

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Espectrometria de Emissão em Chama Baseada

em Imagens Digitais

Wellington da Silva Lyra

João Pessoa – PB - Brasil 2008

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

DISSERTAÇÃO DE MESTRADO

Espectrometria de Emissão em Chama Baseada

em Imagens Digitais

Wellington da Silva Lyra

Dissertação apresentada como requisito para obtenção do título de Mestre em Química pela Universidade Federal da Paraíba.

Orientador: Prof. Dr. Edvan Cirino da Silva Co-orientador: Prof. Dr. Luciano Farias de Almeida

João Pessoa – PB - Brasil

L992e Lyra, Wellington da Silva Espectrometria de emissão em chama baseada em imagens digitais / Wellington da Silva Lyra. - - João Pessoa: UFPB, 2008. 89 f. : il. Orientador: Edvan Cirino da Silva. Dissertação (Mestrado) – UFPB, Programa de Pós-graduação em Química, CCEN.
1. Espectrometria. 2. Imagens digitais. 3. Formulações farmacêuticas.
UFPB/BC
CDU: 543.51(043)

Espectrometria de Emissão em Chama Baseada em Imagens Digitais.

Aprovada pela banca examinadora:

Prof. Dr. Edvan Cirino da silva Orientador/Presidente s de Almeida Prof. Dr. Juciano 2º. Orientador Prof. Dr. Edvaldo da Nóbrega Gaião Examinador

Prof. Dr. Sherlan Guimarães Lemos Examinador

À professora Vânia Maria de Medeiros, com quem dei os meus primeiros passos na Química Analítica Instrumental. Com todo carinho DEDICO.

Agradecimentos

- A Deus pelo dom da vida.
- 🖶 Aos meus pais Rafael e Edna.
- Aos professores Edvan Cirino da Silva, Luciano Farias de Almeida, Valdomiro Lacerda Martins e Mário César Ugulino de Araújo pela oportunidade de trabalho, seus ensinamentos, constantes discussões, contribuições acadêmicas e científicas e sugestões.
- Aos professores Edvaldo da Nóbrega Gaião, Sherlan Guimarães Lemos e Teresa Cristina Bezerra Saldanha por todas suas sugestões na pré-defesa e na defesa.
- A Carlos Xavier pelas horas passadas de frente ao fotômetro de chama refazendo seu circuito eletrônico.
- 🖶 A Vagner, Paulo Henrique e Amália (...) pela ajuda na parte experimental.
- 4 Aos professores, colegas, funcionários do DQ e integrantes do LAQA
- À UFPB que tão gentilmente cedeu a estrutura do LAQA para o desenvolvimento deste trabalho.
- Àqueles que possuíram contribuições diversas...

O Espectro da Rosa

Juntem-se vermelho Rosa, azul e verde E quebrem o espelho Roxo para ver-te Amada anadiômena Saindo do banho Qual rosa morena Mais chá que laranja,

E salte o amarelo Cinzento de ciúme E envolta em seu chambre

Te leve castanha Ao branco negrume Do meu leito em chamas.

Vinicius de Moraes - Livro de Sonetos

SUMÁRIO

LISTA DE FIGURAS	iii
LISTA DE TABELAS	iv
LISTA DE ABREVIATURAS	v
RESUMO	vi
ABSTRACT	vii
CAPÍTULO 1: INTRODUÇÃO	1
1.1 Caracterização geral da problemática	2
1 2 Objetivos	2
1 2 1 Objetivo geral	2
1.2.2 Objetives específices	2
1.2 Echaptromotria de amissão am chama	ר כ
1.2 1 A shame	د ۸
	4
	0
	6
1.3.2.2 Transdutores	7
1.4. Uso da <i>Webcam</i> para aquisição de imagens digitais	8
1.5 Uso de imagens digitais no contexto da química analítica	12
CAPITULO 2: CONCEITOS E FUNDAMENTOS DA COR	15
2.1 O sistema visual humano	16
2.1.1 O olho humano	16
2.1.2 Metamerismo	18
2.1.3 Não-linearidade: intensidade e brilho	19
2.2 Iluminantes	20
2.2.1 Iluminantes padrão	20
2.2.2 Observador padrão	20
2.3 Componentes e características da cor	21
2.3.1 Componente acromática	21
2.3.2 Componente cromática	22
2.3.3 Tricromaticidade	23
2.3.4 Sistema de cores aditivas primárias ou RGB	24
2.3.5 Sistema de cores subtrativas primárias ou CMYK	26
CAPÍTULO 3: EXPERIMENTAL	28
3.1 Soluções padrões, amostras e reagentes	29
3.2 Equipamentos	30
3.2.1 Sistema de aguisição de imagens	31
3.3 Programas computacionais utilizados	32
3.3.1 Programa computacional de captura de imagens digitais	32
3.3.2 Programa computacional para tratamento de imagens	
digitais	33
3.4 Otimização do sistema de aquisição de imagens	36
3 5 Procedimento e método para validação dos modelos de	50
calibração	38
canoragae minimum mi	50

CAPÍTULO 4: RESULTADOS E DISCUSSÃO 4.1 Tratamento de imagens e curvas analíticas DIB 4.2 Imagens digitais e o fenômeno de emissão 4.3 Modelo matemático para a calibração analítica 4.4 Relação entre $\ \mathbf{v}\ $ e valores experimentais de \overline{R}_{s-b} , \overline{G}_{s-b} e \overline{B}_{s-b}	43 44 45 48 50
 4.5 Curvas analíticas e validação dos modelos 4.6 Figuras de mérito e desempenho do método proposto 4.7 Determinações analíticas 	51 56 60
CAPÍTULO 5: CONCLUSÃO	62 64
CAPÍTULO 6: REFERÊNCIAS	65
CAPÍTULO 7: ANEXOS 7.1 Código fonte do programa Captura de Imagens da <i>Webcam</i> 7.2 Código fonte do programa Cor Emissão	70 71 76

LISTA DE FIGURAS

Figura 1.1. Diagrama esquemático dos processos inerentes a FES Figura 1.2. Estrutura de uma chama típica Figura 1.3. Componentes básicos de um fotômetro de emissão em chama	4 5 6
Eigure 1 4 Soção transvorsal do um filtro do interforência	7
Figura 1.4. Seção transversal de uni nitro de interferencia	/
Figura 1.5. Representação esquemática de um rivel de um CCD	10
Figura 1.6. Desenno esquematico de um pixel de um CCD	10
Figura 1.7. Estrutura de um transdutor CMOS	
Figura 2.1. Anatomia do oino numano	17
	1/
Figura 2.3. Metamerismo da visão de acordo com a fonte de luz	19
Figura 2.4. Percepção do brilho para um medidor de luz (a) e	10
para o olho humano (b)	19
Figura 2.5. Experimentação do tri-estimulo	21
Figura 2.6. Duas amostras de cores com alta e baixa saturação e	
seus respectivos espectros	23
Figura 2.7. Curvas de resposta dos cones	24
Figura 2.8. Cores primárias aditivas: vermelho, verde e azul	25
Figura 2.9. Representação geométrica do sistema RGB	25
Figura 2.10. Cores primárias subtrativas: ciano, magenta e	
amarelo	26
Figura 3.1. Foto do módulo de aquisição de imagens e seu	
diagrama esquemático ao lado	31
Figura 3.2. Interface do programa de Captura de Imagens da	
Webcam	32
Figura 3.3. Interface do programa Cor Emissão	33
Figura 3.4. Rotina do cálculo da norma do vetor pelo programa	
Cor Emissão	36
Figura 4.1. imagem digital com n x m pixels obtida na determinação de sódio. x_1 , x_2 , y_1 e y_2 são coordenadas da região	
delimitada	42
Figura 4.2. Imagens digitais da emissão de: (a) lítio, (b) sódio e	
(c) cálcio	46
Figura 4.3. Espectros de emissão em uma chama butano-ar de:	
(a) lítio, (b) sódio e (c) CaOH	47
Figura 4.4. Espaço vetorial RGB que ilustra a posição do vetor v	
associado a uma imagem digital	48
Figura 4.5. Norma dos vetores $v_1 - v_5$ de cada solução de	
calibração e os valores \overline{R}_{s-b} , \overline{G}_{s-b} e \overline{B}_{s-b} para cada imagem digital	- 1
do lítio (a), sódio (b) e cálcio (c)	51
Figura 4.6 . Curvas analíticas DIB-FES (•) e Trad-FES (•) para os	
três analitos determinados	53
Figura 4.7. Gráficos de resíduos para as curvas analíticas DIB-FES	
(•) e Trad-FES (•) para os três analitos	54

LISTA DE TABELAS

Tabela 3.1. Condições ideais obtidas para a captura de imagensTabela 3.2. Equações para ANOVA de dados experimentaisadaptados a modelos lineares determinados pelo método dos	37
mínimos quadrados	38
Tabela 4.1 . Valores \overline{R} , \overline{G} e \overline{B} obtidos das imagens digitais	
capturadas	45
Tabela 4.2. Parâmetros de regressão linear e limites dos	
intervalos de confiança para os coeficientes dos modelos obtidos	
pelos métodos DIB-FES e FES	52
Tabela 4.3. Somas quadráticas e médias quadráticas calculadas	
para ANOVA	55
Tabela 4.4. ANOVA para o modelo linear (Y = α + β X) das	56
curvas analíticas	
Tabela 4.5. LOD e LOQ para os métodos DIB-FES e FES Tabela 4.6. Resultados da determinação de Li ⁺ . Na ⁺ e Ca ²⁺ por	59
ambos os métodos	61

LISTA DE ABREVIATURAS

FES	Espectrometria de emissão em chama
REM	Radiação eletromagnética
ANOVA	Análise de variância
GLP	Gás liquefeito de petróleo
CCD	Dispositivo de carga acoplada
CMOS	Semicondutor metal-óxido complementar
RBP	Proteína ligante do retinol
ICP	Plasma acoplado indutivamente
ICCD	Dispositivo de carga acoplada intensificada
rh TNF- α	Fator- α recombinante de necrose de tumores humanos
CAS	Cromazurol S
PLS	Mínimos quadrados parciais
ANN	Redes neurais artificiais
CSPT	Técnica de classificação foto-assistida por computador
RGB	Vermelho-verde-azul
CMYK	Ciano-magenta-amarelo-preto
Pixel	Elemento de imagem
bmp	Mapa de bits
SQ	Soma quadrática
MQ	Média quadrática
DIB-FES	Espectrometria de emissão em chama baseada em imagens digitais
PAHs	Hidrocarbonetos policíclicos aromáticos
LOD	Limite de detecção
LOQ	Limite de quantificação
RSD	Desvio padrão relativo
GSAM	Método de adição padrão generalizado
IUPAC	União internacional de química pura e aplicada

RESUMO

Título: "Espectrometria de Emissão em Chama Baseada em Imagens Digitais"

Neste trabalho, propõe-se pela primeira vez o emprego de uma Webcam como uma nova técnica de detecção em espectrometria de emissão em chama. Este método é agui denominado Espectrometria de Emissão em Chama Baseada em Imagens digitais (DIB-FES). As imagens digitais capturadas pela Webcam estão associadas à radiação emitida pelo analito numa chama de ar-butano. Com base no sistema de cores Vermelho-Verde-Azul (RGB), desenvolveu-se um modelo matemático que utiliza o conceito de norma do vetor no espaço tri-dimensional RGB para construir as curvas analíticas e estimar as figuras de mérito. Nesta abordagem, cada imagem fornece os valores médios das componentes R, G e B que definem a norma do vetor no espaco RGB. Essa norma foi adotada como resposta analítica, a qual mostrou uma relação linear com a concentração do analito nas soluções de calibração. As figuras de mérito para o método DIB-FES foram estimadas de acordo com os conceitos e as recomendações da IUPAC. Todavia, o desvio padrão do branco foi calculado a partir dos valores médios de R, G e B de suas imagens digitais, usando um procedimento proposto com base em equações de propagação de erros. A fim de ilustrar a viabilidade do método proposto, foram realizadas aplicações envolvendo a determinação de Li⁺, Na⁺ e Ca²⁺ em amostras de, respectivamente, comprimidos antidepressivos, soro fisiológico e águas. Os resultados foram comparados com os obtidos pela fotometria de emissão em chama tradicional (FES) usada como método de referência. Constatou-se que não há diferença estatisticamente significativa entre os resultados, ao aplicar o teste t emparelhado ao nível de 95% de confiança. O método proposto proporcionou figuras de mérito (sensibilidade de calibração, limites de detecção e quantificação e desvio padrão conjunto) melhores que o método FES. Essas características vantajosas do método DIB-FES são atribuídas à natureza trivariada das medidas associadas às imagens digitais.

Palavras-chaves: Imagens digitais, Sistema de cores Vermelho-Verde-Azul, Espectrometria de emissão em chama, Determinação de metais alcalinos, Formulações farmacêuticas, Análise de águas.

ABSTRACT

Title: "Digital image-based flame emission spectrometry"

In this work, is proposed for the first time the use of a Webcam as a novel detection technique in flame emission spectrometry. This method is here named Digital Image-Based Flame Emission Spectrometry (DIB-FES). Digital images obtained from the webcam are associated to the radiation emitted by the analyte into an air-butane flame. Based on Red-Green-Blue (RGB) colour system, it was developed a mathematical model which use the concept of vector norm in the RGB tri-dimensional space to build analytical curves and estimate the merit figures. In this approach, each image yields the average values R, G and B that define the vector norm in the RGB space. This norm was adopted as analytical response, which showed a linear relationship with the analyte concentration in calibration solutions. Figures of merit for the DIB-FES method were estimated according to IUPAC concepts and recommendations. However, the standard deviation of the blank was calculated from average values of R, G and B resulting from their digital images. For this purpose, a novel procedure was proposed on the basis of error propagation equations. In order to illustrate the feasibility of the proposed method, it was carried out three applications involving the determination of Li⁺, Na⁺ and Ca²⁺ in samples of anti-depressive drugs, physiological serum and waters, respectively. The results were compared to ones obtained by traditional flame emission spectrometry (FES) employed as a reference method. It was verified that no statistic difference between the results, by applying paired *t*-test at the 95% confidence level. The proposed method yielded better figures of merit (calibration sensitivity, limits of detection and quantification and overall standard deviation) than the FES method. These advantageous characteristics of the DIB-FES method are ascribed to trivariate nature of the measurements associated to digital images.

Keywords: Digital image; Red-green-blue colour system; Flame atomic emission spectrometry, Alkaline metal determination, Pharmaceutical formulations, Water analysis.

O fotógrafo – Cybele Varela

CAPÍTULO 1

INTRODUÇÃO

"Ousar é perder o equilíbrio momentaneamente. Não ousar é perder-se." Sören Kierkegaard

1. INTRODUÇÃO

1.1 Caracterização geral da problemática

A FES é a técnica comumente utilizada na determinação de íons Li⁺, Na⁺, K⁺ e Ca²⁺, especialmente em fluidos biológicos. Entretanto, estes não são os únicos elementos que são capazes de emitir REM na chama como foi demonstrado por Bunsen e Kirchhoff (JARREL, 2000). Não obstante, os instrumentos comerciais são projetados exclusivamente para a determinação desses analitos, tornando inviável a quantificação de outros.

Os fotômetros de chama disponíveis no comércio utilizam geralmente, para cada metal, um filtro de interferência como seletor de REM cujos comprimentos de onda abrangem uma faixa considerável. Caso o analista deseje realizar determinações de outros elementos é necessário o uso de dispositivos mais sofisticados para o isolamento da REM, o que aumentará consideravelmente os custos de manutenção.

Com o intuito de superar esses inconvenientes, propõe-se a utilização de uma *Webcam* como uma nova técnica de detecção para espectrometria de emissão em chama. Esse dispositivo oferece, entre outras vantagens, uma redução drástica dos custos de manutenção da instrumentação para FES.

Até o presente momento, nenhum trabalho foi encontrado na literatura envolvendo o uso de uma *Webcam* para a aquisição de imagens digitais para implementação de análises quantitativas por FES.

1.2 Objetivos

1.2.1 Objetivo geral

Demonstrar a viabilidade do uso imagens digitais capturadas por uma Webcam como uma nova técnica de detecção em FES.

1.2.2 Objetivos específicos

- Associar as imagens digitais ao fenômeno de emissão em chama;
- Propor um novo modelo matemático, baseado no sistema de cores RGB e no conceito de norma de vetores, para definir a resposta analítica usada na construção das curvas analíticas;
- Desenvolver um programa computacional para aquisição de imagens digitais;
- Desenvolver um programa computacional para obtenção da resposta analítica para relacionar as imagens digitais com o fenômeno de emissão em chama;
- Construir curvas analíticas relacionando a resposta analítica com a concentração do analito;
- Validar as curvas analíticas por meio da ANOVA;
- Aplicar a nova técnica de detecção à determinação de Li⁺, Na⁺ e Ca²⁺ em matrizes não susceptíveis a problemas de interferência matricial e/ou espectral;
- Avaliar o desempenho da metodologia proposta comparando-a com a FES por intermédio de testes estatísticos aplicado aos resultados das determinações analíticas.

1.3 Espectrometria de emissão em chama

Entre os métodos analíticos destinados à caracterização de amostras, os mais simples são os de análise elementar. Eles são úteis em muitas áreas do conhecimento humano e são comumente aplicados na análise de amostras de importância em toxicologia, geologia, ciência forense, prospecção, saúde, nanotecnologia, ciência dos materiais, controle de processos industriais, processamento de semicondutores, manufatura automobilística e outros (HIEFTJE, 2000).

Entre os métodos de análise elementar destaca-se a FES, também conhecida como fotometria de chama (SKOOG, HOLLER e NIEMAN, 2002).

Essa é a técnica mais antiga utilizada para realizar análises químicas sem o uso de procedimentos químicos tradicionais (JARREL, 2000).

FES, Nas análises químicas por а amostra é atomizada quantitativamente e reprodutivelmente. Átomos gasosos do analito são produzidos na atomização e excitados para estados quânticos resultantes das transições eletrônicas envolvendo seu(s) elétron(s) de valência. Como resultado, produz-se um espectro constituído de linhas (ou raias) estreitas e características do átomo do elemento (HIEFTJE, 2000). A intensidade da REM emitida pelos átomos (I) é diretamente proporcional à concentração do analito (C) para uma determinada faixa de concentração, ou seja:

$$I \propto C$$
 (1)

Para realizar a medida da intensidade da radiação emitida por um determinado analito, a amostra em solução deverá ser submetida às transformações físicas representadas diagramaticamente na Figura 1.1.

$$\underbrace{M^{+}X^{-}}_{\text{Solução}} \xrightarrow{\text{Aspiração}}_{\text{Aerossol}} \underbrace{M^{+}X^{-}}_{\text{erossol}} \xrightarrow{\text{Dessolvatação}}_{\text{ou Evaporação}} \underbrace{MX}_{\text{Sólido}} \xrightarrow{\text{Sublimação}}_{\text{Gás}} \underbrace{MX}_{\text{Gás}}$$

$$\underbrace{MX}_{\text{Gás}} \xrightarrow{\text{Dissociação}}_{\text{ou Atomização}} M_{(Gás)} + X_{(Gás)} \xrightarrow{\text{Excitação}}_{\text{Cás}} M^{*}_{(Gás)} \xrightarrow{\text{Emissão}}_{\text{Cás}} M_{(Gás)}$$

1.3.1 A chama

Em análises químicas por FES, o conhecimento acerca das características da chama é de grande importância, pois é onde, com exceção da nebulização, ocorrem quase todos os processos representados na Figura 1.1. A produção de uma chama envolve a ignição de uma mistura combustível-comburente, cuja temperatura máxima atingida varia de acordo com os gases que a compõe. O tipo de chama mais comumente utilizada é a GLP-ar, a qual é uma fonte de excitação que atinge temperaturas de até 2200 °C, suficiente para promover a excitação de

alguns elementos com baixa energia de ionização (SKOOG, HOLLER e NIEMAN, 2002).

De uma forma geral, para que uma chama possa ser considerada satisfatória para análise por FES se faz necessário que ela atinja a temperatura apropriada para realizar todas as etapas descritas na Figura 1.1. Este parâmetro é controlado pelas pressões do gás combustível e do comburente usados na mistura. Outra característica importante é que o seu próprio espectro de emissão, que constitui o fundo da chama, não interfira na análise.

A Figura 1.2 mostra esquematicamente a estrutura de uma chama típica baseada na mistura de combustível e comburente.

Figura 1.2. Estrutura de uma chama típica. Adaptado de OHLWEILER, 1981.

Emergindo através da região (A), a mistura combustível e comburente forma todas as regiões da chama: a região de préaquecimento (B), região redutora (C), região oxidante (D) e a região do cone externo (E) (OHLWEILER, 1981).

A região de pré-aquecimento (B) só é uma região quente unicamente devido ao calor irradiado das regiões C e D e tem uma espessura de cerca de 1,0 mm. A região redutora (C) é rica em radicais OH, CN, H, O, etc., e nela não é atingido um equilíbrio térmico. A região oxidante (D) é a mais indicada para se fazer medidas, pois nela ocorre o equilíbrio térmico e uma diminuição significativa das concentrações de radicais. Na região do cone externo (E) ocorre uma combustão completa ajudada pelo ar circundante.

1.3.2 Instrumentação

Este trabalho baseia-se na substituição do detector (sistema óptico) do fotômetro de chama pela *Webcam*, logo a discussão sobre os demais componentes básicos de um fotômetro de chama será sucinta.

Os instrumentos utilizados em análise por fotometria de emissão em chama apresentam, basicamente, os componentes mostrados na Figura 1.3. cujas respectivas funções são:

Reguladores de pressão e fluxômetros: controlar a pressão e a vazão dos gases que alimentam a chama.

Nebulizador-combustor-atomizador: introduzir a amostra na forma de aerossol e submetê-la aos processos da Figura 1.1.

Sistema óptico e transdutores: serão descritos em detalhes nas próximas seções.

Amplificadores operacionais: amplificar e medir sinais elétricos provenientes dos transdutores.

Nebulizador-Combustor-Atomizador

Figura 1.3. Diagrama esquemático de um fotômetro de chama. Adaptado de OHLWEILER, 1981.

1.3.2.1 Sistema óptico

É responsável pela seleção e isolamento da REM. Nos equipamentos comerciais para fotometria de emissão em chama, são utilizados apenas filtros, e estes podem ser de dois tipos:

♣ Filtros de interferência: Utilizam o fenômeno da interferência óptica para fornecer bandas estreitas de radiação (SKOOG, HOLLER e NIEMAN, 2002). Consiste de um dielétrico transparente (em geral CaF₂ ou MgF₂) que ocupa o espaço entre dois filmes metálicos semitransparentes. Esse arranjo sanduíche é colocado entre duas placas de vidro ou material transparente (Figura 1.4). A espessura da camada dielétrica determina o comprimento de onda da radiação transmitida.

Figura 1.4. Seção transversal de um filtro de interferência. Adaptado de SKOOG, HOLLER e NIEMAN, 2002.

Filtros de absorção: Seu funcionamento baseia-se na absorção de certas regiões do espectro de emissão (SKOOG, HOLLER e NIEMAN, 2002). Os tipos mais comuns de filtros de absorção são os de vidro colorido e de uma suspensão de corante em gelatina. Os filtros de vidro possuem maior estabilidade térmica, sendo adequados para muitas aplicações.

1.3.2.2 Transdutores

É considerado um transdutor todo dispositivo responsável pela conversão de informação (ou dados) do domínio não elétrico para o elétrico (transdutor de entrada) e vice-versa (transdutor de saída) (SKOOG, HOLLER e NIEMAN, 2002). Em instrumentação para fotometria de chama, utilizam-se tipicamente mostradores digitais como transdutores

7

de saída. Em relação aos transdutores de entrada, são comumente usados os fotodiodos e fototransistores descritos a seguir.

Fotodiodo: É tipo de fototransdutor que consiste de um diodo de junção pn construído de modo a possibilitar a utilização da luz como fator determinante no controle da corrente elétrica. É um dispositivo de junção pn semicondutor cuja região de operação é limitada pela região de polarização reversa e caracteriza-se por ser sensível à luz (SOUSA e PEREIRA, 2008). A aplicação de luz à junção resultará em uma transferência de energia da REM incidente (na forma de fótons) para a estrutura atômica, resultando em um aumento do número de portadores minoritários e um aumento do nível da corrente reversa. O nível de corrente gerada pela luz incidente sobre um fotodiodo não é suficiente para que ele possa ser usado em um controle direto, sendo necessário para isto que haja um estágio de amplificação.

Fototransistor: Trata-se também de um fototransdutor, porém neste caso ele pode não apenas detecta a incidência de luz como fornece um ganho de sinal dentro de um único componente (SOUSA e PEREIRA, 2008). Como o transistor convencional, o fototransistor é uma combinação de dois diodos de junção, porém, associado ao efeito transistor aparece o efeito fotoelétrico.

1.4. Uso da Webcam para aquisição de imagens digitais

A *Webcam* é uma câmera de vídeo de baixo custo que captura imagens digitais que são transferidas para o computador de modo quase instantâneo.

A conexão utilizada com o microcomputador é do USB e a captura de imagem é realizada mediante um transdutor de imagem. A Figura 1.5 mostra o diagrama esquemático de uma Webcam típica.

A seguir são descritos os componentes de uma *Webcam* e suas funções:

Lentes: da mesma forma que nos instrumentos usados em espectroscopia, possuem a função de concentrar os feixes de radiação tornando-os paralelos (lentes colimadoras).

Ajustador de foco: proporciona uma maior nitidez e realça algum detalhe durante a captura da imagem.

Filtros: destinados à seleção da região espectral de interesse. Caso se queira selecionar a região visível do espectro eletromagnético deve-se usar um filtro de corte para as regiões ultravioleta e infravermelha.

Janela: elemento que delimita a abertura máxima do obturador.

Peltier: dissipa o calor gerado pelo sensor de imagem, pois quando uma diferença de potencial é gerada no sensor forma-se um gradiente de temperatura no mesmo.

Placa de circuito: concentra os diferentes componentes eletrônicos usados no processamento e armazenamento dos dados coletados pelo sensor de imagem.

Transdutor de Imagem: dispositivo que monitora a radiação incidente de forma contínua e reversível para aquisição de imagens. No mercado estão disponíveis dois tipos de dispositivos descritos a seguir.

CCD: são comercializados numa grande variedade de formas e configurações por diversos fabricantes.

Nestes dispositivos o semicondutor é formado por silício com dopagem tipo p e um capacitor polarizado positivamente. Os elétrons promovidos pela absorção de radiação concentram-se no poço sob o eletrodo, enquanto as lacunas movem-se da camada tipo n para o substrato.

Figura 1.6. Diagrama esquemático de um pixel de um CCD. Adaptado de SKOOG, HOLLER e NIEMAN, 2002.

Na Figura 1.6, pode-se observar que cada pixel é composto por três eletrodos (SKOOG, HOLLER e NIEMAN, 2002). A carga acumulada é medida por um circuito que sincroniza as três fases em sentido horário e é utilizado para deslocar a carga da direita passo a passo para o registrador de deslocamento de alta velocidade. Neste caso, a leitura neutraliza a carga acumulada. Tais dispositivos apresentam a vantagem de apresentar grande sensibilidade a baixos níveis de radiação. CMOS: apresentam grande capacidade de integração, isto é, ocupam uma área pequena e possuem uma baixa capacidade de dissipação de potência. Seu funcionamento é baseado em lógica digital, embora a captura de REM seja feita através de fotodiodos, que geram cargas energéticas à medida que recebem a luz (HENDRICH, 2008). Diferentes cargas e intensidades geram diferentes cores. Este transdutor é muito usado em câmeras de maior porte, porque apresentar um baixo consumo de energia e alta durabilidade.

Figura 1.7. Estrutura de um transdutor CMOS.

De acordo com a Figura 1.7, o transistor é fabricado sobre um substrato. Duas regiões fortemente dopadas do tipo n são criadas no substrato originando o dreno (D) e a fonte (S). Uma camada muito fina de cerca de 3 a 20 nm de dióxido de silício (que é um isolante) ultrapuro é criada sobre a região do substrato entre o dreno e a fonte. Por fim é depositada uma camada de metal sobre esse óxido.

As principais características elétricas de um transdutor CMOS são determinadas em função das suas dimensões (comprimento e largura) e da espessura da camada de óxido sobre a porta (G). Atualmente, o comprimento do canal é da ordem de 0,18 mm, possibilitando a inserção de até 5 milhões de transistores em um único chip. O cobre é utilizado agora nas linhas de conexão devido à sua baixa resistividade elétrica. No princípio, o seu uso não era possível em virtude da não existir uma técnica economicamente viável para deposição do cobre.

1.5 Uso de imagens digitais no contexto da química analítica

O emprego de imagens digitais na química analítica ainda não completou uma década.

O trabalho pioneiro de Monemi et al. (1999) abriu as portas da química analítica para o uso de imagens digitais. Usando uma câmera CCD, os autores determinaram RBP por quimiluminescência capilar em imunoensaios.

Dessa forma estava lançado o gérmen que possibilitou a análise química baseada em imagens digitais e, rapidamente, foram vislumbradas as potencialidades de tal aplicação por Lampen et al. (2000). Esses autores obtiveram informações químicas e mineralógicas de rochas e solos do planeta Marte a partir da análise de imagens digitais.

A partir dos dois trabalhos citados anteriormente, o emprego das imagens digitais voltou-se para técnicas baseadas em fenômenos de emissão tais como ICP, fluorescência e quimiluminescência.

YAMANAKA et al. (2001) utilizaram uma espectrocâmera CCD para delinear o perfil espacial e espectral da emissão atômica em torno da superfície de compósitos C/C de dupla camada delgada num plasma. FUKUI et al. (2001) utilizaram uma câmera de espectrovídeo para medir a flutuação bidimensional em plasma.

BUREL et al. (2003) utilizaram uma câmera com ICCD para determinar alumínio, chumbo, carbaril e PAHs por fluorescência molecular e fluorescência induzida a laser. Ambas as metodologia foram aplicadas determinações ao nível de ng L⁻¹ em, respectivamente, água do mar e de torneira.

STRÖMBERG e HULTH (2005) exploraram imagens digitais para monitorar o desempenho de um sensor para determinação de íons amônio em baixos níveis de concentração.

Com aplicação em quimiluminescência, LUO, ZHANG e MA (2005) desenvolveram um método simples e sensível para determinação de rh TNF- α em soro humano por imagens digitais e imunoensaios com limite de detecção da ordem de 1 ng mL⁻¹.

MALEKI, SAVAFI e SEDAGHAPOUR (2004) determinaram simultaneamente Fe³⁺ e Al³⁺ em ligas metálicas sintéticas usando CAS, como reagente cromogênico, e ANN para o tratamento de imagens.

SOUZA, SPEHAR e SANTOS (2004) empregaram o sistema de cores RGB para determinar o teor de saponina em sementes de quinoa (*Chenopodium quinoa willd*).

MIZIGUCHI et al. (2004) utilizaram parâmetros de cromaticidade para determinação de Fe^{3+} , AI^{3+} , Ga^{3+} e In^{3+} com diferentes reagentes cromogênicos, além de desenvolver um teste do tipo *screening* para íons AI^{+3} em águas de rios.

PACIORNIK et al. (2006) utilizaram um *scanner* para quantificar mercúrio em peixes por *spot-tests*.

KOHL, LANDMARK e STICKLE (2006) demonstraram, mediante uma calibração analítica envolvendo soluções padrão de um corante alimentício, que medidas de absorbância poderiam ser obtidas a partir das imagens digitais. Todavia, essa estratégia é valida se ocorrer uma variação em apenas um dos componentes RBG. De fato, no referido trabalho as imagens digitais obtidas envolvem uma variação somente da componente B (azul).

GAIÃO et al. (2006) desenvolveram um novo método para implementação de titulações baseado na exploração de imagens digitais obtidas com uma *Webcam*. Essa metodologia foi aplicada com sucesso à determinação de alcalinidade total em águas.

SAVAFI, ROSTAMZADEH e MAESUM (2007) exploraram imagens digitais para desenvolver um sensor óptico visando à determinação de pH, empregando diversos indicadores ácido-base e modelos PLS e ANN.

ASSAD et al. (2002) identificaram impurezas e misturas de café em pó mediante a análise de espectros de reflectância nas UV-Vis e IR, bem como de imagens digitais.

ANTONELLI et al. (2004) utilizaram análise multivariada de imagens, aliada ao algoritmo de classificação baseado em transformada *wavelet*, para avaliação de cor de alimentos. GINORIS et al. (2007) usaram ferramentas de análise de imagens (quais sejam, DA, ANN e DT) para o reconhecimento de protozoários e metazoários.

PEREIRA e BUENO (2007) realizaram uma análise exploratória, empregando PCA e HCA, de imagens digitais para avaliação da qualidade de tintas.

AMARAL e FERREIRA (2005) aplicaram a técnica PLS no tratamento de imagens para monitorar o tratamento de esgoto pelo sistema de lodos ativados.

FILIPPINI e LUNDSTRÖM (2004) utilizaram CSPT para caracterização de ensaios colorimétricos e imunoensaios baseada em imagens digitais obtidas com uma câmera CCD.

LLANO et al. (2007) fizeram um estudo comparativo entre quatro algoritmos usados em visão computacional para normalização fotométrica de imagens digitais afetadas por iluminação, objetivando a classificação de ácidos nucléicos.

J.M.W. Turner - o princípio da cor

CAPÍTULO 2

CONCEITOS E FUNDAMENTOS DA COR

"A imaginação é mais importante que o conhecimento." Albert Einstein

2. CONCEITOS E FUNDAMENTOS DA COR

2.1 O sistema visual humano

A visualização de todo o espectro de cores é possibilitada pela interação entre os três elementos da cor: luz, objeto e observador (LEÃO, 2005). Física e tecnicamente, uma determinada cor existe na forma de energia com um determinado comprimento de onda associado (dados espectrais). Contudo, a sensação de cor somente existe em nossa mente, resultante do processamento de determinados comprimentos de onda pelo sistema visual humano.

2.1.1 O olho humano

A focalização da luz de uma imagem no olho não é realizada pelo cristalino, mas pela córnea, camada curva localizada na frente do olho. O cristalino realiza o foco secundário através do auxílio de minúsculos músculos que estão localizados ao redor dela (FRASER, MURPHY e BUNTING, 2005).

Da córnea até o cristalino a luz passa através de uma abertura chamada pupila. Essa abertura se contrai ou se dilata de acordo com a intensidade da luz por meio da ação da íris (a parte colorida do olho), conforme Figura 2.1.

O cristalino permite a passagem da luz pelo gel transparente chamado de humor vítreo, formando na retina, parte de trás do olho, a imagem invertida do objeto.

A retina é a parte do olho sensível à luz e sua superfície é composta de fotorreceptores e terminações nervosas. Existem dois tipos de fotorreceptores, ou seja, células sensíveis à luz, chamados de cones e bastonetes (RETONDO e FARIA, 2006), devido à sua forma, conforme Figura 2.2.

Figura 2.2. Cone e bastonete. Adaptado de FRASER, 2005

Cada olho possui aproximadamente 120 milhões de bastonetes e 6 milhões de cones (TASI, 2007 e RETONDO e FARIA, 2006). Os bastonetes se concentram mais ao redor da retina e não são sensíveis a diferenças de cores, entretanto, registram informações monocromáticas do claro ao escuro. Eles são muito úteis para detectar movimento e para visualização com baixo nível de luminosidade.

No sistema visual humano existem três principais tipos de cones, que respondem aos comprimentos de onda longo, médio e curto, chamados de cones vermelho, verde ou azul, respectivamente, devido à predominância da faixa de cor de cada um. Alguns animais possuem cones capazes de detectar a luz ultravioleta, tais como: abelhas (BRISCOE e CHITTKA, 2001), beija-flores, algumas espécies de répteis e peixes (RETONDO e FARIA, 2006).

Os cones são sensíveis às cores e estão concentrados no centro da retina, onde há maior incidência de luz, área esta chamada de fóvea. No centro da fóvea existe uma área chamada de fovéola, composta totalmente por cones. Cada cone possui sensibilidade para detectar REMs com comprimentos de onda em uma determinada faixa do espectro.

2.1.2 Metamerismo

Metamerismo é uma característica da visão humana que torna possível a reprodução das cores e já foi tratado por alguns pesquisadores como um "erro" da visão humana. Em termos simples, é o fenômeno em que duas amostras de cores diferentes produzem a mesma sensação (BERNS, 2000). Se os objetos são de cores diferentes, mas produzem a mesma sensação de cor, isto pode ser causado pela luz que ilumina ambos os objetos, como ilustrado na Figura 2.3. As cores das amostras sob a fonte 1 são correspondentes, o que não ocorre quando as mesmas amostras estão iluminadas pela fonte 2.

Figura 2.3. Metamerismo da visão de acordo com a fonte de luz. Adaptado de LEÃO, 2005.

2.1.3 Não-linearidade: intensidade e brilho

O sistema visual humano apresenta a característica de ser nãolinear (FRASER, MURPHY e BUNTING, 2005) ao contrário de um medidor de luz (Figura 2.4 (a)). Em baixas intensidades de luz, os bastonetes (mais sensíveis ao brilho) estão em plena atividade, gerando uma resposta de brilho para o cérebro maior do que a intensidade recebida (Figura 2.4 (b) região azul). Quando a intensidade de luz é maior, os cones é que estão em maior atividade, pois estes são mais sensíveis às radiações com diferentes cores e enviam uma resposta de brilho ao cérebro menor do que a intensidade de luz recebida (Figura 2.4 (b) região amarela).

Figura 2.4. Percepção do brilho para um medidor de luz (a) e para o olho humano (b).

2.2 Iluminantes

Os pesquisadores da cor usam fontes de luz teóricas para determinar a cromaticidade ou a cor pura da luz, como também a fonte real de luz (LEÃO, 2005). Este padrão de luz é chamado de radiação de corpo negro, na qual é determinada a distribuição espectral da potência da fonte de luz baseada na sua temperatura. O termo "fonte de luz" é usado na teoria da cor para identificar a fonte física da luz, sendo que, no estudo de modelos teóricos, o termo adotado é "iluminante".

A CIE tem um comitê técnico para estudar o sistema visual e as cores e desenvolveu um modelo de cor independente de qualquer dispositivo, meio de emissão ou reprodução. Este modelo é baseado na percepção das cores pelo sistema visual humano. Os elementos-chave do modelo CIE são as definições de iluminantes padrão e as especificações para o observador padrão.

2.2.1 Iluminantes padrão

São fontes de luz com definições espectrais determinadas, sendo as principais (LEÃO, 2005):

lluminante A: representado por uma lâmpada de filamento de tungstênio com a temperatura de cor de 2854 K.

Iluminante B: representado por um dia de sol com temperatura de cor de 4874 K.

lluminante C: representado por um dia de sol pela manhã com temperatura de cor de 6774 K.

Iluminante D: substituto do iluminante C, é representado por uma série de iluminantes que simulam a luz do dia de vários modos. Os mais adotados são o D50 e o D65 com temperaturas de cor de 5000 K e 6504 K, respectivamente.

2.2.2. Observador padrão

É composto por um pequeno grupo de indivíduos (entre 15 e 20) que apresentam o sistema visual normal. O campo de visão usado para visualização é de 10°, possibilitando que a reflexão do objeto visualizado pela sensibilidade da retina seja ampliada.

Figura 2.5. Experimentação do tri-estímulo. Adaptado de FRASER, 2005

O observador visualiza as duas cores em estudo com o ângulo de visão definido e com uma separação no meio do furo (Figura 2.5). As cores são comparadas visualmente, uma proveniente de uma fonte de luz de cor conhecida e outra pela adição sobreposta das três cores as quais os cones são sensíveis. Ajustando as intensidades das três luzes, é possível obter uma cor muito próxima cor da imagem de teste (BERNS, 2000).

2.3 Componentes e características da cor

2.3.1 Componente acromática

Dos três atributos da cor (brilho, cor e saturação) o brilho se diferencia dos outros dois, em parte porque podem ser detectadas variações no brilho até mesmo quando não há luz suficiente para detectar a cor. Por exemplo, em um ambiente muito escuro, as informações referentes à visão são produzidas pelos bastonetes, os quais não respondem bem às cores, mas podem perceber pequenas diferenças no brilho.

O brilho descreve a quantidade de luz, enquanto a cor e a saturação descrevem a qualidade da luz (caracterizada pelo comprimento de onda da REM dominante). A diferença entre brilho e luminosidade, para a maioria das aplicações, pode ser desprezada, pois ambos fazem referência à percepção humana (não-linear) da intensidade de luz (FRASER, MURPHY e BUNTING, 2005). O brilho e a luminosidade têm como limites o preto e o branco. O termo brilho é aplicado para fontes de REM enquanto que a luminosidade é aplicada a objetos iluminados.

2.3.2 Componente cromática

A tonalidade reflete o comprimento de onda da REM dominante, pois todas as cores resultam da absorção da REM com diferentes comprimentos de onda, nos quais as intensidades podem variar.

A definição mais usada para tonalidade é "a cor da cor", ou seja, uma cor que possui nome específico, tal como o vermelho, laranja, violeta, azul, amarelo e outros, de acordo com algumas regiões do espectro. Por exemplo, o vermelho é uma cor pura, enquanto o róseo não, pois ele é considerado um vermelho pálido ou sem saturação.

A saturação é determinada pela pureza da cor. Como a tonalidade é resultante do comprimento de onda dominante, a saturação resulta da menor extensão que o comprimento de onda dominante abrange. Amostras de cores que absorvem REM muitos comprimentos de onda (bandas alargadas) produzem cores sem saturação, enquanto outras cujos espectros mostram picos produzem cores mais saturadas (BERNS, 2000) (Figura 2.6).

Figura 2.6. Duas amostras de cores com alta e baixa saturação e seus respectivos espectros. Adaptado de FRASER, 2005

2.3.3 Tricromaticidade

O modelo tricromático de percepção das cores foi desenvolvido no século XIX (TASI, 2007) argumentando que o olho possui três diferentes tipos de receptores para cores: cada um sensível a uma cor: vermelho, verde ou azul, que se combina para representar as diferentes cores percebidas pelo sistema visual humano.

O sistema tricromático divide o espectro visível dentro das regiões mais dominantes, o vermelho, verde e azul, onde se concentram as cores que gerarão todas as informações da cor, conforme é mostrado na Figura 2.7.

O fato de o sistema visual humano possuir três tipos de fototransdutores de cor é o que possibilita a reprodução das cores aproximadas.

2.3.4 Sistema de cores primárias aditivas ou RGB

A mistura das cores dominantes, também chamadas de primárias aditivas, em diferentes combinações e níveis variados de intensidade pode simular todas as cores existentes no espectro da região do visível. Se a luz refletida contém a máxima intensidade das luzes vermelha, verde e azul, o olho percebe o branco, e se não existe luz, é percebido o preto (BERNS, 2000). Combinando duas cores aditivas primárias puras será produzida uma cor secundária (ou primária subtrativa), conforme o diagrama mostrado na Figura 2.8. As cores secundárias, ciano, magenta e amarelo, são as cores opostas ao vermelho, verde е azul, respectivamente.

O princípio de percepção de cores pelo olho humano tem sido copiado e explorado pelos fabricantes de escâneres a cores e monitores. O método de interpretação da cor usado pelos dispositivos é baseado diretamente na resposta do olho humano aos estímulos das luzes vermelha, verde e azul.

A representação geométrica desse sistema de cores em um espaço tridimensional gera um sólido conhecido como cubo de cor (Figura 2.9).

Neste cubo, cada eixo representa a contribuição de uma cor primária com intensidades variando na faixa 0 – 255 (8 bits) na formação das demais cores, ou seja, com 256 níveis de intensidade totalizando 16,7 milhões de cores. Cada par de eixos gera um plano em que são representadas as cores secundárias (contribuição equitativa de duas cores primárias) no vértice de cada plano. A interseção dos três planos define a cor preta (não há contribuição de nenhuma das cores primárias) e a cor branca (mistura equitativa das três cores primárias com a intensidade máxima). A diagonal principal deste cubo representa a escala de cinza.

2.3.5 Sistema de cores subtrativas primárias ou CMYK

As cores primárias subtrativas ciano, magenta, amarelo e preto são geralmente utilizadas nos processos de impressão, para promover as variações das porcentagens das tintas, para obter com fidelidade as cores selecionadas pelo observador. Teoricamente, as combinações das cores subtrativas perfeitamente puras absorvem todos os comprimentos de onda da luz, resultando assim no preto (FRASER, MURPHY e BUNTING, 2005) (Figura 2.10).

Figura 2.10. Cores primárias subtrativas: ciano, magenta e amarelo.

Como os corantes não apresentam cores totalmente puras, as radiações com certos comprimentos de onda são refletidas em vez de serem absorvidas, resultando assim numa cor marrom turvo. Para corrigir esse efeito, adicionou-se a cor preta (em inglês: *Black*), onde seria desejado que a letra referente a esta cor fosse o B e não o K, mas a letra B poderia confundir com *Blue*. Existem várias teorias para a adoção da letra K, sendo que a mais lógica delas é o fato de que a união teórica das

três cores CMY geraria o preto, ou seja, a cor-chave (do inglês *Key*). Outra teoria é baseada no fato da palavra "preto" em inglês possuir a letra K.

Outro motivo da adição da cor preta nos sistemas de impressão está relacionado ao custo de impressão, pois é a cor mais utilizada, evitando assim a aplicação das três cores subtrativas para gerá-la.

O alquimista – Ilka Almeida Bastos

CAPÍTULO 3

EXPERIMENTAL

"Há pessoas que transformam o sol numa simples mancha amarela, mas há aquelas que fazem de uma simples mancha amarela o próprio sol." Pablo Picasso

3. EXPERIMENTAL

3.1 Reagentes, soluções padrão e amostras

Para a preparação das soluções padrão estoque de cada analito de interesse foram utilizados os seguintes reagentes de grau analítico: Li₂CO₃ (Merck), Na₂CO₃ e LaCl₃ (Vetec), CaCO₃ (Mallinckrodt) e HCl (Carlo Erba).

Os carbonatos foram utilizados como reagentes de partida apenas para uniformizar o procedimento de preparação das soluções padrão estoque.

As soluções padrão estoque na concentração de 1000 mg L⁻¹ de Li⁺, Na⁺ e Ca²⁺ foram preparadas dissolvendo-se uma massa adequada do carbonato (seco em estufa a 150 °C por 2 horas) em um volume mínimo de solução de HCl 1:1 (v/v) (adição até não haver mais evolução de CO₂) e adicionando 200 mL de água deionizada. Em seguida, a solução foi aquecida até a ebulição para eliminação do CO₂ residual e, após resfriamento, o volume foi aferido a 1,0 L em um balão volumétrico.

A solução padrão estoque na concentração de 10000 mg L⁻¹ de La³⁺ foi preparada dissolvendo uma massa adequada de LaCl₃ em 10 mL de solução de HCl 1:1 (v/v) (para evitar a hidrólise dos íons La³⁺) e o volume final foi levado a 1,0 L com água deionizada em um balão volumétrico.

As soluções de trabalho de Li⁺ (6,0 – 30,0 mg L⁻¹), Na⁺ (1,8 – 9,0 mg L⁻¹) e Ca²⁺ (10,0 – 50,0 mg L⁻¹) foram preparadas por diluição adequada com água deionizada a partir de suas soluções padrão estoques em cinco níveis de concentração.

Foram adicionados volumes adequados de uma solução padrão estoque de La³⁺ 10000 mg L⁻¹ às soluções padrão de trabalho de Ca²⁺ antes da aferição de volume de tal modo que a concentração de La³⁺ fosse de 1000 mg L⁻¹ (0,1% de La³⁺). Desta forma, a interferência de íons PO₄³⁻ e SO₄²⁻ sobre o sinal de emissão de CaOH é minimizada.

Amostras de comprimidos antidepressivos à base de carbonato de lítio contendo 300 mg do fármaco foram adquiridas em farmácias da cidade de João Pessoa – PB. O carbonato de lítio também é utilizado no tratamento de outras doenças que envolvem o sistema nervoso central (FUCHS e WANNMACHER, 1998).

Amostras de soro fisiológico contendo 0,90% de cloreto de sódio foram adquiridas em farmácias da cidade de João Pessoa – PB. O soro fisiológico é uma solução universalmente adotada para prover o organismo de sódio e cloro. Estes íons são absorvidos juntos com a água devido ao déficit extracelular desses íons (OKAMURA, CAVALHEIRO e NÓBREGA, 2004).

Amostras de águas enriquecidas com cálcio contendo 25,0 g L⁻¹ de cal livre foram adquiridas na estação de tratamento de água de Gramame, a qual abastece a região metropolitana de João Pessoa. A cal é adicionada no processo de tratamento da água com o objetivo de controlar a alcalinidade da mesma para garantir a eficiência das etapas de coagulação e floculação.

Na preparação de uma amostra de carbonato de lítio foi medida a massa média de dez comprimidos previamente pulverizados, a qual foi dissolvida em 25 mL de uma solução de HCl 1,0 mol L⁻¹ (THE UNITED STATES PHARMACOPOEIA, XXXII). Depois, foi realizada uma filtração e o volume final foi levado a 1,0 L com água deionizada. A partir da solução concentrada de amostra, foram feitas diluições adequadas desta solução de modo a manter os sinais analíticos dentro da faixa linear de resposta do fotômetro.

Como as constituições das matrizes de soro fisiológico e das de águas de abastecimento são mais simples, estas foram diretamente diluídas com água deionizada.

Para cada analito foram analisadas seis amostras.

3.2 Equipamentos

Um fotômetro de chama Digimed modelo NK-2004 foi utilizado para obtenção dos valores de referência para as amostras dos três analitos em estudo.

Uma balança analítica Scientech modelo SA120 foi utilizada na mediação de massas dos reagentes para preparação soluções padrão estoques de Li⁺, Na⁺, Ca²⁺ e La³⁺.

Uma *Webcam* Creative Instant com resolução espacial de 352 x 288 pixels e taxa de aquisição de 30 quadros s⁻¹ foi utilizada para aquisição das imagens referentes à emissão de cada analito na chama.

3.2.1 Sistema de aquisição de imagens

É composto de uma caixa de madeira medindo aproximadamente 10 x 16 x 18 cm³ com paredes internas pintadas de preto (Figura 3.1).

Figura 3.1. Foto do módulo de aquisição de imagens e seu diagrama esquemático ao lado.

Na janela de observação (com diâmetro de aproximadamente 1,5 cm) foi acoplado um tubo (de 4,0 cm de diâmetro interno e 13,5 cm de comprimento) com as paredes internas foscas para evitar o efeito de reflexão especular. Na outra extremidade do tubo está a *Webcam*, que estava conectada à porta de entrada USB de um micro computador Pentium III 650 MHz e configurada para captar imagens de 24-bits (aproximadamente 16,7 milhões de cores) (BERNS, 2000 e GELADI e GRAHN, 1996).

3.3 Programas computacionais desenvolvidos

3.3.1 Programa computacional de captura de imagens digitais

Escrito em ambiente Core Gear Rad Studio 2007 (Delphi 2007) da Borland[®], o programa computacional chamado "**Capturar Imagens da** *Webcam*", como o próprio nome já diz, é destinado à captura de imagens. Este programa é bastante simples e amigável como pode ser visto na Figura 3.2.

Figura 3.2. Tela do programa de "Capturar Imagens da Webcam".

O programa "**Capturar Imagens da Webcam**" é capaz de reconhecer rapidamente uma *Webcam* instalada (qualquer que seja o modelo) e o operador pode dar início à captura das imagens, independente do programa de gerenciamento fornecido pelo fabricante.

Na tela do programa (Figura 3.2) ao acionar o botão "**Seleciona** *Webcam*" o usuário pode selecionar a *Webcam* de sua preferência (caso mais de uma esteja instalada no computador).

Após isto o operador pode dar início à captura de imagens através do acionamento do botão "Iniciar Captura". Abre-se então uma janela para a seleção do diretório onde serão armazenadas as imagens digitais capturadas, bem como a nomeação do arquivo de imagem. Ao término das análises a captura de imagens é encerrada pelo acionamento do botão "Parar Captura" (Figura 3.2).

As imagens são armazenadas no formato "**bmp**", pois este não usa nenhum tipo de compressão preservando a qualidade da imagem (16,7 milhões de cores), o que não se observa em outros formatos (TORRES, 2008).

3.3.2 Programa computacional para o tratamento de imagens digitais

Também escrito em ambiente Core Gear Rad Studio 2007 (Delphi 2007) da Borland[®], o programa computacional chamado "**Cor Emissão**" implementa o algoritmo para obtenção dos dados de cor para o tratamento das imagens capturadas. Trata-se também de um programa muito simples e de fácil operação (Figura 3.3).

Figura 3.3. Tela do programa "Cor Emissão".

Para o tratamento das imagens digitais é exigido que as imagens digitais capturadas sejam salvas no formato "BMP" tendo como

justificativa o argumento de TORRES (2008). Por uma questão de organização é bom que todas as imagens estejam no mesmo diretório.

O programa Cor Emissão possui botões que ao serem acionados executam tarefas específicas.

Na Figura 3.3 existe a caixa denominada "**N Pontos**", a qual está relacionada com o arquivo de imagem a ser analisado. A esta caixa é atribuído um número de ordem à medida que as imagens digitais são processadas.

A rotina de funcionamento do programa computacional "**Cor Emissão**" é esquematizada na Figura 3.4. As operações envolvendo o tratamento dos *pixels* são descritas abaixo:

- Definição das coordenadas da região de interesse nas imagens digitais: ao acionar o botão "Definir coordenadas" abre-se uma janela na qual o operador seleciona o diretório destinado ao armazenamento das imagens digitais e o arquivo de imagem referente ao branco. Com o auxílio do mouse o usuário delimita a região de trabalho (25 x 25 *pixels*) e suas coordenadas ficam armazenadas na caixa "Coordenadas selecionadas".
- 2. Definição das componentes RGB do branco: ao acionar o botão "Cor RGB do branco" abre-se novamente a janela do diretório da "etapa 1" para seleção das imagens digitais referentes ao branco. O programa faz uma varredura de todos os *pixels* da região selecionada na "etapa 1", coluna por coluna, e calcula o valor "Cor do Windows" destes por meio da função interna do Windows 1, que converte a cor num valor numérico. Por meio da função interna do Windows 2, o valor "Cor do Windows" é decomposto nas componentes R, G e B para todos os pixels. Os valores médios de cada componente

para o branco são calculados e armazenados na caixa "valores RGB".

3. Definição das componentes RGB dos padrões ou amostra(s) e da norma do vetor: ao acionar o botão "Cor **RGB do padrão ou amostra**" abre-se novamente a janela do diretório da "etapa 1" para seleção das imagens digitais associadas aos padrões ou amostra(s). O programa repete o procedimento realizado na "etapa 2" e dos valores médios das componentes R, G e B dos padrões ou amostra(s) são subtraídas, componente a componente, as médias das componentes R, G e B do branco. Os resultados das diferenças são finalmente utilizados no cálculo da norma de cada vetor associado. Os valores resultantes são armazenados, respectivamente, nas caixas "valor de R", "valor de G", "valor de B" e "Norma" (Figura 3.4).

Figura 3.4. Rotina do cálculo da norma do vetor pelo programa "Cor Emissão".

3.4 Otimização do sistema de aquisição de imagens

A condição física mais apropriada para a realização da captura das imagens é aquela, na qual apenas a emissão do analito atinja a *Webcam*. Para alcançar tal condição foram realizados testes de avaliação visual da qualidade da imagem da emissão da solução de Na⁺ 9,0 mg L⁻¹, pois esta é a emissão mais intensa entre os analitos estudados, sob duas condições:

- 1. Webcam colocada diretamente na janela de observação do fotômetro de chama;
- 2. Webcam colocada num tubo ligado diretamente à janela de observação do fotômetro de chama.

Foi então constatado que na primeira condição era possível apenas observar uma mancha branca, indicando a saturação do sensor da Webcam. Na segunda condição o comprimento do tubo foi variado até o desaparecimento da mancha branca e recuperação da nitidez da imagem e esta condição foi adotada nos experimentos seguintes.

Fixada a nossa primeira condição experimental estudou-se a relação entre o diâmetro da janela de observação e o diâmetro do tubo de ligação com o objetivo de eliminar a reflexão especular nas paredes internas do tubo.

As condições ideais obtidas após o término desse estudo estão na Tabela 3.1.

_	Características físicas	Dimensão (cm)		
_	Comprimento do tubo	13,5		
	Diâmetro interno do tubo	4,0		
	Diâmetro da janela de observação	1,4		

Caractorícticas físicas	Dimonção (om)
Tabela 3.1. Condições ideais obtidas para a	a captura de imagens.

Este conjunto foi colocado dentro de uma caixa de madeira.

Estudou-se também a região da chama da chama para captura das imagens em três níveis: na base da chama, o meio da chama e no topo da chama. Contudo a relação linear entre a resposta analítca e a concentração foi observada apenas para as medidas realizadas no meio da chama como era de ser esperar, como descrito da Seção 1.3.1.

3.5 Procedimento e método para validação dos modelos de calibração

Em análise química, o modelo de calibração somente pode ser usado para estimar a concentração do analito se for capaz de descrever satisfatoriamente o comportamento dos valores experimentais. Em outras palavras, o modelo não pode apresentar evidência estatística de falta de ajuste. Além disso, deve refletir uma regressão estatisticamente significativa. Para esse propósito, a validação do modelo pode ser realizada por meio da ANOVA (BARROS NETO, SCARMÍNIO e BRUNS, 2007 e PIMENTEL e BARROS NETO, 1996), cujas equações encontram-se na Tabela 3.2.

Tabela 3.2. Equações para ANOVA de dados experimentais adaptados a modelos lineares determinados pelo método dos mínimos quadrados.

Fonte de	Soma quadrática	Graus de	Média Quadrática
variação	(SQ)	liberdade (GL)	(MQ)
Regressão	$SQ_{reg} = \sum n_i [(y_e)_i - y_m]^2$	p-1	$MQ_{reg} = SQ_{reg} / (p-1)$
Resíduo	$SQ_r = \Sigma \Sigma [y_{ij} - (y_e)_i]^2$	n-p	$MQ_r = SQ_r / (n-p)$
Falta de ajuste	$SQ_{faj} = \sum n_i [(y_e)_i - y_{im}]^2$	m-p	$MQ_{faj} = SQ_{faj} / (m-p)$
Erro puro	$SQ_{ep} = \sum \sum [y_{ij} - y_{im}]^2$	n-m	$MQ_{ep} = SQ_{ep} / (n-m)$

onde: p = número de parâmetros do polinômio do modelo de calibração;

n = número total de medidas;

m = número de níveis da variável independente X.

A validação de modelos lineares pela aplicação do método dos mínimos quadrados consiste de:

Análise de resíduos: verifica o comportamento dos erros de previsão do modelo (resíduos) em relação aos dados experimentais. No gráfico de resíduos é possível identificar o tipo de erro experimental associado aos dados experimentais. Caso os resíduos apresentem algum perfil ou estrutura teremos um erro sistemático associado aos dados experimentais. Caso os resíduos se distribuam aleatoriamente em torno de zero teremos apenas erros aleatórios associados aos dados experimentais. Os resíduos são calculados de acordo com a equação:

$$\varepsilon = y_i - \hat{y} \tag{3}$$

onde: y_i = resposta analítica obtida experimentalmente;

 \hat{y} = resposta analítica prevista pelo modelo de calibração.

Para implementar uma ANOVA (Tabela 3.2), é necessário fazer uma decomposição algébrica dos desvios das respostas analíticas observadas em relação à média global, $(y_i - \overline{y})$, conforme descrito abaixo:

$$\left(\mathbf{y}_{i}-\overline{\mathbf{y}}\right)=\left(\mathbf{\hat{y}}_{i}-\overline{\mathbf{y}}\right)+\left(\mathbf{y}_{i}-\mathbf{\hat{y}}_{i}\right)$$
 (4)

A primeira parcela, $(\hat{y}_i - \overline{y})$, representa o desvio dos valores previstos (ou estimados) pelo modelo em relação à média global e a segunda, $(y_i - \hat{y}_i)$, é a diferença entre o valor observado e o previsto pelo modelo (resíduo).

Elevando ambos os membros da **Equação 4** ao quadrado e fazendo o somatório sobre todos os pontos teremos:

$$\sum \left(\mathbf{y}_{i} - \overline{\mathbf{y}}\right)^{2} = \sum \left(\hat{\mathbf{y}}_{i} - \overline{\mathbf{y}}\right)^{2} + \sum \left(\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}\right)^{2}$$
(5)

Estas somas de quadrados são conhecidas como somas quadráticas, as quais podem ser representadas como

$$SQ_{total} = SQ_{regressão} + SQ_{residual}$$
(6)

onde: SQ_{total} representa a variação total das observações em relação a media global;

SQ_{regressão} exprime a parcela da variação total descrita pelo modelo de regressão;

SQ_{residual} denota a parcela da variação total não explicada pela equação do modelo.

A fim de avaliar se o modelo apresenta ou não falta de ajuste, é necessária a realização de medidas repetidas (de maneira autêntica) em pelo menos um dos níveis da variável X_i. Sendo assim, a parcela relativa aos resíduos deixados pelo modelo de regressão pode ser decomposta de acordo com:

$$\left(\mathbf{y}_{ij} - \mathbf{\hat{y}}_{i}\right) = \left(\mathbf{y}_{ij} - \overline{\mathbf{y}}_{i}\right) - \left(\mathbf{\hat{y}}_{i} - \overline{\mathbf{y}}_{i}\right)$$
(7)

Elevando a **Equação 7** ao quadrado e somando sobre todas as observações teremos:

$$\sum_{i}^{m} \sum_{j}^{n_{i}} (\mathbf{y}_{ij} - \hat{\mathbf{y}}_{i})^{2} = \sum_{i}^{m} \sum_{j}^{n_{i}} (\mathbf{y}_{ij} - \overline{\mathbf{y}}_{i})^{2} + \sum_{i}^{m} \sum_{j}^{n_{i}} (\hat{\mathbf{y}}_{i} - \overline{\mathbf{y}}_{i})^{2}$$
(8)

Esta soma de quadrados é conhecida como soma quadrática residual:

$$SQ_{residual} = SQ_{ep} + SQ_{faj}$$
(9)

onde: SQ_{ep} é a soma quadrática devida ao erro puro

SQ_{fai} é a soma quadrática devida à falta de ajuste.

Dividindo-se os valores de todas as somas quadráticas pelos seus respectivos graus de liberdade, obtêm-se as médias quadráticas (MQ)

mostradas na Tabela 3.2. Esses valores são utilizados nos testes *F* para verificar se há falta de ajuste do modelo e avaliar a significância estatística da regressão, como descrito abaixo.

- Teste de falta de ajuste: compara os resíduos deixados pelo modelo para determinações realizadas em vários níveis da variável X (MQ_{faj}) com os resíduos deixados pelas análises repetidas (autênticas) nestes mesmos níveis (MQ_{ep}). Se razão MQ_{faj}/MQ_{ep} é menor que o valor do ponto da distribuição F referente aos graus de liberdade de MQ_{faj} e MQ_{ep} para um determinado nível de confiança, temos um modelo que não apresenta falta de ajuste;
- Teste de significância de regressão: os resíduos deixados pelo modelo com relação à média dos valores de Y (MQ_{reg}) são comparados com os resíduos do modelo com relação aos dados experimentais (MQ_{ep}). Se a razão MQ_{reg}/MQ_{ep} é maior que o valor do ponto da distribuição F referente aos graus de liberdade de MQ_{reg} e MQ_{ep} para um determinado nível de confiança, mais ajustado estará o modelo aos dados experimentais.

A fim de validar os modelos de calibração obtidos foi elaborado um planejamento experimental constituído de réplicas autênticas de cada solução padrão, qual foi realizado como descrito a seguir:

Foram adquiridas 3 amostras de Li_2CO_3 , Na_2CO_3 e CaCO₃ de marcas diferentes e quando não possível de lotes diferentes. Para cada amostra se preparou uma solução estoque de 1000 mg L⁻¹ como descrito na seção 3.1 e a partir de cada solução estoque se preparou cinco soluções de trabalho totalizando 15 soluções (3 em cada nível de concentração proveniente de cada uma das soluções estoque).

De posse dessas soluções, foram realizadas as medidas analíticas para serem submetidas à análise de variância com vistas à validação dos modelos para sua posterior utilização na determinação dos 3 analitos em amostras reais. A construção das curvas analíticas foi feita a partir da média das 3 réplicas autênticas.

A escola de Atenas - Rafael Sanzio

CAPÍTULO 4

RESULTADOS E DISCUSSÃO

"O prazer no trabalho aperfeiçoa a obra." Aristóteles

4. RESULTADOS E DISCUSSÃO

4.1 Tratamento de imagens e curvas analíticas DIB

A região para aquisição das imagens encontra-se localizada a uma altura de 2,5 cm acima do queimador. A escolha dessa região foi motivada pelas razões descritas na Seção 1.3.1. A Figura 4.1 mostra a imagem digital da emissão do sódio para ilustrar a região usada no tratamento analítico, a qual é constituída de 25 x 25 *pixels*. Neste contexto, *"pixel"* é o menor ponto que forma uma imagem, sendo que o conjunto de milhares de pixels forma a imagem inteira (BERNS, 2000).

Figura 4.1. Imagem digital com n x m *pixels* obtida na determinação de sódio. x_1 , x_2 , y_1 e y_2 são coordenadas da região delimitada.

A Tabela 4.1 mostra a faixa de valores médios das componentes R, G e B das imagens adquiridas das soluções padrão dos três analitos e do branco. Estes valores foram obtidos de acordo com o procedimento descrito na Seção 3.3.

Analito	Solução padrão (mg L ⁻¹)	\overline{R}	\overline{G}	\overline{B}
	Branco	73	76	95
	6,0	95	77	95
1;+	12,0	117	75	95
LI	18,0	139	76	97
	24,0	161	76	95
	30,0	183	78	97
	Branco	77	77	101
	1,8	113	113	101
No ⁺	3,6	148	147	100
ING	5,4	183	183	101
	7,2	218	218	101
	9,0	252	253	101
	Branco	110	119	97
	10,0	137	132	97
Ca ²⁺	20,0	164	144	97
Ca	30,0	190	160	97
	40,5	217	173	97
	50,0	244	186	97

Tabela 4.1. Valores \overline{R} , \overline{G} e \overline{B} obtidos das imagens digitais capturadas.

Os valores apresentados na Tabela 4.1 indicam que para o lítio apenas a componente R está aumentando com a concentração. Para o sódio e o cálcio a variação envolve as componentes R e G.

4.2 Imagens digitais e o fenômeno de emissão

A Figura 4.2 mostra as imagens digitais associadas à radiação emitida pelo lítio (a), sódio (b), e cálcio (c) das cinco soluções padrão com concentrações diferentes. A primeira imagem digital de cada seqüência resulta da radiação de fundo emitida quando a solução do branco é aspirada para a chama do fotômetro. Para a determinação de Li⁺ e Na⁺, a solução do branco era água deionizada, porém para o Ca²⁺ o branco era uma solução de La³⁺ 1000 mg L⁻¹ (concentração final de La³⁺ nos padrões e amostras após completar o volume final). Este é o motivo da diferença entre a cor da imagem digital proveniente da solução do branco de Ca²⁺ em relação ao de Li⁺ e Na⁺.

Além disso, observa-se que a intensidade da radiação de cada analito aumenta nitidamente com o aumento de sua concentração nas soluções de calibração dos três analitos.

Figura 4.2. Imagens digitais da emissão de: (a) lítio, (b) sódio e (c) cálcio.

Na Figura 4.2 (a), as imagens apresentam a cor primária vermelha (notavelmente nas imagens 5 e 6). Tal radiação corresponde às raias de ressonância (dupleto) observadas em torno 671 nm (Figura 4.3 (a)), a qual é o resultado da transição eletrônica dos dois estados excitados 2p para o estado fundamental 2s (SKOOG, HOLLER E NIEMAN, 2002).

Nas imagens da Figura 4.2 (b), observa-se a cor secundária amarela resultante de uma mistura equitativa das cores primárias: vermelha e verde (BERNS, 2005 e GAIÃO et al., 2006). Essa REM amarela está associada à transição eletrônica dos dois estados excitados 3p para o fundamental 3s, produzindo as raias de ressonância em 589,6 e 589,0 nm (dupleto D) no espectro do sódio (Figura 4.3 (b)) (SKOOG, HOLLER E NIEMAN, 2002).

Com relação às imagens mostradas na Figura 4.2 (c), nota-se que elas apresentam a cor terciária laranja que é o resultado da mistura do

vermelho + amarelo, isto é, uma mistura do vermelho + verde com uma proporção maior de vermelho. Esta cor encontra-se associada à REM emitida pelas espécies CaOH que são tipicamente produzidas em chamas a base de hidrocarboneto, a exemplo da chama de GLP-ar. Como resultado, obtém-se uma banda no espetro de emissão de CaOH, ilustrado na Figura 4.3(c), cujo máximo se encontra em torno de 554 nm (SKOOG, HOLLER E NIEMAN, 2002).

Figura 4.3. Espectros de emissão em uma chama butano-ar de: (a) lítio, (b) sódio e (c) CaOH.

47

4.3 Modelo matemático para a calibração analítica

Neste trabalho, propõe-se um novo modelo matemático, baseado no sistema de cores RGB (Seção 2.6.3) e no conceito de norma de vetores, para definir a resposta analítica usada na construção das curvas analíticas. A descrição desse modelo é realizada a seguir.

Um vetor posição **v** é associado à imagem digital de cada solução padrão ou amostra. Para realizar o cálculo da norma do vetor **v** ilustrado na Figura 4.4, é necessário subtrair dos valores \overline{R}_s , \overline{G}_s e \overline{B}_s (valores médios do R, G e B das soluções padrão e amostras) os valores \overline{R}_b , \overline{G}_b e \overline{B}_b do branco.

Figura 4.4. Espaço vetorial RGB ilustrando a posição do vetor **v** associado a uma imagem digital.

A norma " || do vetor **v** é então calculada como:

$$\left\|\mathbf{V}\right\| = \sqrt{\overline{\mathbf{R}}_{S-b}^2 + \overline{\mathbf{G}}_{S-b}^2 + \overline{\mathbf{B}}_{S-b}^2}$$
(10)

onde \overline{R}_{s-b} , \overline{G}_{s-b} e \overline{B}_{s-b} são os valores líquidos obtidos depois de retirar a contribuição do branco.

Considerando que o número de fótons que atingem o fototransdutor da *Webcam* é proporcional à intensidade de emissão (I), a equação seguinte é válida

$$\|\mathbf{v}\| = \mathbf{k}_1 \mathbf{I} \tag{11}$$

Assumindo que há um mesmo coeficiente de proporcionalidade associado aos três componentes R, G e B, pois seus valores são normalizados na escala (0 - 255), a **Equação 10** pode ser re-escrita como:

$$\left\|\mathbf{v}\right\| = \sqrt{\mathbf{k}_{2}\overline{\mathbf{R}}_{S-b}^{2} + \mathbf{k}_{2}\overline{\mathbf{G}}_{S-b}^{2} + \mathbf{k}_{2}\overline{\mathbf{B}}_{S-b}^{2}}$$
(12)

Combinando as Equações 11 e 12, a seguinte expressão é obtida:

$$\|\mathbf{v}\| = \mathbf{k}_{2} \sqrt{\overline{\mathbf{R}}_{S-b}^{2} + \overline{\mathbf{G}}_{S-b}^{2} + \overline{\mathbf{B}}_{S-b}^{2}} = \mathbf{k}_{2} \|\mathbf{v}\| = \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{I}$$
(13)

Considerando uma relação linear entre intensidade de emissão (I) e concentração de analito (C) dado por:

$$I = k_3 C \tag{14}$$

onde k₃ é coeficiente de proporcionalidade que depende especialmente das propriedades espectroscópicas do analito e das variáveis de atomização das amostras.

A combinação das Equações 13 e 14 resulta em:

$$\|\mathbf{v}\| = \mathbf{k} \mathbf{C} \tag{15}$$

onde k = $k_1 k_2 k_3$.

A **Equação 15** descreve, como atestado experimentalmente, uma relação linear entre a norma do vetor e a concentração do analito nas soluções de calibração e amostras. A norma do vetor \mathbf{v} , $\|\mathbf{v}\|$, é o valor adotado como resposta analítica empregada para a construção das curvas analíticas no método DIB-FES.

4.4 Relação entre $\|\mathbf{v}\|$ e valores experimentais de \overline{R}_{s-b} , \overline{G}_{s-b} e \overline{B}_{s-b}

A Figura 4.5 (a) revela que os vetores \mathbf{v}_1 a \mathbf{v}_5 , associados a cada imagem digital das soluções de calibração do Li⁺, estão localizados na mesma reta suporte cuja direção coincide com a do eixo \overline{R}_{s-b} . Isto significa que não há diferenças significativas entre os valores \overline{G}_s e \overline{G}_b e também \overline{B}_s e \overline{B}_b , isto é, os valores \overline{G}_{s-b} e \overline{B}_{s-b} são próximos de zero. No caso de sódio (Figura 4.5 (b)), os valores \overline{R}_s e \overline{G}_s apresentam contribuições similares para a norma dos vetores \mathbf{v}_1 a \mathbf{v}_5 e, conseqüentemente, estes vetores estão sobre a linha bissetriz entre os eixos \overline{R}_{s-b} e \overline{G}_{s-b} . Na Figura 4.5 (c) é mostrado que os valores \overline{R}_s e \overline{G}_s , associados às imagens digitais das soluções de calibração de Ca²⁺, também contribuem para a norma do vetor. Todavia, neste caso apresentam proporções diferentes. Em função disso, a reta suporte onde os vetores \mathbf{v}_1 a \mathbf{v}_5 estão localizados apresentam uma direção próxima ao eixo \overline{R}_{s-b} como conseqüência da contribuição maior desta componente.

Figura 4.5. Norma dos vetores $\mathbf{v}_1 - \mathbf{v}_5$ de cada solução de calibração e os valores \overline{R}_{s-b} , \overline{G}_{s-b} e \overline{B}_{s-b} para cada imagem digital do lítio (a), sódio (b) e cálcio (c).

4.5 Curvas analíticas e validação dos modelos

A Tabela 4.2 apresenta os parâmetros dos modelos, obtidos por regressão linear pelo método dos mínimos quadrados, que descrevem as curvas analíticas mostradas na Figura 4.6. Na Tabela 4.2, também são apresentados os limites dos intervalos de confiança para os valores populacionais dos parâmetros dos modelos, os quais foram obtidos considerando o nível de 95% de confiança. Como os intervalos de confiança não contêm o "zero", os parâmetros estimados para todos os modelos de calibração são estatisticamente significativos.

Tabela 4.2. Parâmetros de regressão linear e limites dos intervalos de confiança para os coeficientes dos modelos obtidos pelos métodos DIB-FES e FES.

	Modelo $\hat{\mathbf{y}} = \alpha + \beta \mathbf{X}$				
Analito	$\alpha \pm t_{13} \cdot erro padrão (\alpha)$		$\beta \pm t_{13} \cdot erro padrão (\beta)$		
-	DIB-FES	FES	DIB-FES	FES	
11+	$0,07751 \pm$	-0,03276 ±	3,66879 ±	0,12385 ±	
LI	0,00786	0,00409	0,00024	0,00021	
No ⁺	$0,01750 \pm$	$-0,09190 \pm$	27,71650	$0,23130 \pm$	
INd	0,00770	0,00477	± 0,04597	0,00080	
C_{2}^{2+}	$-0,03100 \pm$	-0,06417 \pm	$2,99590 \pm$	0,04754 ±	
Cd	0,00165	0,00786	0,05459	0,00024	

A Figura 4.6 mostra que as curvas analíticas, obtidas por ambos os métodos, exibem um comportamento linear entre a resposta analítica e a concentração dos analitos em suas soluções de calibração. Essa inferência, baseada inicialmente em uma inspeção visual, é confirmada mediante a análise gráfica dos resíduos deixados pelos modelos e, principalmente, pela aplicação da ANOVA descrita na Seção 3.5.

O gráfico dos resíduos deixados pelos modelos de calibração é apresentado na Figura 4.7. Como se pode observar, os resíduos se distribuem de maneira aleatória, isto é, não exibem nenhuma estrutura sistemática que evidenciasse uma eventual falta de ajuste. Não obstante, a análise dos gráficos dos resíduos constitui um critério subjetivo e, por isso, esse procedimento pode não ser suficiente para concluir que os modelos não apresentam falta de ajuste. Para isso, recorreu-se à ANOVA e aplicou-se o teste *F* para verificar se existe falta de ajuste e avaliar a significância estatística da regressão (Seção 3.5).

Figura 4.6. Curvas analíticas DIB-FES (linha tracejada) e FES (linha pontilhada) para os três analitos determinados.

Figura 4.7. Resíduos deixados pelos modelos lineares das curvas analíticas DIB-FES (•) e FES (•) para os três analitos.

Os resultados da ANOVA, utilizada para a validação dos modelos de calibração baseados nos métodos DIB-FES e FES, são apresentados nas Tabelas 4.3 e 4.4. Os graus de liberdade mostrados na Tabela 4.2 foram definidos em função de:

Número de parâmetros do polinômio = 2 (polinômio de primeiro grau, $\hat{y} = \alpha + \beta X$);

Número total de medidas = 15 (3 réplicas autênticas em 5 níveis de concentração dos analitos);

Número de níveis da variável independente X = 5 (níveis de concentração do analito).

Definidos os graus de liberdade, as médias quadráticas foram calculadas a partir das somas quadráticas de acordo com as equações na Tabela 3.2 (Seção 3.5) e os valores obtidos são mostrados na Tabela 4.3.

Analit	Fonte de	SQ		Μ	IQ
ο	variação	DIB-FES	FES	DIB-FES	FES
	Reg. (1)	1,45 x 10 ⁴	16,57	1,45 x 10 ⁴	16,57
1;+	Res. (13)	1,10 x 10 ⁻²	4,23 x 10 ⁻⁵	8,50 x 10 ⁻⁴	3,26 x 10 ⁻⁶
LI	F. aj. (3)	3,40 x 10 ⁻³	1,03 x 10 ⁻⁵	1,16 x 10 ⁻³	3,44 x 10 ⁻⁶
	E. p. (10)	7,58 x 10 ⁻³	3,20 x 10 ⁻⁵	7,58 x 10 ⁻⁴	3,20 x 10 ⁻⁶
	Reg. (1)	7,47 x 10 ⁴	5,20	7,47 x 10 ⁴	5,20
Na ⁺	Res. (13)	5,35 x 10 ⁻³	5,77 x 10 ⁻⁵	4,12 x 10 ⁻⁴	4,43 x 10 ⁻⁶
ina	F. aj. (3)	1,15 x 10 ⁻³	1,30 x 10 ⁻⁵	3,84 x 10 ⁻⁴	4,34 x 10 ⁻⁶
	E. p. (10)	4,20 x 10 ⁻³	4,47 x 10 ⁻⁵	4,20 x 10 ⁻⁴	4,47 x 10 ⁻⁶
	Reg. (1)	2,69 x 10 ⁴	6,78	2,69 x 10 ⁴	6,78
C_{2}^{2+}	Res. (13)	7,55 x 10 ⁻³	1,56 x 10 ⁻⁴	5,81 x 10 ⁻⁴	1,20 x 10 ⁻⁵
Ca	F. aj. (3)	2,42 x 10 ⁻³	4,70 x 10 ⁻⁵	8,06 x 10 ⁻⁴	1,57 x 10 ⁻⁵
	E. p. (10)	5,13 x 10 ⁻³	1,09 x 10 ⁻⁴	5,13 x 10 ⁻⁴	1,09 x 10 ⁻⁵

Tabela 4.3. Somas quadráticas e médias quadráticas calculadas para ANOVA.

Reg.: Regressão, Res.: Resíduos, F. aj.: Falta de ajuste, E. p.: Erro puro Os valores entre parênteses indicam o número de graus de liberdade. Após o cálculo das médias quadráticas, estes valores foram utilizados nos testes de falta de ajuste e significância de regressão, cujos resultados encontram-se na Tabela 4.4. Para todos os casos, os valores de MQ_{faj}/MQ_{ep} são menores que o ponto da distribuição *F*, ao nível de 95% confiança, considerando os mesmos graus de liberdade. Dessa forma, não há evidência de falta de ajuste para um modelo linear. Além disso, a Tabela 4.4 revela que as regressões lineares são altamente significativas. De fato, os valores de MQ_{reg}/MQ_r são muito maiores que o ponto da distribuição *F*, considerando-se os mesmos graus de liberdade e o nível de 95% de confiança (BARROS NETO, SCARMÍNIO e BRUNS, 2007 e DRAPER e SMITH, 1998).

Tabela 4.4. ANOVA para o modelo linear ($\hat{y} = \alpha + \beta X$) das curvas analíticas.

	Analito	Lítio	Sódio	Cálcio
MQ _{faj}	DIB-FES	1,52	0,91	1,57
$\overline{MQ_{ep}}$	FES	1,07	0,97	1,44
MQ _{reg}	DIB-FES	1,70 x 10 ⁷	1,81 x 10 ⁸	4,64 x 10 ⁷
MQ _r	FES	5,09 x 10 ⁶	1,17 x 10 ⁶	5,64 x 10 ⁵
GI	Falta de ajuste	3 e 10 respectivamente		
GL	Significância de regressão	1 e 13 respectivamente		
F _{v1,v2}	Falta de ajuste	3,71		
(95%)	Significância de regressão	4,67		

Uma vez que os modelos lineares não apresentam evidência estatística de falta de ajuste e resultam de regressões altamente significativas, as curvas analíticas correspondentes podem ser usadas para fins de quantificação.

4.6 Figuras de mérito e desempenho do método proposto

Para avaliar o desempenho do método DIB-FES, realizou-se uma comparação com o método FES com base nas seguintes figuras de mérito: LOD, LOQ e sensibilidade de calibração. Essas características de desempenho foram adotadas e calculadas de acordo com os conceitos e recomendações da IUPAC. Entretanto, o desvio padrão do branco (s_b) para o método DIB-FES foi estimado, aplicando-se outro procedimento que é proposto neste trabalho. Isto porque, neste caso, a resposta analítica no método DIB-FES está associada à norma de um vetor baseada em três variáveis (componentes R, G e B) resultantes das imagens digitais. Essa nova estratégia para o cálculo de s_b é descrita a seguir.

De acordo com a **Equação 10**, a norma do vetor \mathbf{v} , $\|\mathbf{v}_{\mathbf{b}}\|$, associado à imagem digital do branco é dada por:

$$\|\mathbf{v}_{\mathbf{b}}\| = \sqrt{\overline{R}_{b}^{2} + \overline{G}_{b}^{2} + \overline{B}_{b}^{2}}$$
(16)

onde \overline{R}_b , \overline{G}_b e \overline{B}_b são os valores médios de todos os *pixels* da região delimitada na Figura 4.1 nas imagens digitais do branco.

Uma vez que $\|\mathbf{v}_{\mathbf{b}}\|$ é baseada em três variáveis experimentais, o desvio padrão (s_b) associado deve ser estimado aplicando as equações de propagação de erro, como descrito em SKOOG, HOLLER E NIEMAN, 2002.

Assumindo que $Y = \sqrt{Y_1 + Y_2 + Y_3}$, onde $Y_1 = \overline{R}^2$, $Y_2 = \overline{G}^2$ e $Y_3 = \overline{B}^2$, os desvios padrão (s_Y) são calculados como:

$$s_{Y_1} = 2 Y_1 \cdot \frac{s_{\overline{R}}}{\overline{R}} = 2 \overline{R}^2 \cdot \frac{s_{\overline{R}}}{\overline{R}} = 2 \overline{R} s_{\overline{R}}$$
(17)

Analogamente, pode-se escrever:

$$\mathbf{s}_{\mathbf{Y}_2} = 2 \, \mathbf{G} \, \mathbf{s}_{\overline{\mathbf{G}}} \tag{18}$$

$$\mathbf{s}_{\mathbf{Y}_3} = 2 \,\mathbf{B} \,\mathbf{s}_{\mathbf{\bar{B}}} \tag{19}$$

Considerando que $Y_4 = Y_1 + Y_2 + Y_3$, a estimativa do desvio padrão com relação à operação de soma é dada por:

$$\mathbf{S}_{\mathsf{Y}_4} = \sqrt{\mathbf{S}_{\mathsf{Y}_1}^2 + \mathbf{S}_{\mathsf{Y}_2}^2 + \mathbf{S}_{\mathsf{Y}_3}^2} \Longrightarrow \mathbf{S}_{\mathsf{Y}_4} = \sqrt{\left(2\overline{\mathsf{R}}\mathbf{S}_{\overline{\mathsf{R}}}\right)^2 + \left(2\overline{\mathsf{G}}\mathbf{S}_{\overline{\mathsf{G}}}\right)^2 + \left(2\overline{\mathsf{B}}\mathbf{S}_{\overline{\mathsf{B}}}\right)^2} \tag{20}$$

Fazendo $Y = \sqrt{Y_4}$ e repetindo o procedimento com relação à potenciação ($Y = (Y_4)^{\frac{1}{2}}$) a estimativa do desvio padrão é calculada como:

$$s_{_{Y}} = Y \cdot \frac{1}{2} \cdot \frac{s_{_{Y_4}}}{Y_4} = \sqrt{Y_4} \cdot \frac{1}{2} \cdot \frac{\sqrt{\left(2\overline{R}s_{_{\overline{R}}}\right)^2 + \left(2\overline{G}s_{_{\overline{G}}}\right)^2 + \left(2\overline{B}s_{_{\overline{B}}}\right)^2}}{\overline{R}^2 + \overline{G}^2 + \overline{B}^2}$$

$$s_{_{Y}} = Y \cdot \frac{1}{2} \cdot \frac{s_{_{Y_4}}}{Y_4} = \sqrt{\overline{R}^2 + \overline{G}^2 + \overline{B}^2} \cdot \frac{1}{2} \cdot \frac{\sqrt{\left(2\overline{R}s_{_{\overline{R}}}\right)^2 + \left(2\overline{G}s_{_{\overline{G}}}\right)^2 + \left(2\overline{B}s_{_{\overline{B}}}\right)^2}}{\overline{R}^2 + \overline{G}^2 + \overline{B}^2}$$

$$\mathbf{S}_{Y} = \mathbf{S}_{b} = \sqrt{\frac{\left(\overline{\mathbf{R}}\mathbf{S}_{\overline{R}}\right)^{2} + \left(\overline{\mathbf{G}}\mathbf{S}_{\overline{G}}\right)^{2} + \left(\overline{\mathbf{B}}\mathbf{S}_{\overline{B}}\right)^{2}}{\overline{\mathbf{R}}^{2} + \overline{\mathbf{G}}^{2} + \overline{\mathbf{B}}^{2}}}$$
(21)

onde $s_{\overline{R}}$, $s_{\overline{G}}$ e $s_{\overline{B}}$ são os desvios padrão associados aos valores médios \overline{R}_{b} , \overline{G}_{b} e \overline{B}_{b} resultantes da imagem digital RGB do branco, respectivamente.

Finalmente, o LOD e o LOQ são calculados usando o valor de s_b estimado pela **Equação 29** e as seguintes expressões:

$$LOD = \frac{3 \cdot s_{b}}{\beta}$$
(22)
$$LOQ = \frac{10 \cdot s_{b}}{\beta}$$
(23)

onde "β" é a inclinação da curva analítica baseada na **Equação 15** e estimada por regressão linear pelo método dos mínimos quadrados.

Neste trabalho, o valor de s_b foi estimado com base em 20 imagens digitais do branco para cada analito, usando a **Equação 21**. Para isso, os valores de $s_{\overline{R}}^{}$, $s_{\overline{G}}^{}$ e $s_{\overline{B}}^{}$ foram obtidos a partir das imagens digitais do branco e usados no cálculo de s_b. Dessa forma, os valores de LOD e LOQ foram estimados métodos DIB-FES FES para os е utilizando, respectivamente, as Equações 22 e 23. Os resultados são apresentados na Tabela 4.5, na qual se observa que o método proposto apresentou um desempenho significativamente melhor, ou seja, menores valores de LOD e LOQ.

	Valores de figuras de mérito (x 10 ⁻¹)				
Analito	LOD (mg L ⁻¹)		LOQ (mg L ⁻¹)		
-	DIB-FES	FES	DIB-FES	FES	
Li ⁺	0,9	2,8	3,1	9,3	
Na ⁺	0,4	0,8	1,5	3,0	
Ca ²⁺	1,0	2,6	3,2	8,5	

 Tabela 4.5. LOD e LOQ para os métodos DIB-FES e FES.

Em relação sensibilidade, observa-se na Tabela 4.2 e na Figura 4.6 que o método DIB-FES apresenta uma sensibilidade de calibração (definida pelo valor de β) maior que o método FES para os três analitos. Essa característica vantajosa pode ser atribuída à natureza da detecção trivariada (sistema de cores RGB) inerente à *Webcam*, proporcionando respostas analíticas com sensibilidade maior.

4.7 Determinações analíticas

Uma vez validados os modelos de calibração, as curvas analíticas DIB-FES e FES foram usadas para a determinação de Li⁺ em comprimidos antidepressivos, Na⁺ em soro fisiológico e Ca²⁺ em águas. A Tabela 4.6 mostra os resultados em termos de, respectivamente, carbonato de lítio, cloreto de sódio e óxido de cálcio livre. Pode-se a similaridade entre os resultados obtidos por ambos os métodos. De fato, nenhuma diferença estatisticamente significativa foi verificada entre os resultados aplicando o teste *t* emparelhado ao nível de 95% de confiança.

A Tabela 4.6 mostra também que o método DIB-FES apresenta precisão melhor que o método FES, como revelado pelos menores valores de RSD conjunto (n = 5). Essa precisão satisfatória também pode ser atribuída à natureza multivariada do sinal monitorado em determinações analítica baseadas em imagens digitais RGB.

Amostras	Método analítico		
Amostrus	DIB-FES	FES	
Antidepressivo	Li ₂ CO ₃ (mg)		
(1)	299,8 ± 0,6	299,5 ± 1,1	
(2)	$300,0 \pm 0,4$	$300,0 \pm 1,4$	
(3)	299,0 ± 0,5	299,1 ± 1,3	
(4)	299,2 ± 0,6	299,8 ± 1,2	
(5)	$299,5 \pm 0,4$	298,9 ± 1,5	
(6)	299,4 ± 0,3	299,6 ± 1,6	
Desvio padrão conjunto	0,5	1,4	
Soro fisiológico	NaCl (% m/v)		
(1)	$0,88 \pm 0,04$	$0,89 \pm 0,07$	
(2)	$0,89 \pm 0,02$	$0,88 \pm 0,06$	
(3)	$0,89 \pm 0,02$	0,90 ± 0,05	
(4)	$0,89 \pm 0,03$	$0,89 \pm 0,06$	
(5)	$0,88 \pm 0,05$	$0,89 \pm 0,07$	
(6)	$0,90 \pm 0,01$	$0,89 \pm 0,06$	
Desvio padrão conjunto	0,02	0,06	
Água	CaO livre (g L ⁻¹)		
(1)	25,0 ± 0,2	24,9 ± 1,5	
(2)	25,2 ± 0,2	25,2 ± 1,7	
(3)	$24,7 \pm 0,1$	24,9 ± 1,6	
(4)	$24,8 \pm 0,2$	$24,5 \pm 1,0$	
(5)	25,0 ± 0,3	25,1 ± 1,2	
(6)	$24,8 \pm 0,2$	24,7 ± 1,6	
Desvio padrão conjunto	0,2	1,4	

Tabela 4.6. Resultados da determinação de Li⁺, Na⁺ e Ca²⁺ por ambos os métodos.

Primeira bailarina – Edgar Degas

CAPÍTULO 5

CONCLUSÃO

"Vencer a si próprio é a maior das vitórias." Platão

5. CONCLUSÃO

Neste trabalho, demonstrou-se a viabilidade da exploração de imagens digitais, obtidas com uma *Webcam*, como uma nova técnica de detecção para análises químicas quantitativas por FES. Sendo assim, o uso de imagens digitais, proposto neste trabalho para fins de quantificação, introduz um conceito novo em FES.

Os valores atribuídos à cor das imagens digitais RGB, aos quais estão associadas às radiações emitidas pelos analitos, guardam uma relação linear com sua concentração. Diante dessa constatação, propôs-se um modelo matemático linear com base no sistema de cores RGB e no conceito de norma de vetor para construção de curvas analíticas DIB-FES.

Vale ressaltar que a escolha da região apropriada para o tratamento das imagens digitais é fundamental para a aplicação satisfatória da metodologia proposta. Assim, a região oxidante da chama mostrou-se a mais adequada para medidas analíticas, tal como ocorre na fotometria de emissão em chama convencional.

O método proposto foi aplicado com sucesso à determinação de Li⁺, Na⁺ e Ca²⁺ em amostras de, respectivamente, comprimidos antidepressivos, soro fisiológico e águas. Em todas as aplicações, o método DIB-FES proporcionou sensibilidade de calibração, limites de detecção e quantificação e precisão melhores que o método FES.

Usando uma *Webcam* como detector de radiação na região do visível, a estratégia proposta oferece uma alternativa economicamente viável frente à espectrometria de emissão em chama convencional. Além disso, esse dispositivo dispensa o uso de seletores de radiação, o que possibilita reduzir ainda mais o custo de manutenção da instrumentação para os métodos de emissão em chama.

Por outro lado, a ausência de seletor de radiação torna a resposta analítica da *Webcam* sujeita a interferências matriciais e/ou espectrais, especialmente em determinações envolvendo matrizes complexas. Esses inconvenientes podem ser contornados, empregando-se métodos de calibração multivariada disponibilizado na Quimiometria (BEEBE, PELL e SEASHOLTZ, 1998 e HAIR JR et al., 2005). Nesse contexto, pode-se recorrer, por exemplo, ao uso do GSAM (SAXBERG e KOWASLKI, 1979 e SILVA et al., 1999) para corrigir os eventuais problemas de interferências mencionados.

5.1 Propostas futuras

Além das vantagens enfatizadas, o uso de uma *Webcam* como detector possibilita a obtenção de sinais analíticos com maior sensibilidade e, sobretudo, a captura de sinais (ou seja, imagens digitais) no espaço bidimensional. No entanto, essa característica relacionada à resolução espacial da *Webcam* não foi explorada, sendo então proposta para trabalhos futuros.

Outra proposta de continuidade consiste na possibilidade de desenvolver fotômetros de emissão em chama com mais de uma fonte de excitação miniaturizada. Desse modo, torna-se possível monitorar simultaneamente radiações emitidas por mais de um analito e/ou amostra, provenientes de mais de uma fonte de excitação.

Por fim, outra possibilidade de trabalho futuro consiste em propor a implementação de métodos DIB-FES para análises multicomponentes e/ou simultâneas baseadas na associação da calibração multivariada e método de adição de padrão, a exemplo do GSAM.

A leitora - Jean Honoré Fragonard

CAPÍTULO 6

REFERÊNCIAS

"A leitura é uma fonte inesgotável de prazer, mas por incrível que pareça, a quase totalidade, não sente esta sede. " Carlos Drummond de Andrade

5. REFERÊNCIAS

AMARAL, A. L.; FERREIRA, E. C., Activated sludge monitoring of a wastewater treatment plant using image analysis and partial least squares regression, Analytica Chimica Acta, **544: 246, 2005**

ANTONELLI, A. et al, Automated evaluation of food colour by means of multivariate image analysis coupled to a wavelet-based classification algorithm, Analytica Chimica Acta, **515: 3, 2004**

ASSAD, E. D. et al, Identificação de impurezas e misturas de pó de café por meio de comportamento espectral e análise de imagens digitais, Pesquisa Agropecuária Brasileira, **37: 211, 2002**

BARROS NETO, B. B., SCARMINIO, I. S. e BRUNS, R. E. **Como fazer** experimentos. 3^a Ed. Campinas: Editora Unicamp, 2007.

BEEBE, K. R., PELL, R. J., SEASHOLTZ, M. B. Chemometrics - a practical guide. New York: Wiley, 1998.

BERNS, R.S. **Principles of colour technology**. 3rd Ed., New York: Wiley, 2000.

BRISCOE, A.D. e CHITTKA, L., The evolution of color vision in insects, Annual Review of Entomology, **46: 471, 2001**

BUREL, L. et al., Molecular and atomic ultra trace analysis by laser induced fluorescence with OPO system and ICCD camera, Talanta, **60**: **295**, **2003**

DRAPER, N. R. e SMITH, H. **Applied regression Analysis**. 3rd Ed.,New York: John Wiley & Sons Inc., 1998.

FILIPPINI, D.; LUNDSTRÖM, I., Spectroscopic information retained in screen photo-assisted techniques, Analytica Chimica Acta, **521: 237, 2004**

FRASER, B.; MURPHY, C.; BUNTING, F. **Real world color management**. 2nd Edition. United States of America: Peachpit Press, 2005.

FUCHS, F. D. e WANNMACHER, L. **Farmacologia clínica: fundamentos da terapia racional**. 2^a Ed. Rio de Janeiro: Gunabara Koogan, 1998.

FUKUI, S. et al, Two-dimensional analysis of fluctuation in an inductively coupled plasma by a spectrovideo camera, Microchemical Journal, **68**: **225**, **2001**

GAIÃO, E. N. et al., Digital image-based titrations, Analytica Chimica Acta, **570: 283, 2006**

GELADI, P.; GRAHN, H. **Multivariate image analysis**. 2nd Ed. New York: Wiley, 1996.

GINORIS, Y. P. et al, Recognition of protozoa and metazoan using image analysis tools, discriminant analysis, neural networks and decision trees, Analytica Chimica Acta, **595: 160, 2007**

GRANDIS, L. D. **Theory and use of color.** Translated by John Gilbert. New York: Harry N. Abrams Inc., 1986.

HAIR JR, J. F. et al. **Análise multivariada de dados**. 5^a Ed. Porto Alegre: Bookman, 2005.

HENDRICH,N. CMOS technology demosntration. Disponível em: < <u>http://tams-www.informatik.uni-</u> <u>hamburg.de/applets/cmos/cmosdemo.html</u> > Acessado em 8 de novembro de 2008.

HIEFTJE, G. M. Atomic emission spectroscopy – it last and last and last., Journal of Chemical Education, **77:577, 2000**

IUPAC Nomenclature, Symbols, units and their usage in spectrochemical analysis-II. Data interpretation. Pure and Applied Chemistry, **45: 99, 1976**

IUPAC Nomenclature, symbols, units and their usage in spectrochemical analysis- III. Analytical Flame Spectroscopy and Associated Non-Flame Procedures. Pure and Applied Chemistry, **45: 105, 1976**

JARREL, R. F. A brief history of atomic spectrochemical analysis, 1666-1950., Journal of Chemical Education, **77:573, 2000**

KOHL, S. K.; LANDMARK, J. D.; STICKLE, D., Demonstration of absorbance using digital color image and colored solutions, Journal of Chemical Education, **83: 644, 2006**

LAMPEN, P. et al, Spectroscopic and photometric evaluation of images from the Mars pathfinder camera, Analytica Chimica Acta, **420: 229, 2000**

LEÃO, A. C. *Gerenciamento de cores para imagens digitais*. Belo Horizonte, Programa de Pós-Graduação em Artes Visuais, UFMG, 2005. Dissertação de mestrado, 135p

LLANO, E. G. et al, Improvement deoxiribo nucleic acid classification in polyacrilamide gel images using photometric normalization algorithms, Analytica Chimica Acta, **595: 145, 2007**

LUO, L.; ZHANG, Z.; LIFENG, M., Determination of recombinant human tumor necrosis factor- α in serum by chemiluminescence imaging, Analytica Chimica Acta, **539**: **277**, **2005**

MALEKI, N.; SAVAFI, A.; SEDAGHATPOUR, F., Single-step calibration, prediction and real samples data acquisition for artificial neural network using a CCD camera, Talanta, **64: 830, 2004**

MIZUGUCHI, H. et al, Highly sensitive colour change system within slight differences in metal ion concentrations based on homo-binuclear complex formation equilibrium for visual threshold detection of trace metal ions, Analytica Chimica Acta, **527: 131, 2004**

MONEMI, N. et al, CCD-camera based capillary chemiluminescent detection of retinol binding protein, Analytica Chimica Acta, **387: 21, 1999**

OKAMURA, F.; CAVALHEIRO, E. T. G.; NÓBREGA, J. A., Experimentos simples usando fotometria de chama para ensino de princípios de espectrometria atômica em cursos de química analítica, Química Nova, **27: 832, 2004**

OHLWEILER, O. A. **Fundamentos de análise instrumental**. Rio de Janeiro: LTC, 1981.

PACIORNIK, S. et al, Scanner image analysis in the quantification of mercury using spot-tests, Journal of Brazilian Chemical Society, **17: 156, 2006**

PEREIRA, F. M. V.; BUENO, M. I. M. S., Image evaluation with chemometric strategies for quality control of paints, Analytica Chimica Acta, **588: 184, 2007**

PIMENTEL, M. F. e BARROS NETO, B. B., Calibração: uma revisão para químicos analíticos, Química Nova, **19: 268, 1996**

RETONDO, C. G. e FARIA, P. **Química das Sensações**. Campinas: Editora Átomo, 2006.

SAXBERG, B. E. H e KOWALSKI, B. R., Generalized Standard Addition Method, Analytical Chemistry, **51: 1031, 1979**

SAVAFI, A. et al., CCD camera full range pH sensor array, Talanta, **71: 498, 2007**

SILVA et al., Implementation of a Generalized Standard Addition Method in a Flow Injection System Using Merging-Zones and Gradient Exploitation, Analytical Sciences, **15**: **1325**, **1999**

SILVA JUNIOR, C. e SASSON, S. **Biologia**. Volume único. 4^a Ed. São Paulo: Saraiva, 2007.

SKOOG, D. A.; HOLLER, F. J.; NIEMAN T. A. **Princípios de análise Instrumental**. 5^a Ed. Porto Alegre: Bookman, 2002.

SOUZA, L. A. C.; SPEHAR, C. R.; SANTOS, R. L. B., Análise de imagem para determinação do teor de saponina em quinoa, Pesquisa Agropecuária Brasileira, **39: 397, 2004**

SOUZA, U. L. e PEREIRA, T. R. Fotodiodos e fototransistores. Disponível em: < <u>www.etb.com.br/professor/materialdeapoio/transistor.pdf</u> > Acessado em 8 de novembro de 2008.

STRÖMBERG, N; HULTH, S., Assessing an imaging ammonium sensor using time correlated pixel-by-pixel calibration, Analytica Chimica Acta, **550: 61, 2005**

TASI – Technical Advisory Service for Images. An Overview of ColorManagement.Disponível<<u>http://www.tasi.ac.uk/advice/managing/pdf/colour_manage.pdf</u>>.Acessado em: 20 de outubro de 2007.

The United States Pharmacopoeia, The National Formulary, USD XXXII

TORRES, G. Formatos de arquivos gráficos. Disponível em : < <u>http://www.clubedohardware.com.br/artigos/952</u> >. Acessado em 9 de novembro de 2008.

YAMANAKA, K. et al, In-situ monitoring of degradation of C/C composites and coatings in an inductively coupled plasma by a spectroCCD camera, Microchemical Journal, **70: 165, 2001**

A criação dos céus - Michelangelo

CAPÍTULO 7

ANEXOS

"O futuro não pode ser previsto, mas pode ser inventado. É a nossa habilidade de inventar o futuro que nos dá esperança para fazer de nós o que somos." Dennis Gabor

7. ANEXOS

7.1 Código fonte do programa Captura de Imagens da Webcam

unit main;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DSUtil, StdCtrls, DSPack, DirectShow9, Menus, ExtCtrls, ExtDlgs, JPEG;

type

TVideoForm = class(TForm) FilterGraph: TFilterGraph; VideoWindow: TVideoWindow; MainMenu1: TMainMenu; Devices: TMenuItem; Filter: TFilter; Image: TImage; SampleGrabber: TSampleGrabber; InicCapBnt: TButton; CallBack: TCheckBox; ParaCapBnt: TButton; SavePictureDialog1: TSavePictureDialog; FechaBnt: TButton; procedure FormCreate(Sender: TObject); procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);

procedure InicCapBntClick(Sender: TObject);

procedure SampleGrabberBuffer(sender: TObject; SampleTime: Double;

pBuffer: Pointer; BufferLen: Integer);

procedure ParaCapBntClick(Sender: TObject);

procedure FechaBntClick(Sender: TObject);

private

{ Déclarations privées }

public

{ Déclarations publiques }

procedure OnSelectDevice(sender: TObject);

end;

var

VideoForm: TVideoForm;

SysDev: TSysDevEnum;

PathInic: String;

Captura: Boolean;

implementation

{\$R *.dfm}

procedure TVideoForm.FormCreate(Sender: TObject);

var

```
i: integer;
```

Device: TMenuItem;

begin

GetDir(0, PathInic);

SysDev: = TSysDevEnum.Create(CLSID_VideoInputDeviceCategory);

if SysDev.CountFilters > 0 then

for i := 0 to SysDev.CountFilters - 1 do

begin

```
Device := TMenuItem.Create(Devices);
Device.Caption := SysDev.Filters[i].FriendlyName;
Device.Tag := i;
Device.OnClick := OnSelectDevice;
Devices.Add(Device);
end;
end;
```

```
procedure TVideoForm.OnSelectDevice(sender: TObject);
```

begin

FilterGraph.ClearGraph;

FilterGraph.Active := false;

Filter.BaseFilter.Moniker

```
SysDev.GetMoniker(TMenuItem(Sender).tag);
```

FilterGraph.Active := true;

with FilterGraph as ICaptureGraphBuilder2 do

RenderStream(@PIN_CATEGORY_PREVIEW, nil, Filter as IBaseFilter,

SampleGrabber as IBaseFilter, VideoWindow as IbaseFilter);

FilterGraph.Play;

end;

```
procedure TVideoForm.FormCloseQuery(Sender: TObject; var
CanClose: Boolean);
```

begin

CallBack.Checked := False;

SysDev.Free;

FilterGraph.ClearGraph;

FilterGraph.Active := false;

end;

procedure TVideoForm.InicCapBntClick(Sender: TObject); Var :=

MyJPEG : TJPEGImage; NomeArq, NomeArqTemp: String; i: Integer; begin i := 1;Captura : = True;InicCapBnt.Enabled := False; ParaCapBnt.Enabled := True; SavePictureDialog1.InitialDir := PathInic; SavePictureDialog1.DefaultExt := 'bmp'; SavePictureDialog1.Filter 'Arquivos Bitmaps := (*.bmp)|*.bmp|Arquivos JPEG (*.jpg)|*.jpg'; if SavePictureDialog1.Execute then begin NomeArq := SavePictureDialog1.FileName; NomeArqTemp := NomeArq; while (Captura = True) do begin Insert('-'+IntToStr(i), NomeArg, length(NomeArg)-3); // Captura imagem e coloca na componente Image SampleGrabber.GetBitmap(Image.Picture.Bitmap); // se a extensão for .jpeg, salva no formato JPEG, senão salva em **BMP** if UpperCase(ExtractFileExt(NomeArq)) = '.JPG' then begin MyJPEG := TJPEGImage.Create; // Converte o BMP para JPEG with MyJPEG do begin Assign(Image.Picture.BitMap); SaveToFile(NomeArq); Free; end; end else begin Image.Picture.SaveToFile(NomeArg);

```
end;
      NomeArq := NomeArqTemp; // Para nao acumular nomes
      i := i + 1;
      Application.ProcessMessages;
    end;
     Image.Picture := nil;
    GetDir(0, PathInic);
   end;
  end;
  procedure TVideoForm.SampleGrabberBuffer(sender: TObject;
   SampleTime: Double; pBuffer: Pointer; BufferLen: Integer);
  begin
   if CallBack.Checked then
   begin
     Image.Canvas.Lock;
    try
      SampleGrabber.GetBitmap(Image.Picture.Bitmap,
                                                                pBuffer,
BufferLen);
    finally
      Image.Canvas.Unlock;
    end;
   end;
  end;
  procedure TVideoForm.ParaCapBntClick(Sender: TObject);
  begin
   Captura := False;
   InicCapBnt.Enabled := True;
   ParaCapBnt.Enabled := False;
  end;
```

procedure TVideoForm.FechaBntClick(Sender: TObject); begin Close; end;

.

end.

7.2 Código fonte do programa Cor Emissão

unit CorEmissao;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, Buttons, JPEG, ExtDlgs;

type

TFormDetCor = class(TForm) DefCoordBtn: TButton; RGBBrancoBtn: TButton; GroupBox2: TGroupBox; Label1: TLabel; Label3: TLabel; xMinLabel: TLabel; yMinLabel: TLabel; GroupBox3: TGroupBox; Label9: TLabel; Label11: TLabel; Label11: TLabel; GLabel: TLabel;

BLabel: TLabel;

Label19: TLabel;

xMaxLabel: TLabel;

Label21: TLabel;

yMaxLabel: TLabel;

RGBPadAmBtn: TButton;

LimpMemosBtn: TButton;

FecharBtn: TButton;

OpenPictureDialog1: TOpenPictureDialog;

Panel1: TPanel;

WebcamImg: TImage;

Panel2: TPanel;

nPontosMemo: TMemo;

CorMemo: TMemo;

RMemo: TMemo;

GMemo: TMemo;

BMemo: TMemo;

NormaMemo: TMemo;

Label7: TLabel;

Label2: TLabel;

Label15: TLabel;

Label16: TLabel;

Label17: TLabel;

Label18: TLabel;

procedure LerCorPixels(var CorMed: Integer);

procedure LerRGBPixels(var RMed, GMed, BMed: byte);

procedure DefCoordBtnClick(Sender: TObject);

procedure RGBBrancoBtnClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure

TMouseButton; Shift: TShiftState; X, Y: Integer); WebcamImgMouseMove(Sender: Shift: procedure TObject; TShiftState; X, Y: Integer); procedure WebcamImgMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer); procedure RGBPadAmBtnClick(Sender: TObject); procedure LimpMemosBtnClick(Sender: TObject); procedure FecharBtnClick(Sender: TObject); private { Private declarations } public { Public declarations } end; var FormDetCor: TFormDetCor; JPEGImage: TJPEGImage; BMPImage: TBitmap; MouseMoviment: boolean; Xinic, Yinic: integer; xMin, xMax, yMin, yMax: integer; nImagem, NPontos, npMatrizCor, npMatrizRGB: integer; NomeImagem: array[0..99] of string; R_Med_Branco, G_Med_Branco, B_Med_Branco: integer; R_Med_Pad_Am, G_Med_Pad_Am, B_Med_Pad_Am: integer; Arq, PathInic: string;

WebcamImgMouseDown(Sender:

implementation

Button:

TObject;

```
{$R *.dfm}
```

```
procedure ColorToRGB(const Color: Integer; var R, G, B: Byte);
begin
```

R := Color and \$FF;

G := (Color and \$FF00) shr 8;

```
B := (Color and $FF0000) shr 16;
```

end;

procedure TFormDetCor.LerCorPixels(var CorMed: Integer);

var

SomaCor: Int64;

i, j: integer;

begin

// Ler cor de cada pixel da imagem

npMatrizCor := 0;

SomaCor := 0;

for i: =xMin to xMax do begin

for j: =yMin to yMax do begin

```
SomaCor := SomaCor + WebcamImg.Canvas.Pixels[i,j];
```

```
npMatrizCor := npMatrizCor + 1;
```

end;

end;

CorMed := SomaCor div npMatrizCor;

end;

procedure TFormDetCor.LerRGBPixels(var RMed, GMed, BMed: byte); var

SomaR, SomaG, SomaB: Integer;

R, G, B: byte;

i, j: integer;

```
begin
  // Ler valores R, G e B apartir da matriz Cor
  npMatrizRGB := 0;
  SomaR := 0;
  SomaG := 0;
  SomaB := 0;
  // Ler valores R, G e B da imagem coluna por coluna
  for i: =xMin to xMax do begin
   for j: =yMin to yMax do begin
   // SomaR := SomaR + GetRValue(WebcamImg.Canvas.Pixels[i,j]);
   // SomaG := SomaG + GetGValue(WebcamImg.Canvas.Pixels[i,j]);
   // SomaB := SomaB + GetBValue(WebcamImg.Canvas.Pixels[i,j]);
   ColorToRGB(WebcamImg.Canvas.Pixels[i,j], R, G, B);
   SomaR : = SomaR + R;
   SomaG := SomaG + G;
    SomaB := SomaB + B;
   npMatrizRGB := npMatrizRGB + 1;
   end;
  end;
  RMed := SomaR div npMatrizRGB;
  GMed := SomaG div npMatrizRGB;
  BMed := SomaB div npMatrizRGB;
  end;
  procedure TFormDetCor.DefCoordBtnClick(Sender: TObject);
  begin
   OpenPictureDialog1.InitialDir := PathInic;
   OpenPictureDialog1.DefaultExt := 'bmp';
   OpenPictureDialog1.Filter
                                              'Arquivos
                                   :=
                                                              Bitmaps
(*.bmp)|*.bmp|Arquivos JPEG (*.jpg)|*.jpg';
   if OpenPictureDialog1.Execute then begin
    BMPImage := TBitmap.Create;
```

// se a extensão for .jpeg, abre no formato JPEG, senão abre em BMP

if UpperCase(ExtractFileExt(OpenPictureDialog1.FileName)) = '.JPG'
then begin

JPEGImage := TJPEGImage.Create;

// Converte o BMP para JPEG

JPEGImage.LoadFromFile(OpenPictureDialog1.FileName);

BMPImage.Assign(JPEGImage); // Converte arquivo JPG para

BMP

WebcamImg.Picture.Bitmap := BMPImage;

JPEGImage.Free;

end

else begin

BMPImage.LoadFromFile(OpenPictureDialog1.FileName);

WebcamImg.Picture.Bitmap := BMPImage;

end;

```
GetDir(0, PathInic);
```

end;

end;

```
procedure TFormDetCor.FormCreate(Sender: TObject);
```

begin

MouseMoviment := False;

GetDir(0, PathInic);

NPontos := 0;

end;

```
procedure TFormDetCor.WebcamImgMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
MouseMoviment := True;
Xinic := X;
```

```
Yinic := Y;
end;
```

```
procedure TFormDetCor.WebcamImgMouseMove(Sender: TObject; Shift: TShiftState;
```

```
X, Y: Integer);
```

begin

if MouseMoviment then begin

WebcamImg.Repaint;

WebcamImg.Picture.Bitmap := BMPImage;

WebcamImg.Canvas.Rectangle(Xinic, Yinic, X, Y);

end;

end;

```
procedure TFormDetCor.WebcamImgMouseUp(Sender: TObject;
Button: TMouseButton;
```

```
Shift: TShiftState; X, Y: Integer);
```

var

xTemp, yTemp: integer;

R, G, B: byte;

begin

```
xTemp := X;
```

```
yTemp := Y;
```

MouseMoviment := False;

```
// procurando o menor e maior valor de X
```

if xTemp < Xinic then begin

xMin := xTemp;

xMax := Xinic;

end

else begin

xMin := Xinic;

```
xMax := xTemp;
```

end; // procurando o menor e maior valor de Y if yTemp < Yinic then begin yMin := yTemp; yMax := Yinic; end else begin yMin := Yinic; yMax := yTemp; end; WebcamImg.Repaint; WebcamImg.Picture.Bitmap := BMPImage; BMPImage.Free;

```
if (xMin = xMax) and (yMin = yMax) then begin
ColorToRGB(WebcamImg.Canvas.Pixels[xMin,yMin], R, G, B);
// R := GetRValue(WebcamImg.Canvas.Pixels[xMin,yMin]);
// G := GetGValue(WebcamImg.Canvas.Pixels[xMin,yMin]);
// B := GetBValue(WebcamImg.Canvas.Pixels[xMin,yMin]);
end
else begin
LerRGBPixels(R, G, B); // Devolve R, G e B medios e
                // Armazena matriz R, G e B
end;
xMinLabel.Caption : = IntToStr(xMin);
xMaxLabel.Caption := IntToStr(xMax);
yMinLabel.Caption : = IntToStr(yMin);
yMaxLabel.Caption := IntToStr(yMax);
RLabel.Caption := IntToStr(R);
GLabel.Caption : = IntToStr(G);
```

```
BLabel.Caption := IntToStr(B);
```

end;

```
procedure TFormDetCor.RGBBrancoBtnClick(Sender: TObject);
  var
   SomaR, SomaG, SomaB: Integer;
   SomaCor: Int64;
   R, G, B: byte;
   i, Cor, CorMed: integer;
   Norma: double;
  begin
   nImagem := 0;
   SomaCor := 0;
   SomaR := 0;
   SomaG := 0;
   SomaB := 0;
   OpenPictureDialog1.InitialDir := PathInic;
   OpenPictureDialog1.DefaultExt := 'bmp';
   OpenPictureDialog1.Filter
                                   :=
                                              'Arquivos
                                                               Bitmaps
(*.bmp)|*.bmp|Arquivos JPEG (*.jpg)|*.jpg';
   OpenPictureDialog1.Options := [ofAllowMultiSelect];
   if OpenPictureDialog1.Execute then begin
    if MouseMoviment=False then begin
      for i := 0 to OpenPictureDialog1.Files.Count-1 do begin
       BMPImage := TBitmap.Create;
       // se a extensão for .jpeg, abre no formato JPEG, senão abre em
BMP
       if
           UpperCase(ExtractFileExt(OpenPictureDialog1.FileName))
                                                                     =
'.JPG' then begin
        JPEGImage := TJPEGImage.Create;
        // Converte o BMP para JPEG
        JPEGImage.LoadFromFile(OpenPictureDialog1.FileName);
        BMPImage.Assign(JPEGImage); // Converte arquivo JPG para
```

BMP

```
WebcamImg.Picture.Bitmap := BMPImage;
        JPEGImage.Free;
       end
       else begin
        BMPImage.LoadFromFile(OpenPictureDialog1.FileName);
        WebcamImg.Picture.Bitmap := BMPImage;
       end;
       BMPImage.Free;
                          // Devolve valor de cor
       LerCorPixels(Cor);
       LerRGBPixels(R, G, B); // Devolve R, G e B medios e
                      // Armazena matriz R, G e B
       SomaCor := SomaCor + Cor;
       SomaR := SomaR + R;
       SomaG := SomaG + G;
       SomaB := SomaB + B;
       nImagem := nImagem + 1;
     end;
     CorMed := SomaCor div nImagem;
     R_Med_Branco := SomaR div nImagem;
     G_Med_Branco := SomaG div nImagem;
     B_Med_Branco := SomaB div nImagem;
     RLabel.Caption : = IntToStr(R_Med_Branco);
     GLabel.Caption := IntToStr(G_Med_Branco);
     BLabel.Caption := IntToStr(B_Med_Branco);
  {
     NPontos := NPontos + 1;
     Norma
                                                                 :=
Sqrt(R_Med_Branco*R_Med_Branco+G_Med_Branco*G_Med_Branco+
              B_Med_Branco*B_Med_Branco);
     nPontosMemo.Lines.Add(IntToStr(NPontos));
```

```
CorMemo.Lines.Add(IntToStr(CorMed));
      RMemo.Lines.Add(IntToStr(R_Med_Branco));
      GMemo.Lines.Add(IntToStr(G_Med_Branco));
      BMemo.Lines.Add(IntToStr(B_Med_Branco));
      NormaMemo.Lines.Add(FloatToStrF(Norma, ffNumber, 18, 2));
  }
    end;
    GetDir(0, PathInic);
   end;
  end;
  procedure TFormDetCor.RGBPadAmBtnClick(Sender: TObject);
  var
   SomaR, SomaG, SomaB: Integer;
   SomaCor: Int64;
   R, G, B: byte;
   i, Cor, CorMed: integer;
   Norma: double;
  begin
   nImagem := 0;
   SomaCor := 0;
   SomaR := 0;
   SomaG := 0;
   SomaB := 0;
   OpenPictureDialog1.InitialDir := PathInic;
   OpenPictureDialog1.DefaultExt := 'bmp';
   OpenPictureDialog1.Filter
                                   :=
                                              'Arquivos
                                                               Bitmaps
(*.bmp)|*.bmp|Arquivos JPEG (*.jpg)|*.jpg';
   OpenPictureDialog1.Options := [ofAllowMultiSelect];
   if OpenPictureDialog1.Execute then begin
    if MouseMoviment=False then begin
      for i := 0 to OpenPictureDialog1.Files.Count-1 do begin
```

BMPImage := TBitmap.Create;

// se a extensão for .jpeg, abre no formato JPEG, senão abre em

BMP

```
if UpperCase(ExtractFileExt(OpenPictureDialog1.FileName)) =
'.JPG' then begin
```

JPEGImage := TJPEGImage.Create;

// Converte o BMP para JPEG

JPEGImage.LoadFromFile(OpenPictureDialog1.FileName);

```
BMPImage.Assign(JPEGImage); // Converte arquivo JPG para
```

BMP

WebcamImg.Picture.Bitmap := BMPImage;

JPEGImage.Free;

end

else begin

BMPImage.LoadFromFile(OpenPictureDialog1.FileName);

WebcamImg.Picture.Bitmap := BMPImage;

end;

BMPImage.Free;

```
LerCorPixels(Cor); // Devolve valor de cor
LerRGBPixels(R, G, B); // Devolve R, G e B medios e
// Armazena matriz R, G e B
SomaCor := SomaCor + Cor;
SomaR := SomaR + R;
SomaG := SomaG + G;
SomaB := SomaB + B;
nImagem := nImagem + 1;
end;
```

CorMed := SomaCor div nImagem; R_Med_Pad_Am := (SomaR div nImagem) - R_Med_Branco; G_Med_Pad_Am := (SomaG div nImagem) - G_Med_Branco;

end;

```
B_Med_Pad_Am := (SomaB div nImagem) - B_Med_Branco;
  {
     R_Med_Pad_Am := SomaR div nImagem;
     G_Med_Pad_Am := SomaG div nImagem;
     B_Med_Pad_Am := SomaB div nImagem;
  }
     NPontos := NPontos + 1;
     Norma
                                                               :=
Sqrt(R Med Pad Am*R Med Pad Am+G Med Pad Am*G Med Pad Am
+
              B_Med_Pad_Am*B_Med_Pad_Am);
     nPontosMemo.Lines.Add(IntToStr(NPontos));
     CorMemo.Lines.Add(IntToStr(CorMed));
     RMemo.Lines.Add(IntToStr(R_Med_Pad_Am));
     GMemo.Lines.Add(IntToStr(G_Med_Pad_Am));
     BMemo.Lines.Add(IntToStr(B_Med_Pad_Am));
     NormaMemo.Lines.Add(FloatToStrF(Norma, ffNumber, 18, 2));
    end;
    GetDir(0, PathInic);
   end;
  end;
  procedure TFormDetCor.LimpMemosBtnClick(Sender: TObject);
  begin
  NPontos := 0;
  nPontosMemo.Clear;
  CorMemo.Clear;
  RMemo.Clear;
  GMemo.Clear;
  BMemo.Clear;
  NormaMemo.Clear;
```

procedure TFormDetCor.FecharBtnClick(Sender: TObject); begin close; end;

end.