αααα|ββββ>

BUT, according to Slater:

THE ENERGY SHOULD NOT DEPEND DIRECTLY ON THE SPIN 
COORDINATES !!!
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POSTULATES OF QUANTUM MECHANICS

∑ ∑∑ ∑ ∑ ∑
< <= = = =

++−∇−∇−=
N

ji

M

BA A B

BA

ij

M

A
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i

M

A

N

i iA

A
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A R

ZZ

rr

Z

M
H

1

2

1

2

1

1 1 1 1
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BUT,  WHAT   IN  THE  HAMILTONIAN – THE  OPERATOR THAT 

REPRESENTS THE  TOTAL ENERGY OF  THE  SYSTEM – CAN  

TELL  ELECTRONS  WITH   SPIN  UP   FROM  THE  ONES WITH  

SPIN DOWN?  ABSOLUTELY NOTHING!!!

-THE  POSSIBLE  RESULTS OF A MEASUREMENT OF  ANY DYNAMIC VARIABLE
FOR A QUANTUM SYSTEM ARE THE EIGENVALUES OF THE CORRESPONDING
OPERATOR. 

Example:     Energy    →→→→ Hϕϕϕϕn = Enϕϕϕϕn {En}   eigenvalues 
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ENERGY OF THE HEISENBERG WF CONSIDERING ONLY ITS
SPATIAL PART:

ΨΨΨΨHeisenberg =   φφφφ1 (1) φφφφ2(2) + φφφφ1 (2) φφφφ2(1)    

THIS IS A SYMMETRIC WF !!!

ENERGY OF THE FULL HEISENBERG WAVE FUNCTION:

ΨΨΨΨH =    { φφφφ1 (1) φφφφ2(2)  + φφφφ1 (2) φφφφ2(1) }   [αααα(1) ββββ (2) - αααα(2) ββββ (1)] 

THIS IS AN ANTISYMMETRIC WF
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CONCLUSION

Kij HAS  NOTHING  TO  DO  WITH  THE   ANTISYMMETRY 

PRINCIPLE BUT WITH THE PERMUTATION SYMMETRY OF 

THE  HAMILTONIAN AND ITS REFLEXES ON THE WAVE 

FUNCTIONS.

THERE IS A K INTEGRAL FOR EACH PAIR OF ELECTRONS 

REGARDLESS OF THEIR SPINS.
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Ecor =  Eexact – EMPI Wigner (1934)                            

Ecor =  Efull-CI – EHF Lowdin (1959)

Using Löwdin’s definition:

“Eexact” ≈≈≈≈ Efull-CI =  EHF + Ecor

ACCORDING TO THIS LAST EXPRESSION CORRELATION ENERGY IS 

WHAT IS MISSING  IN THE HARTREE-FOCK  MODEL TO  OBTAIN THE 

“EXACT” ENERGY OF THE SYSTEM (ATOM OR  MOLECULE).

C) ELECTRONIC CORRELATION ENERGY



9/11/2019

65

TWO SIMPLE SYSTEMS

ψψψψHF = [1sH-(1)1sH-(2)] (αβαβαβαβ- βαβαβαβα)

ψψψψGVB = [1sH-(1)1s’H-(2) + 1s’H-(1)1sH-(2)] (αβαβαβαβ- βαβαβαβα)

ψψψψHF = [1sHe(1)1sHe(2)] (αβαβαβαβ- βαβαβαβα)

ψψψψGVB = [1sHe(1)1s’He(2) + 1s’He(1)1sHe(2)] (αβαβαβαβ- βαβαβαβα)

ΗΗΗΗ−−−−

ΗΗΗΗe

NOTE:  A GVB  atomic wave function is a Heisenberg-type  wave function 
for which the orbitals are optimized self-consistently. Thus, it has
the form of an acceptable WF.
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A
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           Hartree-Fock      GVB 

     H
- 

    -0,4877120 -0,5120223 

     He     -2,8616692 -2,8779850 

Energy (h)   (10s) Huzinaga’s Basis Set
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EH

F

EHF 
num

Ebasis

Efull-CI

Ecorr ?

   Hartree-Fock   Full-CI      Ecor 

      H
- 

    -0,4877120 -0,5126604 0,0249484 

      He     -2,8616692 -2,8790090 0,0173398 

 

Energy (h).   (10s) Huzinaga’s basis set

THESE RESULTS DO NOT MAKE ANY SENSE !
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Ecor =  Efull-CI – EGVB

 
EGVB

EGVB num

Efull-CI

Ebasis

Ecorr

H-

He

MOST OF THE HF CORRELATION ENERGY IS, IN REALITY, AN ERROR OF FORM ! 
THE HF WF DOES NOT TAKE INTO ACCOUNT THE PERMUTATION SYMMETRY !!!
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WHAT HAPPENS WHEN THE NUCLEAR CHARGE INCREASES ?

 

     H
- 

  He   Li
+
  Be

2+ 
  B

3+ 
  C

4+ 
  N

5+ 
   O

6+ 
  F

7+ 
 Ne

8+ 

S12 0.615 0.879 0.935 0.949 0.960 0.967 0.972  0.976 0.979 0.981 

Overlap Integral Between the GVB Orbitals.
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Species EHF EGVB EFull-CI Ecorr(HF) Ecor (GVB)) ∆∆∆∆EHF-GVB

H- -0.4877120 -0.5120223 -0.5126604 0.0249484 0.0006381 0.0243104

He -2.8616692 -2.8779850 -2.8790090 0.0173398 0.0010240 0.0163158

Li+ -7.1300822 -7.1427386 -7.1438228 0.0137406 0.0010843 0.0126564

Be+2 -13.6109302 -13.6253929 -13.6264590 0.0155289 0.0010661 0.0144627

B+3 -21.9856890 -21.9998624 -22.0009373 0.015248 0.0010749 0.0141734

C+4 -32.3604316 -32.3744235 -32.3755032 0.0150716 0.0010797 0.0139919

N+5 -44.7351638 -44.7490312 -44.7501150 0.0149512 0.0010838 0.0138674

O+6 -59.1098403 -59.1236169 -59.1247031 0.0148628 0.0010862 0.0137766

F+7 -75.4844914 -75.4981990 -75.4992878 0.0147964 0.0010888 0.0137076

Ne+8 -93.8590943 -93.8727474 -93.8738376 0.0147433 0.0010902 0.0136531

Energy in hartrees. (10s) Huzinaga’s Basis Set
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CONCLUSIONS OF PART C

 
EHF

EHF num

Ebase

Efull-CI

Ecorr ? NOOOOOO!

(a) (Ecorr)HF =  Error of form [ ∆∆∆∆EHF-GVB ] +  Ecor (GVB)

(b) As the nuclear charge increases, double-occupancy for the inner
shells seems to be a reasonable approximation, but never for the
outer shells.
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THE H2 MOLECULE (1ΣΣΣΣg
+)

|ψψψψHF > = 1σσσσg (1) 1σσσσg (2)  [αααα(1)ββββ(2) - ββββ(1)αααα(2)]

|ψψψψGVB > =  [ ϕϕϕϕa(1) ϕϕϕϕb(2) + ϕϕϕϕb(1) ϕϕϕϕa(2)]  [αααα(1)ββββ(2) - ββββ(1)αααα(2)]

σσσσg :   molecular orbitals

ϕϕϕϕa , ϕϕϕϕb : atomic orbitals

not a basis for S2

φφφφa , φφφφb : atomic orbitals

D) NON-DYNAMIC CORRELATION ENERGY (???)

basis for S2



9/11/2019

73

2 Eo(H)

correlation energy ???

Internuclear distance (Å)

E
n

er
g

y 
(a

.u
.)

X 1ΣΣΣΣg
+ Re (Å) D0   (eV)

Hartree-
Fock

GVB

Kolos and 
col.

0.738

0.749

0.74

------

4.06

4.478

Experiment
al

0.7414 4.478

NO!  THIS IS NON-DYNAMIC CORRELATION
ENERGY !!!!!!!!
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BACK TO THE POSTULATES OF QUANTUM MECHANICS

- THE POSSIBLE RESULTS OF A MEASUREMENT OF  ANY DYNAMIC VARIABLE FOR A 

QUANTUM SYSTEM ARE THE EIGENVALUES OF THE CORRESPONDING OPERATOR. 

Example:     Energy    →→→→ Hϕϕϕϕn = Enϕϕϕϕn {En}   eigenvalues 
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BUT,  COULD YOU PLEASE TELL ME  WHICH TERM OF THE HAMILTONIAN – THE OPERATOR

THAT REPRESENTS THE TOTAL ENERGY OF  THE  SYSTEM – IS RESPONSIBLE FOR THIS PART

-NON  DYNAMIC  CORRELATION  ENERGY – OF  THE  TOTAL  ELECTRONIC  ENERGY  OF  THE 

SYSTEM???    

NONE!!!  THERE IS NOTHING IN THE HAMILTONIAN THAT COULD ACCOUNT FOR THIS

PART OF THE ENERGY OF THE SYSTEM.
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(Å)

Correlation Energy via MP2
Correlation Energy via CI and 
MCSCF

WHY MP2 DOES NOT WORK?  WHY MCSCF WORKS BETTER THAN CI ?
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VERY SIMPLE ANSWER:  MP2 DOES NOT CHANGE THE FORM OF THE HF WF 
WHILE BOTH MCSCF AND CI DO CHANGE THE FORM OF THE HF WF.

SO WHAT? IN WHAT WAY IS THE HF FORM CHANGED?

ΨΨΨΨMCSCF =  c1 (1σσσσg)2 + + + + c2 (1σσσσu)2 c1 , c2 , 1σσσσg  and 1σ1σ1σ1σu variationally 

determined

ΨΨΨΨCI = c3 (1σσσσ’
g)2 + c4 (1σσσσ’

u)2 only  c3 and c4 variationally determined

As RH-H increases:           c1 ≅≅≅≅ - c2 e   c3 ≅≅≅≅ - c4

ΨΨΨΨMCSCF ≅≅≅≅ ΨΨΨΨCI = [1sa(1)1sb(2)+1sa(2)1sb(1)][αβαβαβαβ - βαβαβαβα] !!!

BUT THIS IS THE GVB FUNCTION WHICH HAS THE
CORRECT FORM!!!      
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CORRELATION ENERGY FOR  THE GVB WAVE FUNCTION
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SUMMARY OF THE CONSEQUENCES OF NEGLECTING 
PERMUTATION SYMMETRY

1- DOUBLE OCCUPANCY OF THE ORBITALS (ATOMIC OR MOLECULAR)
INTRODUCED WITHOUT ANY JUSTIFICATION IN  ORDER TO GENERATE 
WF WITH A DEFINED SPIN. 

3- MISINTERPRETATION OF THE EXCHANGE INTEGRAL.

4- ENERGY OF  WFs DEPEND  DIRECTLY ON  THE SPIN COORDINATES DESPITE 
THE FACT THAT THE OPERATOR WHICH DEFINES THE ENERGY OF THE SYSTEM
DOES NOT DEPEND ON SPIN COORDINATES. THIS RESULT VIOLATES TWO 
QUANTUM MECHANICAL POSTULATES.

2- WRONG APPROACH TO THE ANTISYMMETRY PRINCIPLE USING THE
PROBABILISTIC  INTERPRETATION. 

|ΨΨΨΨ (1,2,3 ...i, j, ....N; t) |2 =  | ΨΨΨΨ (1,2,3,..j, i...N; t) |2

ΨΨΨΨ(1,2,3, ...i, j, ....N; t) =  ±±±± ΨΨΨΨ (1,2,3,..j, i...N; t) 

THUS
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4- OVERESTIMATION OF THE TRUE ELECTRONIC CORRELATION ENERGY 

5- INTRODUCTION OF THE TOTALLY UNPHYSICAL EFFECT CALLED “NON-
DYNAMIC CORRELATION ENERGY”

THERE IS NO TERM IN THE HAMILTONIAN WHICH ACCOUNTS FOR SUCH AN 
“ENERGY”(???)

6- INTRODUCTION OF A TOTALLY ARTIFICIAL “CORRELATION” BETWEEN 
ELECTRONS WITH THE SAME SPIN.

THERE IS NOTHING IN THE HAMILTONIAN THAT DISTINGUISHES ELECTRONS
WITH SPIN UP FROM SPIN DOWN FOR THE  SIMPLE REASON  THAT THE 
HAMILTONIAN DOES NOT CONTAIN SPIN COORDINATES.
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SOME  ADVANTAGES OF USING WAVE FUNCTIONS THAT ACCOUNT 
FOR  THE  PERMUTATION  SYMMETRY OF  THE  MANY-ELECTRONS
HAMILTONIAN

CAS-GVB : Much easier interpretation of the results and better convergence

- S. Clifford, M. J. Bearpark, M. A. Rob, Chem. Phys. Lett 1996, 255, 320.
- L. Blancafort, P. Celani, M. J. Bearpark, M. A. Rob, Theor. Chem. Acc. 2003, 110,

92

GVB-CI : Computational cheaper and generally as accurate as the post-HF methods.

- J. Cullen, J. Comput. Chem 1999, 20, 999.

GVB-inspired CC theories: Single-bond and multiple bond dissociation energies 
for closed and open-shell systems.

- T. van Voorhis, M. Head-Gordon, J. Chem. Phys 2002, 117, 9190.
- D. W. Small, K. V. Lawler, M. Head-Gordon, J. Chem. Theor. Comput 2014, 10,

2027.
- D. W. Small, M. Head-Gordon, J. Chem. Phys 2017, 147, 024107.
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TD-GVB: Accuracy of the excitation energies superior to those obtained with the
TD-HF

K. Chatterjee, K. Pernal, Theor. Chem. Acc.  2015, 134, 118.

ERPA-GVB: Energy barriers of excellent accuracy and comparable to the ones 
obtained at the CCSD(T) level, which requires a much higher 
computational effort.

K. Chatterjee, E. Pastorczak, K. Jawulski, K. Pernal, J. Chem. Phys 2016, 144, 
244111

INTERFERENCE ENERGY ANALYSIS:  Based on GPF built from GVB-WF, provides
a unique way of analysing chemical bonds in different types of molecules exhibiting 
distinct bonding patterns.

- D. W. O. de Sousa, M. A. C. Nascimento, Acc. Chem. Res. 2017, 50, 2264 
- F. Fantuzzi, B. Rudek, W. Wolff, M.A.C. Nascimento, JACS 2018, 140, 4288

and references therein.
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•• TheThe (CO)(CO) moleculemolecule

83

GVB - JCTC (2014) 10 , 2322      HFnum Comp. Phys. Reports  (1986) 4, 313   
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HEXATRIENE  - RYDBERG STATES

For GVB Calculations, see:
Chem. Phys. (1980) 53, 265
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THE GENERALIZED MULTISTRUCTURAL (GMS)

WAVE FUNCTION AND APPLICATIONS TO 

SYMMETRY-BREAKING PROBLEMS.

Basic reference: 

A Generalized Multistructural (GMS) Wavefunction.

E. Hollauer, M.A. Chaer Nascimento, J. Chem.Phys. (1993),

99, 1207



9/11/2019

86

DEFINITION:

HF

VB

MCSCF

CI

ANY PLAUSIBLE COMBINATION

LEVEL
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EQUIVALENCE TO OTHER WAVE FUNCTIONS:
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WHEN IS A GMS WAVE FUNCTION NEEDED?

a) MOLECULES WHICH CANNOT BE REPRESENTED BY A 
SINGLE CHEMICAL STRUCTURE.

b) MOLECULES PRESENTING COUPLED LOCALIZED
EXCITATIONS.

±±±±

±±±±

*

*

n →→→→ ππππ*
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c) CORE IONIZED OR EXCITED STATES OF MOLECULES 

d) NEAR DEGENERATED ATOMIC CONFIGURATIONS

Ni s2d8 - s1d9 ~ 0.03 eV
V s2d3 - s1d4 ~ 0.10 eV
Fe s2d6 - s1d7 ~ 0.85 eV

Ex:  O2

ionize 1σσσσg

•••• ••••••••

1/2 1/2

MO description    D∞∞∞∞h

broken symmetry  C∞∞∞∞v

±±±± correct symmetry D∞∞∞∞h
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From which configuration should one start a calculation?

HF →→→→

MCSCF →→→→ VH and NiH      4s23dn and  4s13dn+1

STRONGLY MIXED

ΨΨΨΨFeH = c1 ψψψψ [ Fe (4s13d7) – H ] + c2 ψψψψ [ Fe (4s23d6) – H ] 
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e) ELECTRONIC EXCITED STATES OF MIXED CHARACTER

f) TO TAKE INTO ACCOUNT ELECTRONIC CORRELATION
EFFECTS

( ( ))cv + cR
**

1Bu in linear polyenes
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ADVANTAGES OF THE GMS WAVE FUCNTION

- COMPACT

- EASY TO INTERPRET (IF POSSIBLE RETAINING THE SINGLE
PARTICLE PICTURE) IN TERMS OF CHEMICAL STRUCTURES
AND BONDS

- INCLUDES MOST OF THE IMPORTANT CORRELATION 
EFFECTS WITH LESS COMPUTATIONAL EFFORT.
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SOME EXAMPLES
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1) MOLECULES PRESENTING COUPLED 
LOCALIZED EXCITATIONS

(n→→→→ ππππ*)1,3

A.G.H. Barbosa, M.A. Chaer Nascimento, Theo. Comp. Chem. 10, 117 (2002) 
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2) IONIC STATES OF TRANS-GLYOXAL MOLECULE

ππππ -1 states

n -1 states

ground state: GVB(4/PP)     2 ππππ bonds + 2 O lone pairs

ion states:  GVB(3/PP)   

2 ππππ bonds + O lone pair 

1 ππππ bond   +  2 O lone pairs  

n -1 states

ππππ -1 states
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E. Hollauer, M.A. Chaer Nascimento,  Chem. Phys. (1993) 174, 79
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3) CORE IONIZED AND CORE EXCITED STATES OF 
MOLECULES 

I : delocalized hole state
II and II : localized hole state

Coefficient  c2 can be used to define degree of localization

Same  type of  GMS wavefunction  was  used  to study core

excited states of C2H2 and CO2 and core ionized states of O2

molecules.

M.P. Miranda, C.E. Bielschosky, M.A. Chaer Nascimento, J. Phys. B28, L15 (1995)
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4) ELECTRONIC EXCITED STATES OF MIXED CHARACTER
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W. B. Floriano (M.Sc. Thesis, Instituto de Química da UFRJ, 199 ).
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5) ELECTRONIC CORRELATION ENERGY

W.B. Floriano, S.R. Blaskowsky, M.A. Chaer Nascimento, J.Mol.Struc. 335, 51, 1995
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6) RELATIVE ACIDITY OF ALCOHOLS AND CARBOXYLIC
ACIDS

DEFINITION:

R-H  →→→→ R- + H+  ∆∆∆∆Go
T  measures acidity

Usually ∆∆∆∆Ho
T , because entropic fator (mainly H+) cancels

out in a comparison of the relative acidities. 

CALCULATE:
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WHY ARE CARBOXYLIC ACIDS ARE MORE ACIDIC THAN
ALCOHOLS ?

Generally accepted explanation:

Resonance stabilization
of the carboxylate.

Siggel and Thomas: Indutive effects (acid) are responible for
differences in acidity.

JACS 108, 4360 (1986)
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QUESTIONS:

a) By how much is the carboxylate stabilized by resonance?

b) How to quantify it?

THE GMS APPROCH:

a) Solve for the localized structure at the GVB level:

b) Construct:

c) Take as the resonance

contribution.
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CONCLUSION:

- Resonance is the effect responsible for the larger acidity

of carboxylic acids

- In the absence of resonance, methanol and ethanol would

be more acidic than formic and acetic acid, respectively.

J.D. Motta Neto, M.A. Chaer Nascimento, J.Phys.Chem. 100, 15105 (1996)
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7) ELECTRON IMPACT INNER-SHELLS EXCITATION

Ex:  N2 1σσσσg →→→→ 1ππππg     and 1σσσσu →→→→ 1ππππg transition   

C.E. Bielschoswky, E. Hollauer
M.A. Chaer Nascimento
Phys. Rev A, 45, 7942 (1992) 
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THE GVB SELF-CONSISTENT PROCEDURE
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a) Hartree-Fock: 

 

1s(1) αααα(1)    1s(1) ββββ(1) 
He (HF) = 

1s(2) αααα(2)    1s(2) ββββ(2)  
 
 

=  | 1s(1) 1s(2) [αααα(1) ββββ(2)  -  ββββ(1) αααα(2)]  | 
 

=   | 1s 1s  |                    (forma diagonal)  
 

Exemplo: átomo de He. 

b) GVB ou SCVB: 

 

He (GVB) = | ϕϕϕϕa ϕϕϕϕb | - | ϕϕϕϕa ϕϕϕϕb | 
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Pergunta: Como obter os orbitais ϕϕϕϕa e ϕϕϕϕb ? 
 

 

Resposta: Os orbitais ϕϕϕϕa e ϕϕϕϕb “ótimos” são aqueles 
que minimizam o funcional: 

 
               EGVB = <ψψψψGVB| H | ψψψψGVB>  /  <ψψψψGVB| ψψψψGVB>   
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Equações GVB 

ψψψψGVB  = ϕϕϕϕa ϕϕϕϕb  + ϕϕϕϕb ϕϕϕϕa   ≡≡≡≡   ab + ba 
 

EGVB = <ψψψψGVB| H | ψψψψGVB> / <ψψψψGVB| ψψψψGVB>  = N/D    (1), 
 
onde , 
 
N= [<a|h|a> + <b|h|b> + Jab] + [2 <a|h|a> Sab + Kab]  (2) 

 

D = 1 + S2
ab      e     Sab = <a|b> . 
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Expandindo ϕϕϕϕa e ϕϕϕϕb na base {χχχχµµµµ}, obtemos: 
 
            ϕϕϕϕa  = ΣΣΣΣµµµµ  cµµµµa χχχχµµµµ        e          ϕϕϕϕb  = ΣΣΣΣµµµµ  cµµµµb χχχχµµµµ      (3). 
 

Aplicando as condições variacionais: 

obtemos, para ϕϕϕϕa : 
 
                             < χχχχµµµµ | (Ha – εa | ϕϕϕϕa >  = 0               (5), 
 
onde: 
  εa = E - < b|h|b >   

       e       Ha = ( h + Jb + Kb ) + Pb h + h Pb – E Pb     (6) 

                Pb = |b> <b| 

0=
∂

∂

ac

E

µ

0=
∂

∂

bc

E

µ

e (4) ,
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Introduzindo (3) em (5), obtemos a equação para ϕϕϕϕa : 
 
                    ΣΣΣΣνννν < χχχχµµµµ | (Ha – εa | χχχχνννν >  cννννa  =  0               (7) 

 

ou                           Ha Ca  =  εa S Ca                            (8). 
~ ~ ~ ~ 

O elemento típico Ha
µµµµνννν é dado por: 

 
Ha

µµµµνννν =  < χχχχµµµµ | Ha | χχχχνννν >   =   <χχχχµµµµ | (h + Jb + Kb) χχχχνννν> + 

        +  <χχχχµµµµ | b > < b | h | χχχχνννν>  +  <χχχχµµµµ | h | b > <b | χχχχνννν>  - 

        -  E  <χχχχµµµµ | b > <b | χχχχνννν>                                          (9). 

 
Para fins de comparação: 
 
                       HHF

µµµµνννν  =  <χχχχµµµµ | (h + Jb) χχχχνννν>                   (10). 
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Para o orbital ϕϕϕϕb , obteríamos uma equação similar: 
 
                             Hb Cb  =  εb S Cb                             (11). 

~ ~ ~ ~ 

CONCLUSÃO: 

Cada  orbital  GVB  é  obtido  a partir da resolução de 
uma equação própria. Por  isso eles  são univocamente 
determinados. 
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HOW TO CONSTRUCT WAVE FUCNTIONS WHICH
RESPECT PERMUTATION SYMMETRY
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9) H O W  TO  C O N STR U C T W F W H IC H  
SA TISFY  PA U LI PR IN C IPLE A N D  

PR ESEN T TH E C O R R EC T 
PER M U TA TIO N A L SY M M ETR Y  ? 

 
 
The sym m etric SN  group :  a  very brief 
review: 
 

a) G iven N  identical “objects” , the 
sym m etric group SN  is the group 
form ed by all possible perm utations 
am ong them . 

b) The num ber of irreducible 
representations of SN  is equal to the 
num ber of partitions of N  : 

 
                     λλλλ 1 + λλλλ 2 +  λλλλ 3 + … .. +  λλλλ t   =   N    , w ith 
 
                     λλλλ 1 ≥≥≥≥  λλλλ 2 ≥≥≥≥   λλλλ 3 ≥≥≥≥  … .. ≥≥≥≥  λλλλ t    

 
                     [λλλλ 1 , λλλλ 2 , λλλλ 3 , … .. , λλλλ t ]   partition 
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Examples :

S2 n = 2 [2] , [1,1] ≡≡≡≡ [12]                                        2 IR

S3 n = 3 [3] , [2,1] , [1,1,1] ≡≡≡≡ [13]                          3 IR

S4 n = 4       [4] , [3,1] , [2,2] , [2,1,1] , [1,1,1,1] 5 IR
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[3] λλλλ1111 =1=1=1=1

[2,1] λλλλ1 1 1 1 = 2= 2= 2= 2

λλλλ2222 = 1= 1= 1= 1

[13] λλλλ1 1 1 1 = 1= 1= 1= 1

λλλλ2222 = 1= 1= 1= 1

λλλλ3333 = 1= 1= 1= 1

a) Each partition is represented by a 
diagram, the Young diagram, formed 
by disposing identical “cells”, one after 
the other, in rows, the number of cells 
in each row given by the value of λλλλ. 

c)
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a) The dimension of a given IR is equal to 
the number of Young tableaux which 
can be constructed by filling the Young 
diagrams in such a way that the 
numbers increase from left to right, 
along the rows, and from top to bottom 
along the columns. (Ex.  S3)  

Notice that, independent of the value of N, any
symmetric group, SN , will have the partitions [N]
and [1N]

d)

The tableaux constructed according to this rule are called
the Standard Young tableaux.
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[3] 1 2 3

[2,1] 1 2

3

1 3

2

[13] 1

2

3

Diagram Tableaux

1D

2D

1D
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Notice that for any group SN there is only one

partition  of  the  type [N] and  one of the type 

[1N], and that  they  give  rise to  the  only two

possible uni-dimensional IR of the group.

Once established  the irreducible representations

of  the SN and  their  respective  dimensions, how

to construct wave functions, which transform like 

the IRs of the group?
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The Young Operator

Relative to  a  given  standard  Young  tableau, let  us define the 

operators :

P : exchanges two numbers in a row of the tableau.
(horizontal permutation)

Q : exchanges two numbers in a column of the tableau.
(vertical permutation)

With these two operators one can define :

S = ΣP P The symmetrizer operator relative the the rows of

the Young tableau (summation over all horizontal

permutations)

A = ΣQ (-1)q Q  The anti-symmetrizer operator relative to the
columns of the Young tableau (summation over

all vertical permutations), where q is the parity
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The product Y = A.S defines the Young operator for a given

tableau. In principle, in order  to generate a basis for  an  IR 

associated  to a given  partition, one  has  to  construct  the 

Young operators for each one of the tableaux associated to 

that partition.

Once the Young operators, for each IR of SN , have been built,

spatial and spin wave functions transforming like a particular 

IR  can  be  generated  simply  by applying the corresponding 

Young operators to functions of the spatial and spin variables

respectively. Ex:         Y[2,1] f (r1,r2,…rN)

Y[2,1]   g (s1,s2,…sN)
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We  have already seen  that, for any group SN , there is one,

and ONLY ONE, partition  of the type  [N] and  [1N], and that

both these partitions give rise to UNI-dimensional IRs. How

does the Young operator look like for these two IRs ?

Y[N] ≡ S    and   Y[1,1...] ≡ A

f (r1,r2,…rN) totally symmetric spatial

Y[N] or

spin wave functions

f (r1,r2,…rN) totally anti-symmetric spatial
Y[1,1,..] or

g (s1,s2,…sN) spin wave functions

g (s1,s2,…sN)
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8) INDEPENDENT-PARTICLE  

MODELS 

 
- Extremely useful for interpreting and 
rationalizing the results of quantum 
chemical calculations. 
 
- Most of our understanding about the 
structure and   properties of atoms and 
molecules derives from calculations based 
on IPM models. 

 
Mandatory Features : 
 

-    The state of each individual particle of 
the system (one-electron states) must be 
uniquely defined. This feature allows: 
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a) to associate important properties, such 
as ionization potentials, electron 
affinities etc., to specific 1-e states of 
the many-electron system; 

b) to interpret electronic spectra as 
resulting from changes in individual 
particle states; 

c) to interpret the formation of chemical 
bonds in terms of individual 1-e states 
from the isolated atoms. 

 

- The model should provide approximate
solutions which retain all the symmetries
of the exact solution of the system.   
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Which symmetries ?

- Permutation symmetry of the spatial and spin parts of the

total wave function (always present)

- Point group symmetry (if  exhibited  by the hamiltonian of

the system)

- Pauli symmetry : total wave function MUST be antisymmetric

ΨΨΨΨ(r,s; ξξξξ) = ΣΣΣΣi,k cik ψψψψi (r;ξξξξ) χχχχk (s)
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10) IPM WAVE FUNCTIONS WITH THE CORRECT

SYMMETRIES

According to  the antisymmetry principle, the total wave 

function for a   many-electron  system  MUST  be  totally 

antisymmetric with respect to the permutation of any two 

electrons. Within the IP approximation,  functions 

f(r1,r2,…rN) and g(s1,s2…sN) are products of  spatial {ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3 

ϕϕϕϕ4 …ϕϕϕϕN } and spin {αβαβαβαβαβαβαβαβαβαβαβαβ..} parts. 

Two possibilities:

ΨΨΨΨ(r,s; ξξξξ) = Y[N] {f(r1,r2,…rN)} x   Y[1,1..] {g(s1,s2…sN)}
or

ΨΨΨΨ(r,s; ξξξξ) = Y[1,1..] {f(r1,r2,…rN)} x   Y[N] {g(s1,s2…sN)} 



9/11/2019

133

In terms of the diagrams :

ϕϕϕϕ1 ϕϕϕϕ2 ϕϕϕϕ3 … ϕϕϕϕn

αααα

ββββ

αααα

…

ββββ

ΨΨΨΨ(r,s; ξξξξ) = x

ϕϕϕϕ1

ϕϕϕϕ2

ϕϕϕϕ3

…

ϕϕϕϕn

αααα ββββ αααα … ββββ
ΨΨΨΨ(r,s; ξξξξ) = x

OR
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Beautiful, isn’ it?   YES, but we have a serious problem.

Because  only two spin states are allowed for ANY electron

in  earth, it is IMPOSSIBLE to construct one spin function,

totally anti-symmetric, for  more  than TWO electrons!! This

is  exactly equivalent  to say that  diagrams  with more than

2 rows are not allowed for generating spin wave functions.

αααα

ββββ

….

…

It is very easy to show that  Y
[1N]

= 0 , for N > 2 .
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In fact we have another serious problem regarding the spin

wave function.  Again,  because  only  two  spin  states  are

allowed,  one  can  only  construct totally  symmetric spin

functions for  a  system where ALL the electrons are in the

SAME SPIN STATE. That  is, only  for the highest spin state

of the system.

That  is,  the  only  two  possibilities  for generating  totally

symmetric spin functions would be :

αααα αααα αααα … αααα

ββββ ββββ ββββ … ββββ

Y[N]

Y[N]
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IN SUMMARY: starting  from  the totally symmetric and the

totally antisymmetric representations of SN, there are only

two  possibilities for  constructing   total  wave  functions 

satisfying the Pauli principle:

For N=2 :  ΨΨΨΨ((((r,,,,s; ; ; ; ξξξξ)  )  )  )  =  =  =  =  

For any vale of N :

ΨΨΨΨ((((r,,,,s; ; ; ; ξξξξ)  )  )  )  ====

ϕϕϕϕ1 ϕϕϕϕ2
αααα

ββββ

x

ϕϕϕϕ1

ϕϕϕϕ2

…

ϕϕϕϕn

αααα αααα … ααααx

singlet

Highest
Spin state

Y[2] Y[1,1]

Y
[1N]

Y[N]
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Therefore, except for these two cases, total wave functions

satisfying  Pauli  principle  must  be  constructed  as  linear

combination of  products, of  spatial and  spin parts,  which

transform like some other IR of the SN group :

ΨΨΨΨ = ΣΣΣΣi,k cik ψψψψi(µµµµ)χχχχk(δδδδ)

ψψψψi(µµµµ)  : spatial part transforms like the µµµµ IR of SN

χχχχk(δδδδ)  : spin part transforms like the δδδδ IR of SN

How  can we  be sure that such a combination will be

totally antisymmetric with respect to the permutation

of any two electrons of the system ? 
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ΨΨΨΨ = ΣΣΣΣi ψψψψi(µµµµ) χχχχi(µµµµ)
∼∼∼∼

Wigner :  the representations (µµµµ) and (δδδδ) 
must be dual, i.e., of the same dimension,

and they must be the  transpose of each 

other. 
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General Procedure:

a) Given  the multiplicity of the system (2S+1, where S is the

total  spin), construct  all the  tableaux corresponding to the

given  spin value,  and  obtain  their  “dual representations”, 

the transposed tableaux corresponding to the spatial part. 

b) Construct  the  Young  operators, Y = A.S , corresponding 

to all the tableaux, and operate with them on the products of

spatial {ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3 ϕϕϕϕ4 …ϕϕϕϕN } and spin {αβαβαβαβαβαβαβαβαβαβαβαβ..} parts, in order to

generate  spatial  and  spin wave functions, ψψψψi  and χχχχi , which 

transform like the "µµµµ" repreentation of SN

c) Set up the total wave function as : 

ΨΨΨΨ = ΣΣΣΣi ψψψψi(µµµµ) χχχχi(µµµµ)~



9/11/2019

140

Ex:  2-e Singlet 
 
Spin part : 

Y = A (ααααββββ) = αααα(1)ββββ(2) - αααα(2)ββββ(1)
1

2

Spatial part : 

Y = S (ϕϕϕϕ1 ϕϕϕϕ2) = ϕϕϕϕ1(1) ϕϕϕϕ2(2) + ϕϕϕϕ1(2) ϕϕϕϕ2(1)

ΨΨΨΨ ={ϕϕϕϕ1(1)ϕϕϕϕ2(2) + ϕϕϕϕ1(2)ϕϕϕϕ2(1)} {αααα(1)ββββ(2) - αααα(2)ββββ(1) } 
A                        S                                       A 

1 2
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1 2

3

1 3

2

1 3

2

1 2

3

Ex: 3-e Doublet

SPIN:

SPATIAL:

X +                 X

YT1 YT2

YT2
YT1

YT1 = [ E – (13)] [ E + (12)]  =  E + (12) – (13) – (13) (12)

YT2 = [ E – (12)] [ E + (13)]  =  E - (12) + (13) – (12) (13)
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Apart from a normalization factor, the total wave function

is :

ΨΨΨΨ(r,s; ξξξξ) = { [ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3 + ϕϕϕϕ2ϕϕϕϕ1ϕϕϕϕ3 - ϕϕϕϕ3ϕϕϕϕ2ϕϕϕϕ1 - ϕϕϕϕ3ϕϕϕϕ1ϕϕϕϕ2] [ αβααβααβααβα- βααβααβααβαα ] +

+[ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3 - ϕϕϕϕ2ϕϕϕϕ1ϕϕϕϕ3 + ϕϕϕϕ3ϕϕϕϕ2ϕϕϕϕ1 - ϕϕϕϕ2ϕϕϕϕ3ϕϕϕϕ1] [ βααβααβααβαα - ααβααβααβααβ ] }

where:   ϕϕϕϕiϕϕϕϕjϕϕϕϕk ≡ ϕϕϕϕi(1) ϕϕϕϕj(2) ϕϕϕϕk(3)

ATTENTION! This is not the expansion of a 3x3 determinant

Ex: 3-e Quartet
ϕϕϕϕ1

ϕϕϕϕ2

ϕϕϕϕ3

αααα αααα ααααx
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ΨΨΨΨ(r,s; ξξξξ)  =  [ϕϕϕϕ1ϕϕϕϕ2ϕϕϕϕ3 + ϕϕϕϕ3ϕϕϕϕ1ϕϕϕϕ2 + ϕϕϕϕ2ϕϕϕϕ3ϕϕϕϕ1 - ϕϕϕϕ3ϕϕϕϕ2ϕϕϕϕ1 - ϕϕϕϕ1ϕϕϕϕ3ϕϕϕϕ2 - ϕϕϕϕ2ϕϕϕϕ1ϕϕϕϕ3] x  [αααααααααααα]

This is the expansion of a 3x 3 determinant !                   

As  the dimension of  the  representation “µµµµ” increases, this
procedure  is  not  practical. However, the appropriate linear
combination of  products of the type ψψψψi(µµµµ) χχχχi(µµµµ) is not hard to
find.  Since for any SN there is ONE and only one totally anti-
symmetric  function, we  can  start  with  any function in the
space ψψψψi(µµµµ) χχχχi(µµµµ), and apply to it the projector operator of the
totally anti-symmetric representation of SN  :

ε ε ε ε ((((1   ) = (1/N!) ΣΣΣΣP δδδδP P

to obtain: Ψ =Ψ =Ψ =Ψ = (1/N!) ΣΣΣΣP δδδδP P [ ψψψψi
(µ)µ)µ)µ) ((((r1,r2…rN) χχχχi

(µµµµ) (s1,s2…sN) ]

where P operates on both the spatial and spin states.

∼∼∼∼

∼∼∼∼

N

∼∼∼∼


